blob: 2719f0e20933f2eb27c236ab9cc7bab02989f9e6 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Intel Corporation. */
#include <linux/filter.h>
#include <linux/net/intel/libie/rx.h>
#include "ice_txrx_lib.h"
#include "ice_eswitch.h"
#include "ice_lib.h"
/**
* ice_release_rx_desc - Store the new tail and head values
* @rx_ring: ring to bump
* @val: new head index
*/
void ice_release_rx_desc(struct ice_rx_ring *rx_ring, u16 val)
{
u16 prev_ntu = rx_ring->next_to_use & ~0x7;
rx_ring->next_to_use = val;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = val;
/* QRX_TAIL will be updated with any tail value, but hardware ignores
* the lower 3 bits. This makes it so we only bump tail on meaningful
* boundaries. Also, this allows us to bump tail on intervals of 8 up to
* the budget depending on the current traffic load.
*/
val &= ~0x7;
if (prev_ntu != val) {
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(val, rx_ring->tail);
}
}
/**
* ice_get_rx_hash - get RX hash value from descriptor
* @rx_desc: specific descriptor
*
* Returns hash, if present, 0 otherwise.
*/
static u32 ice_get_rx_hash(const union ice_32b_rx_flex_desc *rx_desc)
{
const struct ice_32b_rx_flex_desc_nic *nic_mdid;
if (unlikely(rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC))
return 0;
nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
return le32_to_cpu(nic_mdid->rss_hash);
}
/**
* ice_rx_hash_to_skb - set the hash value in the skb
* @rx_ring: descriptor ring
* @rx_desc: specific descriptor
* @skb: pointer to current skb
* @rx_ptype: the ptype value from the descriptor
*/
static void
ice_rx_hash_to_skb(const struct ice_rx_ring *rx_ring,
const union ice_32b_rx_flex_desc *rx_desc,
struct sk_buff *skb, u16 rx_ptype)
{
struct libeth_rx_pt decoded;
u32 hash;
decoded = libie_rx_pt_parse(rx_ptype);
if (!libeth_rx_pt_has_hash(rx_ring->netdev, decoded))
return;
hash = ice_get_rx_hash(rx_desc);
if (likely(hash))
libeth_rx_pt_set_hash(skb, hash, decoded);
}
/**
* ice_rx_csum - Indicate in skb if checksum is good
* @ring: the ring we care about
* @skb: skb currently being received and modified
* @rx_desc: the receive descriptor
* @ptype: the packet type decoded by hardware
*
* skb->protocol must be set before this function is called
*/
static void
ice_rx_csum(struct ice_rx_ring *ring, struct sk_buff *skb,
union ice_32b_rx_flex_desc *rx_desc, u16 ptype)
{
struct libeth_rx_pt decoded;
u16 rx_status0, rx_status1;
bool ipv4, ipv6;
/* Start with CHECKSUM_NONE and by default csum_level = 0 */
skb->ip_summed = CHECKSUM_NONE;
decoded = libie_rx_pt_parse(ptype);
if (!libeth_rx_pt_has_checksum(ring->netdev, decoded))
return;
rx_status0 = le16_to_cpu(rx_desc->wb.status_error0);
rx_status1 = le16_to_cpu(rx_desc->wb.status_error1);
/* check if HW has decoded the packet and checksum */
if (!(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
return;
ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S)))) {
ring->vsi->back->hw_rx_eipe_error++;
return;
}
if (ipv4 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S))))
goto checksum_fail;
if (ipv6 && (rx_status0 & (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
goto checksum_fail;
/* check for L4 errors and handle packets that were not able to be
* checksummed due to arrival speed
*/
if (rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
goto checksum_fail;
/* check for outer UDP checksum error in tunneled packets */
if ((rx_status1 & BIT(ICE_RX_FLEX_DESC_STATUS1_NAT_S)) &&
(rx_status0 & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EUDPE_S)))
goto checksum_fail;
/* If there is an outer header present that might contain a checksum
* we need to bump the checksum level by 1 to reflect the fact that
* we are indicating we validated the inner checksum.
*/
if (decoded.tunnel_type >= LIBETH_RX_PT_TUNNEL_IP_GRENAT)
skb->csum_level = 1;
skb->ip_summed = CHECKSUM_UNNECESSARY;
return;
checksum_fail:
ring->vsi->back->hw_csum_rx_error++;
}
/**
* ice_ptp_rx_hwts_to_skb - Put RX timestamp into skb
* @rx_ring: Ring to get the VSI info
* @rx_desc: Receive descriptor
* @skb: Particular skb to send timestamp with
*
* The timestamp is in ns, so we must convert the result first.
