blob: d46c95f91b0d81305956373632360cb61e81fe1a [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2023 Intel Corporation */
#include <net/libeth/rx.h>
#include "idpf.h"
#include "idpf_virtchnl.h"
#define IDPF_VC_XN_MIN_TIMEOUT_MSEC 2000
#define IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC (60 * 1000)
#define IDPF_VC_XN_IDX_M GENMASK(7, 0)
#define IDPF_VC_XN_SALT_M GENMASK(15, 8)
#define IDPF_VC_XN_RING_LEN U8_MAX
/**
* enum idpf_vc_xn_state - Virtchnl transaction status
* @IDPF_VC_XN_IDLE: not expecting a reply, ready to be used
* @IDPF_VC_XN_WAITING: expecting a reply, not yet received
* @IDPF_VC_XN_COMPLETED_SUCCESS: a reply was expected and received,
* buffer updated
* @IDPF_VC_XN_COMPLETED_FAILED: a reply was expected and received, but there
* was an error, buffer not updated
* @IDPF_VC_XN_SHUTDOWN: transaction object cannot be used, VC torn down
* @IDPF_VC_XN_ASYNC: transaction sent asynchronously and doesn't have the
* return context; a callback may be provided to handle
* return
*/
enum idpf_vc_xn_state {
IDPF_VC_XN_IDLE = 1,
IDPF_VC_XN_WAITING,
IDPF_VC_XN_COMPLETED_SUCCESS,
IDPF_VC_XN_COMPLETED_FAILED,
IDPF_VC_XN_SHUTDOWN,
IDPF_VC_XN_ASYNC,
};
struct idpf_vc_xn;
/* Callback for asynchronous messages */
typedef int (*async_vc_cb) (struct idpf_adapter *, struct idpf_vc_xn *,
const struct idpf_ctlq_msg *);
/**
* struct idpf_vc_xn - Data structure representing virtchnl transactions
* @completed: virtchnl event loop uses that to signal when a reply is
* available, uses kernel completion API
* @state: virtchnl event loop stores the data below, protected by the
* completion's lock.
* @reply_sz: Original size of reply, may be > reply_buf.iov_len; it will be
* truncated on its way to the receiver thread according to
* reply_buf.iov_len.
* @reply: Reference to the buffer(s) where the reply data should be written
* to. May be 0-length (then NULL address permitted) if the reply data
* should be ignored.
* @async_handler: if sent asynchronously, a callback can be provided to handle
* the reply when it's received
* @vc_op: corresponding opcode sent with this transaction
* @idx: index used as retrieval on reply receive, used for cookie
* @salt: changed every message to make unique, used for cookie
*/
struct idpf_vc_xn {
struct completion completed;
enum idpf_vc_xn_state state;
size_t reply_sz;
struct kvec reply;
async_vc_cb async_handler;
u32 vc_op;
u8 idx;
u8 salt;
};
/**
* struct idpf_vc_xn_params - Parameters for executing transaction
* @send_buf: kvec for send buffer
* @recv_buf: kvec for recv buffer, may be NULL, must then have zero length
* @timeout_ms: timeout to wait for reply
* @async: send message asynchronously, will not wait on completion
* @async_handler: If sent asynchronously, optional callback handler. The user
* must be careful when using async handlers as the memory for
* the recv_buf _cannot_ be on stack if this is async.
* @vc_op: virtchnl op to send
*/
struct idpf_vc_xn_params {
struct kvec send_buf;
struct kvec recv_buf;
int timeout_ms;
bool async;
async_vc_cb async_handler;
u32 vc_op;
};
/**
* struct idpf_vc_xn_manager - Manager for tracking transactions
* @ring: backing and lookup for transactions
* @free_xn_bm: bitmap for free transactions
* @xn_bm_lock: make bitmap access synchronous where necessary
* @salt: used to make cookie unique every message
*/
struct idpf_vc_xn_manager {
struct idpf_vc_xn ring[IDPF_VC_XN_RING_LEN];
DECLARE_BITMAP(free_xn_bm, IDPF_VC_XN_RING_LEN);
spinlock_t xn_bm_lock;
u8 salt;
};
/**
* idpf_vid_to_vport - Translate vport id to vport pointer
* @adapter: private data struct
* @v_id: vport id to translate
*
* Returns vport matching v_id, NULL if not found.
*/
static
struct idpf_vport *idpf_vid_to_vport(struct idpf_adapter *adapter, u32 v_id)
{
u16 num_max_vports = idpf_get_max_vports(adapter);
int i;
for (i = 0; i < num_max_vports; i++)
if (adapter->vport_ids[i] == v_id)
return adapter->vports[i];
return NULL;
}
/**
* idpf_handle_event_link - Handle link event message
* @adapter: private data struct
* @v2e: virtchnl event message
*/
static void idpf_handle_event_link(struct idpf_adapter *adapter,
const struct virtchnl2_event *v2e)
{
struct idpf_netdev_priv *np;
struct idpf_vport *vport;
vport = idpf_vid_to_vport(adapter, le32_to_cpu(v2e->vport_id));
if (!vport) {
dev_err_ratelimited(&adapter->pdev->dev, "Failed to find vport_id %d for link event\n",
v2e->vport_id);
return;
}
np = netdev_priv(vport->netdev);
np->link_speed_mbps = le32_to_cpu(v2e->link_speed);
if (vport->link_up == v2e->link_status)
return;
vport->link_up = v2e->link_status;
if (np->state != __IDPF_VPORT_UP)
return;
if (vport->link_up) {
netif_tx_start_all_queues(vport->netdev);
netif_carrier_on(vport->netdev);
} else {
netif_tx_stop_all_queues(vport->netdev);
netif_carrier_off(vport->netdev);
}
}
/**
* idpf_recv_event_msg - Receive virtchnl event message
* @adapter: Driver specific private structure
* @ctlq_msg: message to copy from
*
* Receive virtchnl event message
*/
static void idpf_recv_event_msg(struct idpf_adapter *adapter,
struct idpf_ctlq_msg *ctlq_msg)
{
int payload_size = ctlq_msg->ctx.indirect.payload->size;
struct virtchnl2_event *v2e;
u32 event;
if (payload_size < sizeof(*v2e)) {
dev_err_ratelimited(&adapter->pdev->dev, "Failed to receive valid payload for event msg (op %d len %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode,
payload_size);
return;
}
v2e = (struct virtchnl2_event *)ctlq_msg->ctx.indirect.payload->va;
event = le32_to_cpu(v2e->event);
switch (event) {
case VIRTCHNL2_EVENT_LINK_CHANGE:
idpf_handle_event_link(adapter, v2e);
return;
default:
dev_err(&adapter->pdev->dev,
"Unknown event %d from PF\n", event);
break;
}
}
/**
* idpf_mb_clean - Reclaim the send mailbox queue entries
* @adapter: Driver specific private structure
*
* Reclaim the send mailbox queue entries to be used to send further messages
*
* Returns 0 on success, negative on failure
*/
static int idpf_mb_clean(struct idpf_adapter *adapter)
{
u16 i, num_q_msg = IDPF_DFLT_MBX_Q_LEN;
struct idpf_ctlq_msg **q_msg;
struct idpf_dma_mem *dma_mem;
int err;
q_msg = kcalloc(num_q_msg, sizeof(struct idpf_ctlq_msg *), GFP_ATOMIC);
if (!q_msg)
return -ENOMEM;
err = idpf_ctlq_clean_sq(adapter->hw.asq, &num_q_msg, q_msg);
if (err)
goto err_kfree;
for (i = 0; i < num_q_msg; i++) {
if (!q_msg[i])
continue;
dma_mem = q_msg[i]->ctx.indirect.payload;
if (dma_mem)
dma_free_coherent(&adapter->pdev->dev, dma_mem->size,
dma_mem->va, dma_mem->pa);
kfree(q_msg[i]);
kfree(dma_mem);
}
err_kfree:
kfree(q_msg);
return err;
}
/**
* idpf_send_mb_msg - Send message over mailbox
* @adapter: Driver specific private structure
* @op: virtchnl opcode
* @msg_size: size of the payload
* @msg: pointer to buffer holding the payload
* @cookie: unique SW generated cookie per message
*
* Will prepare the control queue message and initiates the send api
*
* Returns 0 on success, negative on failure
*/
int idpf_send_mb_msg(struct idpf_adapter *adapter, u32 op,
u16 msg_size, u8 *msg, u16 cookie)
{
struct idpf_ctlq_msg *ctlq_msg;
struct idpf_dma_mem *dma_mem;
int err;
/* If we are here and a reset is detected nothing much can be
* done. This thread should silently abort and expected to
* be corrected with a new run either by user or driver
* flows after reset
*/
if (idpf_is_reset_detected(adapter))
return 0;
err = idpf_mb_clean(adapter);
if (err)
return err;
ctlq_msg = kzalloc(sizeof(*ctlq_msg), GFP_ATOMIC);
if (!ctlq_msg)
return -ENOMEM;
dma_mem = kzalloc(sizeof(*dma_mem), GFP_ATOMIC);
if (!dma_mem) {
err = -ENOMEM;
goto dma_mem_error;
}
ctlq_msg->opcode = idpf_mbq_opc_send_msg_to_cp;
ctlq_msg->func_id = 0;
ctlq_msg->data_len = msg_size;
ctlq_msg->cookie.mbx.chnl_opcode = op;
ctlq_msg->cookie.mbx.chnl_retval = 0;
dma_mem->size = IDPF_CTLQ_MAX_BUF_LEN;
dma_mem->va = dma_alloc_coherent(&adapter->pdev->dev, dma_mem->size,
&dma_mem->pa, GFP_ATOMIC);
if (!dma_mem->va) {
err = -ENOMEM;
goto dma_alloc_error;
}
/* It's possible we're just sending an opcode but no buffer */
if (msg && msg_size)
memcpy(dma_mem->va, msg, msg_size);
ctlq_msg->ctx.indirect.payload = dma_mem;
ctlq_msg->ctx.sw_cookie.data = cookie;
err = idpf_ctlq_send(&adapter->hw, adapter->hw.asq, 1, ctlq_msg);
if (err)
goto send_error;
return 0;
send_error:
dma_free_coherent(&adapter->pdev->dev, dma_mem->size, dma_mem->va,
dma_mem->pa);
dma_alloc_error:
kfree(dma_mem);
dma_mem_error:
kfree(ctlq_msg);
return err;
}
/* API for virtchnl "transaction" support ("xn" for short).