*/
static void
ice_ptp_rx_hwts_to_skb(struct ice_rx_ring *rx_ring,
const union ice_32b_rx_flex_desc *rx_desc,
struct sk_buff *skb)
{
u64 ts_ns = ice_ptp_get_rx_hwts(rx_desc, &rx_ring->pkt_ctx);
skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ts_ns);
}
/**
* ice_get_ptype - Read HW packet type from the descriptor
* @rx_desc: RX descriptor
*/
static u16 ice_get_ptype(const union ice_32b_rx_flex_desc *rx_desc)
{
return le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
ICE_RX_FLEX_DESC_PTYPE_M;
}
/**
* ice_process_skb_fields - Populate skb header fields from Rx descriptor
* @rx_ring: Rx descriptor ring packet is being transacted on
* @rx_desc: pointer to the EOP Rx descriptor
* @skb: pointer to current skb being populated
*
* This function checks the ring, descriptor, and packet information in
* order to populate the hash, checksum, VLAN, protocol, and
* other fields within the skb.
*/
void
ice_process_skb_fields(struct ice_rx_ring *rx_ring,
union ice_32b_rx_flex_desc *rx_desc,
struct sk_buff *skb)
{
u16 ptype = ice_get_ptype(rx_desc);
ice_rx_hash_to_skb(rx_ring, rx_desc, skb, ptype);
/* modifies the skb - consumes the enet header */
if (unlikely(rx_ring->flags & ICE_RX_FLAGS_MULTIDEV)) {
struct net_device *netdev = ice_eswitch_get_target(rx_ring,
rx_desc);
if (ice_is_port_repr_netdev(netdev))
ice_repr_inc_rx_stats(netdev, skb->len);
skb->protocol = eth_type_trans(skb, netdev);
} else {
skb->protocol = eth_type_trans(skb, rx_ring->netdev);
}
ice_rx_csum(rx_ring, skb, rx_desc, ptype);
if (rx_ring->ptp_rx)
ice_ptp_rx_hwts_to_skb(rx_ring, rx_desc, skb);
}
/**
* ice_receive_skb - Send a completed packet up the stack
* @rx_ring: Rx ring in play
* @skb: packet to send up
* @vlan_tci: VLAN TCI for packet
*
* This function sends the completed packet (via. skb) up the stack using
* gro receive functions (with/without VLAN tag)
*/
void
ice_receive_skb(struct ice_rx_ring *rx_ring, struct sk_buff *skb, u16 vlan_tci)
{
if ((vlan_tci & VLAN_VID_MASK) && rx_ring->vlan_proto)
__vlan_hwaccel_put_tag(skb, rx_ring->vlan_proto,
vlan_tci);
napi_gro_receive(&rx_ring->q_vector->napi, skb);
}
/**
* ice_clean_xdp_tx_buf - Free and unmap XDP Tx buffer
* @dev: device for DMA mapping
* @tx_buf: Tx buffer to clean
* @bq: XDP bulk flush struct
*/
static void
ice_clean_xdp_tx_buf(struct device *dev, struct ice_tx_buf *tx_buf,
struct xdp_frame_bulk *bq)
{
dma_unmap_single(dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
switch (tx_buf->type) {
case ICE_TX_BUF_XDP_TX:
page_frag_free(tx_buf->raw_buf);
break;
case ICE_TX_BUF_XDP_XMIT:
xdp_return_frame_bulk(tx_buf->xdpf, bq);
break;
}
tx_buf->type = ICE_TX_BUF_EMPTY;
}
/**
* ice_clean_xdp_irq - Reclaim resources after transmit completes on XDP ring
* @xdp_ring: XDP ring to clean
*/
static u32 ice_clean_xdp_irq(struct ice_tx_ring *xdp_ring)
{
int total_bytes = 0, total_pkts = 0;
struct device *dev = xdp_ring->dev;
u32 ntc = xdp_ring->next_to_clean;
struct ice_tx_desc *tx_desc;
u32 cnt = xdp_ring->count;
struct xdp_frame_bulk bq;
u32 frags, xdp_tx = 0;
u32 ready_frames = 0;
u32 idx;
u32 ret;
idx = xdp_ring->tx_buf[ntc].rs_idx;
tx_desc = ICE_TX_DESC(xdp_ring, idx);
if (tx_desc->cmd_type_offset_bsz &
cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)) {
if (idx >= ntc)
ready_frames = idx - ntc + 1;
else
ready_frames = idx + cnt - ntc + 1;
}
if (unlikely(!ready_frames))
return 0;
ret = ready_frames;
xdp_frame_bulk_init(&bq);
rcu_read_lock(); /* xdp_return_frame_bulk() */
while (ready_frames) {
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[ntc];
struct ice_tx_buf *head = tx_buf;
/* bytecount holds size of head + frags */
total_bytes += tx_buf->bytecount;
frags = tx_buf->nr_frags;
total_pkts++;
/* count head + frags */
ready_frames -= frags + 1;
xdp_tx++;
ntc++;
if (ntc == cnt)
ntc = 0;
for (int i = 0; i < frags; i++) {
tx_buf = &xdp_ring->tx_buf[ntc];
ice_clean_xdp_tx_buf(dev, tx_buf, &bq);
ntc++;
if (ntc == cnt)
ntc = 0;
}
ice_clean_xdp_tx_buf(dev, head, &bq);
}
xdp_flush_frame_bulk(&bq);
rcu_read_unlock();
tx_desc->cmd_type_offset_bsz = 0;
xdp_ring->next_to_clean = ntc;
xdp_ring->xdp_tx_active -= xdp_tx;
ice_update_tx_ring_stats(xdp_ring, total_pkts, total_bytes);
return ret;
}
/**
* __ice_xmit_xdp_ring - submit frame to XDP ring for transmission
* @xdp: XDP buffer to be placed onto Tx descriptors
* @xdp_ring: XDP ring for transmission
* @frame: whether this comes from .ndo_xdp_xmit()
*/
int __ice_xmit_xdp_ring(struct xdp_buff *xdp, struct ice_tx_ring *xdp_ring,
bool frame)
{
struct skb_shared_info *sinfo = NULL;
u32 size = xdp->data_end - xdp->data;
struct device *dev = xdp_ring->dev;
u32 ntu = xdp_ring->next_to_use;
struct ice_tx_desc *tx_desc;
struct ice_tx_buf *tx_head;
struct ice_tx_buf *tx_buf;
u32 cnt = xdp_ring->count;
void *data = xdp->data;
u32 nr_frags = 0;
u32 free_space;
u32 frag = 0;
free_space = ICE_DESC_UNUSED(xdp_ring);
if (free_space < ICE_RING_QUARTER(xdp_ring))
free_space += ice_clean_xdp_irq(xdp_ring);
if (unlikely(!free_space))
goto busy;
if (unlikely(xdp_buff_has_frags(xdp))) {
sinfo = xdp_get_shared_info_from_buff(xdp);
nr_frags = sinfo->nr_frags;
if (free_space < nr_frags + 1)
goto busy;
}
tx_desc = ICE_TX_DESC(xdp_ring, ntu);
tx_head = &xdp_ring->tx_buf[ntu];
tx_buf = tx_head;
for (;;) {
dma_addr_t dma;
dma = dma_map_single(dev, data, size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, dma))
goto dma_unmap;
/* record length, and DMA address */
dma_unmap_len_set(tx_buf, len, size);
dma_unmap_addr_set(tx_buf, dma, dma);
if (frame) {
tx_buf->type = ICE_TX_BUF_FRAG;
} else {
tx_buf->type = ICE_TX_BUF_XDP_TX;
tx_buf->raw_buf = data;
}
tx_desc->buf_addr = cpu_to_le64(dma);
tx_desc->cmd_type_offset_bsz = ice_build_ctob(0, 0, size, 0);
ntu++;
if (ntu == cnt)
ntu = 0;
if (frag == nr_frags)
break;
tx_desc = ICE_TX_DESC(xdp_ring, ntu);
tx_buf = &xdp_ring->tx_buf[ntu];
data = skb_frag_address(&sinfo->frags[frag]);
size = skb_frag_size(&sinfo->frags[frag]);
frag++;
}
/* store info about bytecount and frag count in first desc */
tx_head->bytecount = xdp_get_buff_len(xdp);
tx_head->nr_frags = nr_frags;
if (frame) {
tx_head->type = ICE_TX_BUF_XDP_XMIT;
tx_head->xdpf = xdp->data_hard_start;
}
/* update last descriptor from a frame with EOP */
tx_desc->cmd_type_offset_bsz |=
cpu_to_le64(ICE_TX_DESC_CMD_EOP << ICE_TXD_QW1_CMD_S);
xdp_ring->xdp_tx_active++;
xdp_ring->next_to_use = ntu;
return ICE_XDP_TX;
dma_unmap:
for (;;) {
tx_buf = &xdp_ring->tx_buf[ntu];
dma_unmap_page(dev, dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len), DMA_TO_DEVICE);
dma_unmap_len_set(tx_buf, len, 0);
if (tx_buf == tx_head)
break;
if (!ntu)
ntu += cnt;
ntu--;
}
return ICE_XDP_CONSUMED;
busy:
xdp_ring->ring_stats->tx_stats.tx_busy++;
return ICE_XDP_CONSUMED;
}
/**
* ice_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
* @xdp_ring: XDP ring
* @xdp_res: Result of the receive batch
* @first_idx: index to write from caller
*
* This function bumps XDP Tx tail and/or flush redirect map, and
* should be called when a batch of packets has been processed in the
* napi loop.