*
* We are reusing the completion lock to serialize the accesses to the
* transaction state for simplicity, but it could be its own separate synchro
* as well. For now, this API is only used from within a workqueue context;
* raw_spin_lock() is enough.
*/
/**
* idpf_vc_xn_lock - Request exclusive access to vc transaction
* @xn: struct idpf_vc_xn* to access
*/
#define idpf_vc_xn_lock(xn) \
raw_spin_lock(&(xn)->completed.wait.lock)
/**
* idpf_vc_xn_unlock - Release exclusive access to vc transaction
* @xn: struct idpf_vc_xn* to access
*/
#define idpf_vc_xn_unlock(xn) \
raw_spin_unlock(&(xn)->completed.wait.lock)
/**
* idpf_vc_xn_release_bufs - Release reference to reply buffer(s) and
* reset the transaction state.
* @xn: struct idpf_vc_xn to update
*/
static void idpf_vc_xn_release_bufs(struct idpf_vc_xn *xn)
{
xn->reply.iov_base = NULL;
xn->reply.iov_len = 0;
if (xn->state != IDPF_VC_XN_SHUTDOWN)
xn->state = IDPF_VC_XN_IDLE;
}
/**
* idpf_vc_xn_init - Initialize virtchnl transaction object
* @vcxn_mngr: pointer to vc transaction manager struct
*/
static void idpf_vc_xn_init(struct idpf_vc_xn_manager *vcxn_mngr)
{
int i;
spin_lock_init(&vcxn_mngr->xn_bm_lock);
for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
xn->state = IDPF_VC_XN_IDLE;
xn->idx = i;
idpf_vc_xn_release_bufs(xn);
init_completion(&xn->completed);
}
bitmap_fill(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
}
/**
* idpf_vc_xn_shutdown - Uninitialize virtchnl transaction object
* @vcxn_mngr: pointer to vc transaction manager struct
*
* All waiting threads will be woken-up and their transaction aborted. Further
* operations on that object will fail.
*/
static void idpf_vc_xn_shutdown(struct idpf_vc_xn_manager *vcxn_mngr)
{
int i;
spin_lock_bh(&vcxn_mngr->xn_bm_lock);
bitmap_zero(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
for (i = 0; i < ARRAY_SIZE(vcxn_mngr->ring); i++) {
struct idpf_vc_xn *xn = &vcxn_mngr->ring[i];
idpf_vc_xn_lock(xn);
xn->state = IDPF_VC_XN_SHUTDOWN;
idpf_vc_xn_release_bufs(xn);
idpf_vc_xn_unlock(xn);
complete_all(&xn->completed);
}
}
/**
* idpf_vc_xn_pop_free - Pop a free transaction from free list
* @vcxn_mngr: transaction manager to pop from
*
* Returns NULL if no free transactions
*/
static
struct idpf_vc_xn *idpf_vc_xn_pop_free(struct idpf_vc_xn_manager *vcxn_mngr)
{
struct idpf_vc_xn *xn = NULL;
unsigned long free_idx;
spin_lock_bh(&vcxn_mngr->xn_bm_lock);
free_idx = find_first_bit(vcxn_mngr->free_xn_bm, IDPF_VC_XN_RING_LEN);
if (free_idx == IDPF_VC_XN_RING_LEN)
goto do_unlock;
clear_bit(free_idx, vcxn_mngr->free_xn_bm);
xn = &vcxn_mngr->ring[free_idx];
xn->salt = vcxn_mngr->salt++;
do_unlock:
spin_unlock_bh(&vcxn_mngr->xn_bm_lock);
return xn;
}
/**
* idpf_vc_xn_push_free - Push a free transaction to free list
* @vcxn_mngr: transaction manager to push to
* @xn: transaction to push
*/
static void idpf_vc_xn_push_free(struct idpf_vc_xn_manager *vcxn_mngr,
struct idpf_vc_xn *xn)
{
idpf_vc_xn_release_bufs(xn);
set_bit(xn->idx, vcxn_mngr->free_xn_bm);
}
/**
* idpf_vc_xn_exec - Perform a send/recv virtchnl transaction
* @adapter: driver specific private structure with vcxn_mngr
* @params: parameters for this particular transaction including
* -vc_op: virtchannel operation to send
* -send_buf: kvec iov for send buf and len
* -recv_buf: kvec iov for recv buf and len (ignored if NULL)
* -timeout_ms: timeout waiting for a reply (milliseconds)
* -async: don't wait for message reply, will lose caller context
* -async_handler: callback to handle async replies
*
* @returns >= 0 for success, the size of the initial reply (may or may not be
* >= @recv_buf.iov_len, but we never overflow @@recv_buf_iov_base). < 0 for
* error.
*/
static ssize_t idpf_vc_xn_exec(struct idpf_adapter *adapter,
const struct idpf_vc_xn_params *params)
{
const struct kvec *send_buf = &params->send_buf;
struct idpf_vc_xn *xn;
ssize_t retval;
u16 cookie;
xn = idpf_vc_xn_pop_free(adapter->vcxn_mngr);
/* no free transactions available */
if (!xn)
return -ENOSPC;
idpf_vc_xn_lock(xn);
if (xn->state == IDPF_VC_XN_SHUTDOWN) {
retval = -ENXIO;
goto only_unlock;
} else if (xn->state != IDPF_VC_XN_IDLE) {
/* We're just going to clobber this transaction even though
* it's not IDLE. If we don't reuse it we could theoretically
* eventually leak all the free transactions and not be able to
* send any messages. At least this way we make an attempt to
* remain functional even though something really bad is
* happening that's corrupting what was supposed to be free
* transactions.
*/
WARN_ONCE(1, "There should only be idle transactions in free list (idx %d op %d)\n",
xn->idx, xn->vc_op);
}
xn->reply = params->recv_buf;
xn->reply_sz = 0;
xn->state = params->async ? IDPF_VC_XN_ASYNC : IDPF_VC_XN_WAITING;
xn->vc_op = params->vc_op;
xn->async_handler = params->async_handler;
idpf_vc_xn_unlock(xn);
if (!params->async)
reinit_completion(&xn->completed);
cookie = FIELD_PREP(IDPF_VC_XN_SALT_M, xn->salt) |
FIELD_PREP(IDPF_VC_XN_IDX_M, xn->idx);
retval = idpf_send_mb_msg(adapter, params->vc_op,
send_buf->iov_len, send_buf->iov_base,
cookie);
if (retval) {
idpf_vc_xn_lock(xn);
goto release_and_unlock;
}
if (params->async)
return 0;
wait_for_completion_timeout(&xn->completed,
msecs_to_jiffies(params->timeout_ms));
/* No need to check the return value; we check the final state of the
* transaction below. It's possible the transaction actually gets more
* timeout than specified if we get preempted here but after
* wait_for_completion_timeout returns. This should be non-issue
* however.
*/
idpf_vc_xn_lock(xn);
switch (xn->state) {
case IDPF_VC_XN_SHUTDOWN:
retval = -ENXIO;
goto only_unlock;
case IDPF_VC_XN_WAITING:
dev_notice_ratelimited(&adapter->pdev->dev, "Transaction timed-out (op %d, %dms)\n",
params->vc_op, params->timeout_ms);
retval = -ETIME;
break;
case IDPF_VC_XN_COMPLETED_SUCCESS:
retval = xn->reply_sz;
break;
case IDPF_VC_XN_COMPLETED_FAILED:
dev_notice_ratelimited(&adapter->pdev->dev, "Transaction failed (op %d)\n",
params->vc_op);
retval = -EIO;
break;
default:
/* Invalid state. */
WARN_ON_ONCE(1);
retval = -EIO;
break;
}
release_and_unlock:
idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
/* If we receive a VC reply after here, it will be dropped. */
only_unlock:
idpf_vc_xn_unlock(xn);
return retval;
}
/**
* idpf_vc_xn_forward_async - Handle async reply receives
* @adapter: private data struct
* @xn: transaction to handle
* @ctlq_msg: corresponding ctlq_msg
*
* For async sends we're going to lose the caller's context so, if an
* async_handler was provided, it can deal with the reply, otherwise we'll just
* check and report if there is an error.
*/
static int
idpf_vc_xn_forward_async(struct idpf_adapter *adapter, struct idpf_vc_xn *xn,
const struct idpf_ctlq_msg *ctlq_msg)
{
int err = 0;
if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
dev_err_ratelimited(&adapter->pdev->dev, "Async message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
xn->reply_sz = 0;
err = -EINVAL;
goto release_bufs;
}
if (xn->async_handler) {
err = xn->async_handler(adapter, xn, ctlq_msg);
goto release_bufs;
}
if (ctlq_msg->cookie.mbx.chnl_retval) {
xn->reply_sz = 0;
dev_err_ratelimited(&adapter->pdev->dev, "Async message failure (op %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode);
err = -EINVAL;
}
release_bufs:
idpf_vc_xn_push_free(adapter->vcxn_mngr, xn);
return err;
}
/**
* idpf_vc_xn_forward_reply - copy a reply back to receiving thread
* @adapter: driver specific private structure with vcxn_mngr
* @ctlq_msg: controlq message to send back to receiving thread
*/
static int
idpf_vc_xn_forward_reply(struct idpf_adapter *adapter,
const struct idpf_ctlq_msg *ctlq_msg)
{
const void *payload = NULL;
size_t payload_size = 0;
struct idpf_vc_xn *xn;
u16 msg_info;
int err = 0;
u16 xn_idx;
u16 salt;
msg_info = ctlq_msg->ctx.sw_cookie.data;
xn_idx = FIELD_GET(IDPF_VC_XN_IDX_M, msg_info);
if (xn_idx >= ARRAY_SIZE(adapter->vcxn_mngr->ring)) {
dev_err_ratelimited(&adapter->pdev->dev, "Out of bounds cookie received: %02x\n",
xn_idx);
return -EINVAL;
}
xn = &adapter->vcxn_mngr->ring[xn_idx];
salt = FIELD_GET(IDPF_VC_XN_SALT_M, msg_info);
if (xn->salt != salt) {
dev_err_ratelimited(&adapter->pdev->dev, "Transaction salt does not match (%02x != %02x)\n",
xn->salt, salt);
return -EINVAL;
}
idpf_vc_xn_lock(xn);
switch (xn->state) {
case IDPF_VC_XN_WAITING:
/* success */
break;
case IDPF_VC_XN_IDLE:
dev_err_ratelimited(&adapter->pdev->dev, "Unexpected or belated VC reply (op %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode);
err = -EINVAL;
goto out_unlock;
case IDPF_VC_XN_SHUTDOWN:
/* ENXIO is a bit special here as the recv msg loop uses that
* know if it should stop trying to clean the ring if we lost
* the virtchnl. We need to stop playing with registers and
* yield.
*/
err = -ENXIO;
goto out_unlock;
case IDPF_VC_XN_ASYNC:
err = idpf_vc_xn_forward_async(adapter, xn, ctlq_msg);
idpf_vc_xn_unlock(xn);
return err;
default:
dev_err_ratelimited(&adapter->pdev->dev, "Overwriting VC reply (op %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode);
err = -EBUSY;
goto out_unlock;
}
if (ctlq_msg->cookie.mbx.chnl_opcode != xn->vc_op) {
dev_err_ratelimited(&adapter->pdev->dev, "Message opcode does not match transaction opcode (msg: %d) (xn: %d)\n",
ctlq_msg->cookie.mbx.chnl_opcode, xn->vc_op);
xn->reply_sz = 0;
xn->state = IDPF_VC_XN_COMPLETED_FAILED;
err = -EINVAL;
goto out_unlock;
}
if (ctlq_msg->cookie.mbx.chnl_retval) {
xn->reply_sz = 0;
xn->state = IDPF_VC_XN_COMPLETED_FAILED;
err = -EINVAL;
goto out_unlock;
}
if (ctlq_msg->data_len) {
payload = ctlq_msg->ctx.indirect.payload->va;
payload_size = ctlq_msg->data_len;
}
xn->reply_sz = payload_size;
xn->state = IDPF_VC_XN_COMPLETED_SUCCESS;
if (xn->reply.iov_base && xn->reply.iov_len && payload_size)
memcpy(xn->reply.iov_base, payload,
min_t(size_t, xn->reply.iov_len, payload_size));
out_unlock:
idpf_vc_xn_unlock(xn);
/* we _cannot_ hold lock while calling complete */
complete(&xn->completed);
return err;
}
/**
* idpf_recv_mb_msg - Receive message over mailbox
* @adapter: Driver specific private structure
*
* Will receive control queue message and posts the receive buffer. Returns 0
* on success and negative on failure.
*/
int idpf_recv_mb_msg(struct idpf_adapter *adapter)
{
struct idpf_ctlq_msg ctlq_msg;
struct idpf_dma_mem *dma_mem;
int post_err, err;
u16 num_recv;
while (1) {
/* This will get <= num_recv messages and output how many
* actually received on num_recv.
*/
num_recv = 1;
err = idpf_ctlq_recv(adapter->hw.arq, &num_recv, &ctlq_msg);
if (err || !num_recv)
break;
if (ctlq_msg.data_len) {
dma_mem = ctlq_msg.ctx.indirect.payload;
} else {
dma_mem = NULL;
num_recv = 0;
}
if (ctlq_msg.cookie.mbx.chnl_opcode == VIRTCHNL2_OP_EVENT)
idpf_recv_event_msg(adapter, &ctlq_msg);
else
err = idpf_vc_xn_forward_reply(adapter, &ctlq_msg);
post_err = idpf_ctlq_post_rx_buffs(&adapter->hw,
adapter->hw.arq,
&num_recv, &dma_mem);
/* If post failed clear the only buffer we supplied */
if (post_err) {
if (dma_mem)
dmam_free_coherent(&adapter->pdev->dev,
dma_mem->size, dma_mem->va,
dma_mem->pa);
break;
}
/* virtchnl trying to shutdown, stop cleaning */
if (err == -ENXIO)
break;
}
return err;
}
/**
* idpf_wait_for_marker_event - wait for software marker response
* @vport: virtual port data structure
*
* Returns 0 success, negative on failure.