*/
void ice_finalize_xdp_rx(struct ice_tx_ring *xdp_ring, unsigned int xdp_res,
u32 first_idx)
{
struct ice_tx_buf *tx_buf = &xdp_ring->tx_buf[first_idx];
if (xdp_res & ICE_XDP_REDIR)
xdp_do_flush();
if (xdp_res & ICE_XDP_TX) {
if (static_branch_unlikely(&ice_xdp_locking_key))
spin_lock(&xdp_ring->tx_lock);
/* store index of descriptor with RS bit set in the first
* ice_tx_buf of given NAPI batch
*/
tx_buf->rs_idx = ice_set_rs_bit(xdp_ring);
ice_xdp_ring_update_tail(xdp_ring);
if (static_branch_unlikely(&ice_xdp_locking_key))
spin_unlock(&xdp_ring->tx_lock);
}
}
/**
* ice_xdp_rx_hw_ts - HW timestamp XDP hint handler
* @ctx: XDP buff pointer
* @ts_ns: destination address
*
* Copy HW timestamp (if available) to the destination address.
*/
static int ice_xdp_rx_hw_ts(const struct xdp_md *ctx, u64 *ts_ns)
{
const struct ice_xdp_buff *xdp_ext = (void *)ctx;
*ts_ns = ice_ptp_get_rx_hwts(xdp_ext->eop_desc,
xdp_ext->pkt_ctx);
if (!*ts_ns)
return -ENODATA;
return 0;
}
/**
* ice_xdp_rx_hash_type - Get XDP-specific hash type from the RX descriptor
* @eop_desc: End of Packet descriptor
*/
static enum xdp_rss_hash_type
ice_xdp_rx_hash_type(const union ice_32b_rx_flex_desc *eop_desc)
{
return libie_rx_pt_parse(ice_get_ptype(eop_desc)).hash_type;
}
/**
* ice_xdp_rx_hash - RX hash XDP hint handler
* @ctx: XDP buff pointer
* @hash: hash destination address
* @rss_type: XDP hash type destination address
*
* Copy RX hash (if available) and its type to the destination address.
*/
static int ice_xdp_rx_hash(const struct xdp_md *ctx, u32 *hash,
enum xdp_rss_hash_type *rss_type)
{
const struct ice_xdp_buff *xdp_ext = (void *)ctx;
*hash = ice_get_rx_hash(xdp_ext->eop_desc);
*rss_type = ice_xdp_rx_hash_type(xdp_ext->eop_desc);
if (!likely(*hash))
return -ENODATA;
return 0;
}
/**
* ice_xdp_rx_vlan_tag - VLAN tag XDP hint handler
* @ctx: XDP buff pointer
* @vlan_proto: destination address for VLAN protocol
* @vlan_tci: destination address for VLAN TCI
*
* Copy VLAN tag (if was stripped) and corresponding protocol
* to the destination address.
*/
static int ice_xdp_rx_vlan_tag(const struct xdp_md *ctx, __be16 *vlan_proto,
u16 *vlan_tci)
{
const struct ice_xdp_buff *xdp_ext = (void *)ctx;
*vlan_proto = xdp_ext->pkt_ctx->vlan_proto;
if (!*vlan_proto)
return -ENODATA;
*vlan_tci = ice_get_vlan_tci(xdp_ext->eop_desc);
if (!*vlan_tci)
return -ENODATA;
return 0;
}
const struct xdp_metadata_ops ice_xdp_md_ops = {
.xmo_rx_timestamp = ice_xdp_rx_hw_ts,
.xmo_rx_hash = ice_xdp_rx_hash,
.xmo_rx_vlan_tag = ice_xdp_rx_vlan_tag,
};