**/
static int idpf_wait_for_marker_event(struct idpf_vport *vport)
{
int event;
int i;
for (i = 0; i < vport->num_txq; i++)
idpf_queue_set(SW_MARKER, vport->txqs[i]);
event = wait_event_timeout(vport->sw_marker_wq,
test_and_clear_bit(IDPF_VPORT_SW_MARKER,
vport->flags),
msecs_to_jiffies(500));
for (i = 0; i < vport->num_txq; i++)
idpf_queue_clear(POLL_MODE, vport->txqs[i]);
if (event)
return 0;
dev_warn(&vport->adapter->pdev->dev, "Failed to receive marker packets\n");
return -ETIMEDOUT;
}
/**
* idpf_send_ver_msg - send virtchnl version message
* @adapter: Driver specific private structure
*
* Send virtchnl version message. Returns 0 on success, negative on failure.
*/
static int idpf_send_ver_msg(struct idpf_adapter *adapter)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_version_info vvi;
ssize_t reply_sz;
u32 major, minor;
int err = 0;
if (adapter->virt_ver_maj) {
vvi.major = cpu_to_le32(adapter->virt_ver_maj);
vvi.minor = cpu_to_le32(adapter->virt_ver_min);
} else {
vvi.major = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MAJOR);
vvi.minor = cpu_to_le32(IDPF_VIRTCHNL_VERSION_MINOR);
}
xn_params.vc_op = VIRTCHNL2_OP_VERSION;
xn_params.send_buf.iov_base = &vvi;
xn_params.send_buf.iov_len = sizeof(vvi);
xn_params.recv_buf = xn_params.send_buf;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
if (reply_sz < sizeof(vvi))
return -EIO;
major = le32_to_cpu(vvi.major);
minor = le32_to_cpu(vvi.minor);
if (major > IDPF_VIRTCHNL_VERSION_MAJOR) {
dev_warn(&adapter->pdev->dev, "Virtchnl major version greater than supported\n");
return -EINVAL;
}
if (major == IDPF_VIRTCHNL_VERSION_MAJOR &&
minor > IDPF_VIRTCHNL_VERSION_MINOR)
dev_warn(&adapter->pdev->dev, "Virtchnl minor version didn't match\n");
/* If we have a mismatch, resend version to update receiver on what
* version we will use.
*/
if (!adapter->virt_ver_maj &&
major != IDPF_VIRTCHNL_VERSION_MAJOR &&
minor != IDPF_VIRTCHNL_VERSION_MINOR)
err = -EAGAIN;
adapter->virt_ver_maj = major;
adapter->virt_ver_min = minor;
return err;
}
/**
* idpf_send_get_caps_msg - Send virtchnl get capabilities message
* @adapter: Driver specific private structure
*
* Send virtchl get capabilities message. Returns 0 on success, negative on
* failure.
*/
static int idpf_send_get_caps_msg(struct idpf_adapter *adapter)
{
struct virtchnl2_get_capabilities caps = {};
struct idpf_vc_xn_params xn_params = {};
ssize_t reply_sz;
caps.csum_caps =
cpu_to_le32(VIRTCHNL2_CAP_TX_CSUM_L3_IPV4 |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_TCP |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_UDP |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV4_SCTP |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_TCP |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_UDP |
VIRTCHNL2_CAP_TX_CSUM_L4_IPV6_SCTP |
VIRTCHNL2_CAP_RX_CSUM_L3_IPV4 |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_TCP |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_UDP |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV4_SCTP |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_TCP |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_UDP |
VIRTCHNL2_CAP_RX_CSUM_L4_IPV6_SCTP |
VIRTCHNL2_CAP_TX_CSUM_L3_SINGLE_TUNNEL |
VIRTCHNL2_CAP_RX_CSUM_L3_SINGLE_TUNNEL |
VIRTCHNL2_CAP_TX_CSUM_L4_SINGLE_TUNNEL |
VIRTCHNL2_CAP_RX_CSUM_L4_SINGLE_TUNNEL |
VIRTCHNL2_CAP_RX_CSUM_GENERIC);
caps.seg_caps =
cpu_to_le32(VIRTCHNL2_CAP_SEG_IPV4_TCP |
VIRTCHNL2_CAP_SEG_IPV4_UDP |
VIRTCHNL2_CAP_SEG_IPV4_SCTP |
VIRTCHNL2_CAP_SEG_IPV6_TCP |
VIRTCHNL2_CAP_SEG_IPV6_UDP |
VIRTCHNL2_CAP_SEG_IPV6_SCTP |
VIRTCHNL2_CAP_SEG_TX_SINGLE_TUNNEL);
caps.rss_caps =
cpu_to_le64(VIRTCHNL2_CAP_RSS_IPV4_TCP |
VIRTCHNL2_CAP_RSS_IPV4_UDP |
VIRTCHNL2_CAP_RSS_IPV4_SCTP |
VIRTCHNL2_CAP_RSS_IPV4_OTHER |
VIRTCHNL2_CAP_RSS_IPV6_TCP |
VIRTCHNL2_CAP_RSS_IPV6_UDP |
VIRTCHNL2_CAP_RSS_IPV6_SCTP |
VIRTCHNL2_CAP_RSS_IPV6_OTHER);
caps.hsplit_caps =
cpu_to_le32(VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V4 |
VIRTCHNL2_CAP_RX_HSPLIT_AT_L4V6);
caps.rsc_caps =
cpu_to_le32(VIRTCHNL2_CAP_RSC_IPV4_TCP |
VIRTCHNL2_CAP_RSC_IPV6_TCP);
caps.other_caps =
cpu_to_le64(VIRTCHNL2_CAP_SRIOV |
VIRTCHNL2_CAP_MACFILTER |
VIRTCHNL2_CAP_SPLITQ_QSCHED |
VIRTCHNL2_CAP_PROMISC |
VIRTCHNL2_CAP_LOOPBACK);
xn_params.vc_op = VIRTCHNL2_OP_GET_CAPS;
xn_params.send_buf.iov_base = &caps;
xn_params.send_buf.iov_len = sizeof(caps);
xn_params.recv_buf.iov_base = &adapter->caps;
xn_params.recv_buf.iov_len = sizeof(adapter->caps);
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
if (reply_sz < sizeof(adapter->caps))
return -EIO;
return 0;
}
/**
* idpf_vport_alloc_max_qs - Allocate max queues for a vport
* @adapter: Driver specific private structure
* @max_q: vport max queue structure
*/
int idpf_vport_alloc_max_qs(struct idpf_adapter *adapter,
struct idpf_vport_max_q *max_q)
{
struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
struct virtchnl2_get_capabilities *caps = &adapter->caps;
u16 default_vports = idpf_get_default_vports(adapter);
int max_rx_q, max_tx_q;
mutex_lock(&adapter->queue_lock);
max_rx_q = le16_to_cpu(caps->max_rx_q) / default_vports;
max_tx_q = le16_to_cpu(caps->max_tx_q) / default_vports;
if (adapter->num_alloc_vports < default_vports) {
max_q->max_rxq = min_t(u16, max_rx_q, IDPF_MAX_Q);
max_q->max_txq = min_t(u16, max_tx_q, IDPF_MAX_Q);
} else {
max_q->max_rxq = IDPF_MIN_Q;
max_q->max_txq = IDPF_MIN_Q;
}
max_q->max_bufq = max_q->max_rxq * IDPF_MAX_BUFQS_PER_RXQ_GRP;
max_q->max_complq = max_q->max_txq;
if (avail_queues->avail_rxq < max_q->max_rxq ||
avail_queues->avail_txq < max_q->max_txq ||
avail_queues->avail_bufq < max_q->max_bufq ||
avail_queues->avail_complq < max_q->max_complq) {
mutex_unlock(&adapter->queue_lock);
return -EINVAL;
}
avail_queues->avail_rxq -= max_q->max_rxq;
avail_queues->avail_txq -= max_q->max_txq;
avail_queues->avail_bufq -= max_q->max_bufq;
avail_queues->avail_complq -= max_q->max_complq;
mutex_unlock(&adapter->queue_lock);
return 0;
}
/**
* idpf_vport_dealloc_max_qs - Deallocate max queues of a vport
* @adapter: Driver specific private structure
* @max_q: vport max queue structure
*/
void idpf_vport_dealloc_max_qs(struct idpf_adapter *adapter,
struct idpf_vport_max_q *max_q)
{
struct idpf_avail_queue_info *avail_queues;
mutex_lock(&adapter->queue_lock);
avail_queues = &adapter->avail_queues;
avail_queues->avail_rxq += max_q->max_rxq;
avail_queues->avail_txq += max_q->max_txq;
avail_queues->avail_bufq += max_q->max_bufq;
avail_queues->avail_complq += max_q->max_complq;
mutex_unlock(&adapter->queue_lock);
}
/**
* idpf_init_avail_queues - Initialize available queues on the device
* @adapter: Driver specific private structure
*/
static void idpf_init_avail_queues(struct idpf_adapter *adapter)
{
struct idpf_avail_queue_info *avail_queues = &adapter->avail_queues;
struct virtchnl2_get_capabilities *caps = &adapter->caps;
avail_queues->avail_rxq = le16_to_cpu(caps->max_rx_q);
avail_queues->avail_txq = le16_to_cpu(caps->max_tx_q);
avail_queues->avail_bufq = le16_to_cpu(caps->max_rx_bufq);
avail_queues->avail_complq = le16_to_cpu(caps->max_tx_complq);
}
/**
* idpf_get_reg_intr_vecs - Get vector queue register offset
* @vport: virtual port structure
* @reg_vals: Register offsets to store in
*
* Returns number of registers that got populated
*/
int idpf_get_reg_intr_vecs(struct idpf_vport *vport,
struct idpf_vec_regs *reg_vals)
{
struct virtchnl2_vector_chunks *chunks;
struct idpf_vec_regs reg_val;
u16 num_vchunks, num_vec;
int num_regs = 0, i, j;
chunks = &vport->adapter->req_vec_chunks->vchunks;
num_vchunks = le16_to_cpu(chunks->num_vchunks);
for (j = 0; j < num_vchunks; j++) {
struct virtchnl2_vector_chunk *chunk;
u32 dynctl_reg_spacing;
u32 itrn_reg_spacing;
chunk = &chunks->vchunks[j];
num_vec = le16_to_cpu(chunk->num_vectors);
reg_val.dyn_ctl_reg = le32_to_cpu(chunk->dynctl_reg_start);
reg_val.itrn_reg = le32_to_cpu(chunk->itrn_reg_start);
reg_val.itrn_index_spacing = le32_to_cpu(chunk->itrn_index_spacing);
dynctl_reg_spacing = le32_to_cpu(chunk->dynctl_reg_spacing);
itrn_reg_spacing = le32_to_cpu(chunk->itrn_reg_spacing);
for (i = 0; i < num_vec; i++) {
reg_vals[num_regs].dyn_ctl_reg = reg_val.dyn_ctl_reg;
reg_vals[num_regs].itrn_reg = reg_val.itrn_reg;
reg_vals[num_regs].itrn_index_spacing =
reg_val.itrn_index_spacing;
reg_val.dyn_ctl_reg += dynctl_reg_spacing;
reg_val.itrn_reg += itrn_reg_spacing;
num_regs++;
}
}
return num_regs;
}
/**
* idpf_vport_get_q_reg - Get the queue registers for the vport
* @reg_vals: register values needing to be set
* @num_regs: amount we expect to fill
* @q_type: queue model
* @chunks: queue regs received over mailbox
*
* This function parses the queue register offsets from the queue register
* chunk information, with a specific queue type and stores it into the array
* passed as an argument. It returns the actual number of queue registers that
* are filled.
*/
static int idpf_vport_get_q_reg(u32 *reg_vals, int num_regs, u32 q_type,
struct virtchnl2_queue_reg_chunks *chunks)
{
u16 num_chunks = le16_to_cpu(chunks->num_chunks);
int reg_filled = 0, i;
u32 reg_val;
while (num_chunks--) {
struct virtchnl2_queue_reg_chunk *chunk;
u16 num_q;
chunk = &chunks->chunks[num_chunks];
if (le32_to_cpu(chunk->type) != q_type)
continue;
num_q = le32_to_cpu(chunk->num_queues);
reg_val = le64_to_cpu(chunk->qtail_reg_start);
for (i = 0; i < num_q && reg_filled < num_regs ; i++) {
reg_vals[reg_filled++] = reg_val;
reg_val += le32_to_cpu(chunk->qtail_reg_spacing);
}
}
return reg_filled;
}
/**
* __idpf_queue_reg_init - initialize queue registers
* @vport: virtual port structure
* @reg_vals: registers we are initializing
* @num_regs: how many registers there are in total
* @q_type: queue model
*
* Return number of queues that are initialized
*/
static int __idpf_queue_reg_init(struct idpf_vport *vport, u32 *reg_vals,
int num_regs, u32 q_type)
{
struct idpf_adapter *adapter = vport->adapter;
int i, j, k = 0;
switch (q_type) {
case VIRTCHNL2_QUEUE_TYPE_TX:
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
for (j = 0; j < tx_qgrp->num_txq && k < num_regs; j++, k++)
tx_qgrp->txqs[j]->tail =
idpf_get_reg_addr(adapter, reg_vals[k]);
}
break;
case VIRTCHNL2_QUEUE_TYPE_RX:
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u16 num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq && k < num_regs; j++, k++) {
struct idpf_rx_queue *q;
q = rx_qgrp->singleq.rxqs[j];
q->tail = idpf_get_reg_addr(adapter,
reg_vals[k]);
}
}
break;
case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u8 num_bufqs = vport->num_bufqs_per_qgrp;
for (j = 0; j < num_bufqs && k < num_regs; j++, k++) {
struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
q->tail = idpf_get_reg_addr(adapter,
reg_vals[k]);
}
}
break;
default:
break;
}
return k;
}
/**
* idpf_queue_reg_init - initialize queue registers
* @vport: virtual port structure
*
* Return 0 on success, negative on failure
*/
int idpf_queue_reg_init(struct idpf_vport *vport)
{
struct virtchnl2_create_vport *vport_params;
struct virtchnl2_queue_reg_chunks *chunks;
struct idpf_vport_config *vport_config;
u16 vport_idx = vport->idx;
int num_regs, ret = 0;
u32 *reg_vals;
/* We may never deal with more than 256 same type of queues */
reg_vals = kzalloc(sizeof(void *) * IDPF_LARGE_MAX_Q, GFP_KERNEL);
if (!reg_vals)
return -ENOMEM;
vport_config = vport->adapter->vport_config[vport_idx];
if (vport_config->req_qs_chunks) {
struct virtchnl2_add_queues *vc_aq =
(struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
chunks = &vc_aq->chunks;
} else {
vport_params = vport->adapter->vport_params_recvd[vport_idx];
chunks = &vport_params->chunks;
}
/* Initialize Tx queue tail register address */
num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
VIRTCHNL2_QUEUE_TYPE_TX,
chunks);
if (num_regs < vport->num_txq) {
ret = -EINVAL;
goto free_reg_vals;
}
num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
VIRTCHNL2_QUEUE_TYPE_TX);
if (num_regs < vport->num_txq) {
ret = -EINVAL;
goto free_reg_vals;
}
/* Initialize Rx/buffer queue tail register address based on Rx queue
* model
*/
if (idpf_is_queue_model_split(vport->rxq_model)) {
num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
VIRTCHNL2_QUEUE_TYPE_RX_BUFFER,
chunks);
if (num_regs < vport->num_bufq) {
ret = -EINVAL;
goto free_reg_vals;
}
num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
if (num_regs < vport->num_bufq) {
ret = -EINVAL;
goto free_reg_vals;
}
} else {
num_regs = idpf_vport_get_q_reg(reg_vals, IDPF_LARGE_MAX_Q,
VIRTCHNL2_QUEUE_TYPE_RX,
chunks);
if (num_regs < vport->num_rxq) {
ret = -EINVAL;
goto free_reg_vals;
}
num_regs = __idpf_queue_reg_init(vport, reg_vals, num_regs,
VIRTCHNL2_QUEUE_TYPE_RX);
if (num_regs < vport->num_rxq) {
ret = -EINVAL;
goto free_reg_vals;
}
}
free_reg_vals:
kfree(reg_vals);
return ret;
}
/**
* idpf_send_create_vport_msg - Send virtchnl create vport message
* @adapter: Driver specific private structure
* @max_q: vport max queue info
*
* send virtchnl creae vport message
*
* Returns 0 on success, negative on failure
*/
int idpf_send_create_vport_msg(struct idpf_adapter *adapter,
struct idpf_vport_max_q *max_q)
{
struct virtchnl2_create_vport *vport_msg;
struct idpf_vc_xn_params xn_params = {};
u16 idx = adapter->next_vport;
int err, buf_size;
ssize_t reply_sz;
buf_size = sizeof(struct virtchnl2_create_vport);
if (!adapter->vport_params_reqd[idx]) {
adapter->vport_params_reqd[idx] = kzalloc(buf_size,
GFP_KERNEL);
if (!adapter->vport_params_reqd[idx])
return -ENOMEM;
}
vport_msg = adapter->vport_params_reqd[idx];
vport_msg->vport_type = cpu_to_le16(VIRTCHNL2_VPORT_TYPE_DEFAULT);
vport_msg->vport_index = cpu_to_le16(idx);
if (adapter->req_tx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
else
vport_msg->txq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
if (adapter->req_rx_splitq || !IS_ENABLED(CONFIG_IDPF_SINGLEQ))
vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SPLIT);
else
vport_msg->rxq_model = cpu_to_le16(VIRTCHNL2_QUEUE_MODEL_SINGLE);
err = idpf_vport_calc_total_qs(adapter, idx, vport_msg, max_q);
if (err) {
dev_err(&adapter->pdev->dev, "Enough queues are not available");
return err;
}
if (!adapter->vport_params_recvd[idx]) {
adapter->vport_params_recvd[idx] = kzalloc(IDPF_CTLQ_MAX_BUF_LEN,
GFP_KERNEL);
if (!adapter->vport_params_recvd[idx]) {
err = -ENOMEM;
goto free_vport_params;
}
}
xn_params.vc_op = VIRTCHNL2_OP_CREATE_VPORT;
xn_params.send_buf.iov_base = vport_msg;
xn_params.send_buf.iov_len = buf_size;
xn_params.recv_buf.iov_base = adapter->vport_params_recvd[idx];
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0) {
err = reply_sz;
goto free_vport_params;
}
return 0;
free_vport_params:
kfree(adapter->vport_params_recvd[idx]);
adapter->vport_params_recvd[idx] = NULL;
kfree(adapter->vport_params_reqd[idx]);
adapter->vport_params_reqd[idx] = NULL;
return err;
}
/**
* idpf_check_supported_desc_ids - Verify we have required descriptor support
* @vport: virtual port structure
*
* Return 0 on success, error on failure
*/
int idpf_check_supported_desc_ids(struct idpf_vport *vport)
{
struct idpf_adapter *adapter = vport->adapter;
struct virtchnl2_create_vport *vport_msg;
u64 rx_desc_ids, tx_desc_ids;
vport_msg = adapter->vport_params_recvd[vport->idx];
if (!IS_ENABLED(CONFIG_IDPF_SINGLEQ) &&
(vport_msg->rxq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE ||
vport_msg->txq_model == VIRTCHNL2_QUEUE_MODEL_SINGLE)) {
pci_err(adapter->pdev, "singleq mode requested, but not compiled-in\n");
return -EOPNOTSUPP;
}
rx_desc_ids = le64_to_cpu(vport_msg->rx_desc_ids);
tx_desc_ids = le64_to_cpu(vport_msg->tx_desc_ids);
if (idpf_is_queue_model_split(vport->rxq_model)) {
if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M)) {
dev_info(&adapter->pdev->dev, "Minimum RX descriptor support not provided, using the default\n");
vport_msg->rx_desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
}
} else {
if (!(rx_desc_ids & VIRTCHNL2_RXDID_2_FLEX_SQ_NIC_M))
vport->base_rxd = true;
}
if (!idpf_is_queue_model_split(vport->txq_model))
return 0;
if ((tx_desc_ids & MIN_SUPPORT_TXDID) != MIN_SUPPORT_TXDID) {
dev_info(&adapter->pdev->dev, "Minimum TX descriptor support not provided, using the default\n");
vport_msg->tx_desc_ids = cpu_to_le64(MIN_SUPPORT_TXDID);
}
return 0;
}
/**
* idpf_send_destroy_vport_msg - Send virtchnl destroy vport message
* @vport: virtual port data structure
*
* Send virtchnl destroy vport message. Returns 0 on success, negative on
* failure.
*/
int idpf_send_destroy_vport_msg(struct idpf_vport *vport)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_vport v_id;
ssize_t reply_sz;
v_id.vport_id = cpu_to_le32(vport->vport_id);
xn_params.vc_op = VIRTCHNL2_OP_DESTROY_VPORT;
xn_params.send_buf.iov_base = &v_id;
xn_params.send_buf.iov_len = sizeof(v_id);
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_send_enable_vport_msg - Send virtchnl enable vport message
* @vport: virtual port data structure
*
* Send enable vport virtchnl message. Returns 0 on success, negative on
* failure.
*/
int idpf_send_enable_vport_msg(struct idpf_vport *vport)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_vport v_id;
ssize_t reply_sz;
v_id.vport_id = cpu_to_le32(vport->vport_id);
xn_params.vc_op = VIRTCHNL2_OP_ENABLE_VPORT;
xn_params.send_buf.iov_base = &v_id;
xn_params.send_buf.iov_len = sizeof(v_id);
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_send_disable_vport_msg - Send virtchnl disable vport message
* @vport: virtual port data structure
*
* Send disable vport virtchnl message. Returns 0 on success, negative on
* failure.
*/
int idpf_send_disable_vport_msg(struct idpf_vport *vport)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_vport v_id;
ssize_t reply_sz;
v_id.vport_id = cpu_to_le32(vport->vport_id);
xn_params.vc_op = VIRTCHNL2_OP_DISABLE_VPORT;
xn_params.send_buf.iov_base = &v_id;
xn_params.send_buf.iov_len = sizeof(v_id);
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_send_config_tx_queues_msg - Send virtchnl config tx queues message
* @vport: virtual port data structure
*
* Send config tx queues virtchnl message. Returns 0 on success, negative on
* failure.
*/
static int idpf_send_config_tx_queues_msg(struct idpf_vport *vport)
{
struct virtchnl2_config_tx_queues *ctq __free(kfree) = NULL;
struct virtchnl2_txq_info *qi __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
u32 config_sz, chunk_sz, buf_sz;
int totqs, num_msgs, num_chunks;
ssize_t reply_sz;
int i, k = 0;
totqs = vport->num_txq + vport->num_complq;
qi = kcalloc(totqs, sizeof(struct virtchnl2_txq_info), GFP_KERNEL);
if (!qi)
return -ENOMEM;
/* Populate the queue info buffer with all queue context info */
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
int j, sched_mode;
for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
qi[k].queue_id =
cpu_to_le32(tx_qgrp->txqs[j]->q_id);
qi[k].model =
cpu_to_le16(vport->txq_model);
qi[k].type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
qi[k].ring_len =
cpu_to_le16(tx_qgrp->txqs[j]->desc_count);
qi[k].dma_ring_addr =
cpu_to_le64(tx_qgrp->txqs[j]->dma);
if (idpf_is_queue_model_split(vport->txq_model)) {
struct idpf_tx_queue *q = tx_qgrp->txqs[j];
qi[k].tx_compl_queue_id =
cpu_to_le16(tx_qgrp->complq->q_id);
qi[k].relative_queue_id = cpu_to_le16(j);
if (idpf_queue_has(FLOW_SCH_EN, q))
qi[k].sched_mode =
cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_FLOW);
else
qi[k].sched_mode =
cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
} else {
qi[k].sched_mode =
cpu_to_le16(VIRTCHNL2_TXQ_SCHED_MODE_QUEUE);
}
}
if (!idpf_is_queue_model_split(vport->txq_model))
continue;
qi[k].queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
qi[k].model = cpu_to_le16(vport->txq_model);
qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
qi[k].ring_len = cpu_to_le16(tx_qgrp->complq->desc_count);
qi[k].dma_ring_addr = cpu_to_le64(tx_qgrp->complq->dma);
if (idpf_queue_has(FLOW_SCH_EN, tx_qgrp->complq))
sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_FLOW;
else
sched_mode = VIRTCHNL2_TXQ_SCHED_MODE_QUEUE;
qi[k].sched_mode = cpu_to_le16(sched_mode);
k++;
}
/* Make sure accounting agrees */
if (k != totqs)
return -EINVAL;
/* Chunk up the queue contexts into multiple messages to avoid
* sending a control queue message buffer that is too large
*/
config_sz = sizeof(struct virtchnl2_config_tx_queues);
chunk_sz = sizeof(struct virtchnl2_txq_info);
num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
totqs);
num_msgs = DIV_ROUND_UP(totqs, num_chunks);
buf_sz = struct_size(ctq, qinfo, num_chunks);
ctq = kzalloc(buf_sz, GFP_KERNEL);
if (!ctq)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_CONFIG_TX_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
for (i = 0, k = 0; i < num_msgs; i++) {
memset(ctq, 0, buf_sz);
ctq->vport_id = cpu_to_le32(vport->vport_id);
ctq->num_qinfo = cpu_to_le16(num_chunks);
memcpy(ctq->qinfo, &qi[k], chunk_sz * num_chunks);
xn_params.send_buf.iov_base = ctq;
xn_params.send_buf.iov_len = buf_sz;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
k += num_chunks;
totqs -= num_chunks;
num_chunks = min(num_chunks, totqs);
/* Recalculate buffer size */
buf_sz = struct_size(ctq, qinfo, num_chunks);
}
return 0;
}
/**
* idpf_send_config_rx_queues_msg - Send virtchnl config rx queues message
* @vport: virtual port data structure
*
* Send config rx queues virtchnl message. Returns 0 on success, negative on
* failure.
*/
static int idpf_send_config_rx_queues_msg(struct idpf_vport *vport)
{
struct virtchnl2_config_rx_queues *crq __free(kfree) = NULL;
struct virtchnl2_rxq_info *qi __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
u32 config_sz, chunk_sz, buf_sz;
int totqs, num_msgs, num_chunks;
ssize_t reply_sz;
int i, k = 0;
totqs = vport->num_rxq + vport->num_bufq;
qi = kcalloc(totqs, sizeof(struct virtchnl2_rxq_info), GFP_KERNEL);
if (!qi)
return -ENOMEM;
/* Populate the queue info buffer with all queue context info */
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u16 num_rxq;
int j;
if (!idpf_is_queue_model_split(vport->rxq_model))
goto setup_rxqs;
for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
struct idpf_buf_queue *bufq =
&rx_qgrp->splitq.bufq_sets[j].bufq;
qi[k].queue_id = cpu_to_le32(bufq->q_id);
qi[k].model = cpu_to_le16(vport->rxq_model);
qi[k].type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
qi[k].desc_ids = cpu_to_le64(VIRTCHNL2_RXDID_2_FLEX_SPLITQ_M);
qi[k].ring_len = cpu_to_le16(bufq->desc_count);
qi[k].dma_ring_addr = cpu_to_le64(bufq->dma);
qi[k].data_buffer_size = cpu_to_le32(bufq->rx_buf_size);
qi[k].buffer_notif_stride = IDPF_RX_BUF_STRIDE;
qi[k].rx_buffer_low_watermark =
cpu_to_le16(bufq->rx_buffer_low_watermark);
if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
}
setup_rxqs:
if (idpf_is_queue_model_split(vport->rxq_model))
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++, k++) {
const struct idpf_bufq_set *sets;
struct idpf_rx_queue *rxq;
if (!idpf_is_queue_model_split(vport->rxq_model)) {
rxq = rx_qgrp->singleq.rxqs[j];
goto common_qi_fields;
}
rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
sets = rxq->bufq_sets;
/* In splitq mode, RXQ buffer size should be
* set to that of the first buffer queue
* associated with this RXQ.
*/
rxq->rx_buf_size = sets[0].bufq.rx_buf_size;
qi[k].rx_bufq1_id = cpu_to_le16(sets[0].bufq.q_id);
if (vport->num_bufqs_per_qgrp > IDPF_SINGLE_BUFQ_PER_RXQ_GRP) {
qi[k].bufq2_ena = IDPF_BUFQ2_ENA;
qi[k].rx_bufq2_id =
cpu_to_le16(sets[1].bufq.q_id);
}
qi[k].rx_buffer_low_watermark =
cpu_to_le16(rxq->rx_buffer_low_watermark);
if (idpf_is_feature_ena(vport, NETIF_F_GRO_HW))
qi[k].qflags |= cpu_to_le16(VIRTCHNL2_RXQ_RSC);
rxq->rx_hbuf_size = sets[0].bufq.rx_hbuf_size;
if (idpf_queue_has(HSPLIT_EN, rxq)) {
qi[k].qflags |=
cpu_to_le16(VIRTCHNL2_RXQ_HDR_SPLIT);
qi[k].hdr_buffer_size =
cpu_to_le16(rxq->rx_hbuf_size);
}
common_qi_fields:
qi[k].queue_id = cpu_to_le32(rxq->q_id);
qi[k].model = cpu_to_le16(vport->rxq_model);
qi[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
qi[k].ring_len = cpu_to_le16(rxq->desc_count);
qi[k].dma_ring_addr = cpu_to_le64(rxq->dma);
qi[k].max_pkt_size = cpu_to_le32(rxq->rx_max_pkt_size);
qi[k].data_buffer_size = cpu_to_le32(rxq->rx_buf_size);
qi[k].qflags |=
cpu_to_le16(VIRTCHNL2_RX_DESC_SIZE_32BYTE);
qi[k].desc_ids = cpu_to_le64(rxq->rxdids);
}
}
/* Make sure accounting agrees */
if (k != totqs)
return -EINVAL;
/* Chunk up the queue contexts into multiple messages to avoid
* sending a control queue message buffer that is too large
*/
config_sz = sizeof(struct virtchnl2_config_rx_queues);
chunk_sz = sizeof(struct virtchnl2_rxq_info);
num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
totqs);
num_msgs = DIV_ROUND_UP(totqs, num_chunks);
buf_sz = struct_size(crq, qinfo, num_chunks);
crq = kzalloc(buf_sz, GFP_KERNEL);
if (!crq)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_CONFIG_RX_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
for (i = 0, k = 0; i < num_msgs; i++) {
memset(crq, 0, buf_sz);
crq->vport_id = cpu_to_le32(vport->vport_id);
crq->num_qinfo = cpu_to_le16(num_chunks);
memcpy(crq->qinfo, &qi[k], chunk_sz * num_chunks);
xn_params.send_buf.iov_base = crq;
xn_params.send_buf.iov_len = buf_sz;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
k += num_chunks;
totqs -= num_chunks;
num_chunks = min(num_chunks, totqs);
/* Recalculate buffer size */
buf_sz = struct_size(crq, qinfo, num_chunks);
}
return 0;
}
/**
* idpf_send_ena_dis_queues_msg - Send virtchnl enable or disable
* queues message
* @vport: virtual port data structure
* @ena: if true enable, false disable
*
* Send enable or disable queues virtchnl message. Returns 0 on success,
* negative on failure.
*/
static int idpf_send_ena_dis_queues_msg(struct idpf_vport *vport, bool ena)
{
struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
struct virtchnl2_queue_chunk *qc __free(kfree) = NULL;
u32 num_msgs, num_chunks, num_txq, num_rxq, num_q;
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_queue_chunks *qcs;
u32 config_sz, chunk_sz, buf_sz;
ssize_t reply_sz;
int i, j, k = 0;
num_txq = vport->num_txq + vport->num_complq;
num_rxq = vport->num_rxq + vport->num_bufq;
num_q = num_txq + num_rxq;
buf_sz = sizeof(struct virtchnl2_queue_chunk) * num_q;
qc = kzalloc(buf_sz, GFP_KERNEL);
if (!qc)
return -ENOMEM;
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
qc[k].start_queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
}
}
if (vport->num_txq != k)
return -EINVAL;
if (!idpf_is_queue_model_split(vport->txq_model))
goto setup_rx;
for (i = 0; i < vport->num_txq_grp; i++, k++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
qc[k].type = cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION);
qc[k].start_queue_id = cpu_to_le32(tx_qgrp->complq->q_id);
qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
}
if (vport->num_complq != (k - vport->num_txq))
return -EINVAL;
setup_rx:
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
if (idpf_is_queue_model_split(vport->rxq_model))
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++, k++) {
if (idpf_is_queue_model_split(vport->rxq_model)) {
qc[k].start_queue_id =
cpu_to_le32(rx_qgrp->splitq.rxq_sets[j]->rxq.q_id);
qc[k].type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
} else {
qc[k].start_queue_id =
cpu_to_le32(rx_qgrp->singleq.rxqs[j]->q_id);
qc[k].type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
}
qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
}
}
if (vport->num_rxq != k - (vport->num_txq + vport->num_complq))
return -EINVAL;
if (!idpf_is_queue_model_split(vport->rxq_model))
goto send_msg;
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
for (j = 0; j < vport->num_bufqs_per_qgrp; j++, k++) {
const struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
qc[k].type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX_BUFFER);
qc[k].start_queue_id = cpu_to_le32(q->q_id);
qc[k].num_queues = cpu_to_le32(IDPF_NUMQ_PER_CHUNK);
}
}
if (vport->num_bufq != k - (vport->num_txq +
vport->num_complq +
vport->num_rxq))
return -EINVAL;
send_msg:
/* Chunk up the queue info into multiple messages */
config_sz = sizeof(struct virtchnl2_del_ena_dis_queues);
chunk_sz = sizeof(struct virtchnl2_queue_chunk);
num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
num_q);
num_msgs = DIV_ROUND_UP(num_q, num_chunks);
buf_sz = struct_size(eq, chunks.chunks, num_chunks);
eq = kzalloc(buf_sz, GFP_KERNEL);
if (!eq)
return -ENOMEM;
if (ena) {
xn_params.vc_op = VIRTCHNL2_OP_ENABLE_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
} else {
xn_params.vc_op = VIRTCHNL2_OP_DISABLE_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
}
for (i = 0, k = 0; i < num_msgs; i++) {
memset(eq, 0, buf_sz);
eq->vport_id = cpu_to_le32(vport->vport_id);
eq->chunks.num_chunks = cpu_to_le16(num_chunks);
qcs = &eq->chunks;
memcpy(qcs->chunks, &qc[k], chunk_sz * num_chunks);
xn_params.send_buf.iov_base = eq;
xn_params.send_buf.iov_len = buf_sz;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
k += num_chunks;
num_q -= num_chunks;
num_chunks = min(num_chunks, num_q);
/* Recalculate buffer size */
buf_sz = struct_size(eq, chunks.chunks, num_chunks);
}
return 0;
}
/**
* idpf_send_map_unmap_queue_vector_msg - Send virtchnl map or unmap queue
* vector message
* @vport: virtual port data structure
* @map: true for map and false for unmap
*
* Send map or unmap queue vector virtchnl message. Returns 0 on success,
* negative on failure.
*/
int idpf_send_map_unmap_queue_vector_msg(struct idpf_vport *vport, bool map)
{
struct virtchnl2_queue_vector_maps *vqvm __free(kfree) = NULL;
struct virtchnl2_queue_vector *vqv __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
u32 config_sz, chunk_sz, buf_sz;
u32 num_msgs, num_chunks, num_q;
ssize_t reply_sz;
int i, j, k = 0;
num_q = vport->num_txq + vport->num_rxq;
buf_sz = sizeof(struct virtchnl2_queue_vector) * num_q;
vqv = kzalloc(buf_sz, GFP_KERNEL);
if (!vqv)
return -ENOMEM;
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
for (j = 0; j < tx_qgrp->num_txq; j++, k++) {
vqv[k].queue_type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_TX);
vqv[k].queue_id = cpu_to_le32(tx_qgrp->txqs[j]->q_id);
if (idpf_is_queue_model_split(vport->txq_model)) {
vqv[k].vector_id =
cpu_to_le16(tx_qgrp->complq->q_vector->v_idx);
vqv[k].itr_idx =
cpu_to_le32(tx_qgrp->complq->q_vector->tx_itr_idx);
} else {
vqv[k].vector_id =
cpu_to_le16(tx_qgrp->txqs[j]->q_vector->v_idx);
vqv[k].itr_idx =
cpu_to_le32(tx_qgrp->txqs[j]->q_vector->tx_itr_idx);
}
}
}
if (vport->num_txq != k)
return -EINVAL;
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u16 num_rxq;
if (idpf_is_queue_model_split(vport->rxq_model))
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq; j++, k++) {
struct idpf_rx_queue *rxq;
if (idpf_is_queue_model_split(vport->rxq_model))
rxq = &rx_qgrp->splitq.rxq_sets[j]->rxq;
else
rxq = rx_qgrp->singleq.rxqs[j];
vqv[k].queue_type =
cpu_to_le32(VIRTCHNL2_QUEUE_TYPE_RX);
vqv[k].queue_id = cpu_to_le32(rxq->q_id);
vqv[k].vector_id = cpu_to_le16(rxq->q_vector->v_idx);
vqv[k].itr_idx = cpu_to_le32(rxq->q_vector->rx_itr_idx);
}
}
if (idpf_is_queue_model_split(vport->txq_model)) {
if (vport->num_rxq != k - vport->num_complq)
return -EINVAL;
} else {
if (vport->num_rxq != k - vport->num_txq)
return -EINVAL;
}
/* Chunk up the vector info into multiple messages */
config_sz = sizeof(struct virtchnl2_queue_vector_maps);
chunk_sz = sizeof(struct virtchnl2_queue_vector);
num_chunks = min_t(u32, IDPF_NUM_CHUNKS_PER_MSG(config_sz, chunk_sz),
num_q);
num_msgs = DIV_ROUND_UP(num_q, num_chunks);
buf_sz = struct_size(vqvm, qv_maps, num_chunks);
vqvm = kzalloc(buf_sz, GFP_KERNEL);
if (!vqvm)
return -ENOMEM;
if (map) {
xn_params.vc_op = VIRTCHNL2_OP_MAP_QUEUE_VECTOR;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
} else {
xn_params.vc_op = VIRTCHNL2_OP_UNMAP_QUEUE_VECTOR;
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
}
for (i = 0, k = 0; i < num_msgs; i++) {
memset(vqvm, 0, buf_sz);
xn_params.send_buf.iov_base = vqvm;
xn_params.send_buf.iov_len = buf_sz;
vqvm->vport_id = cpu_to_le32(vport->vport_id);
vqvm->num_qv_maps = cpu_to_le16(num_chunks);
memcpy(vqvm->qv_maps, &vqv[k], chunk_sz * num_chunks);
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
k += num_chunks;
num_q -= num_chunks;
num_chunks = min(num_chunks, num_q);
/* Recalculate buffer size */
buf_sz = struct_size(vqvm, qv_maps, num_chunks);
}
return 0;
}
/**
* idpf_send_enable_queues_msg - send enable queues virtchnl message
* @vport: Virtual port private data structure
*
* Will send enable queues virtchnl message. Returns 0 on success, negative on
* failure.
*/
int idpf_send_enable_queues_msg(struct idpf_vport *vport)
{
return idpf_send_ena_dis_queues_msg(vport, true);
}
/**
* idpf_send_disable_queues_msg - send disable queues virtchnl message
* @vport: Virtual port private data structure
*
* Will send disable queues virtchnl message. Returns 0 on success, negative
* on failure.
*/
int idpf_send_disable_queues_msg(struct idpf_vport *vport)
{
int err, i;
err = idpf_send_ena_dis_queues_msg(vport, false);
if (err)
return err;
/* switch to poll mode as interrupts will be disabled after disable
* queues virtchnl message is sent
*/
for (i = 0; i < vport->num_txq; i++)
idpf_queue_set(POLL_MODE, vport->txqs[i]);
/* schedule the napi to receive all the marker packets */
local_bh_disable();
for (i = 0; i < vport->num_q_vectors; i++)
napi_schedule(&vport->q_vectors[i].napi);
local_bh_enable();
return idpf_wait_for_marker_event(vport);
}
/**
* idpf_convert_reg_to_queue_chunks - Copy queue chunk information to the right
* structure
* @dchunks: Destination chunks to store data to
* @schunks: Source chunks to copy data from
* @num_chunks: number of chunks to copy
*/
static void idpf_convert_reg_to_queue_chunks(struct virtchnl2_queue_chunk *dchunks,
struct virtchnl2_queue_reg_chunk *schunks,
u16 num_chunks)
{
u16 i;
for (i = 0; i < num_chunks; i++) {
dchunks[i].type = schunks[i].type;
dchunks[i].start_queue_id = schunks[i].start_queue_id;
dchunks[i].num_queues = schunks[i].num_queues;
}
}
/**
* idpf_send_delete_queues_msg - send delete queues virtchnl message
* @vport: Virtual port private data structure
*
* Will send delete queues virtchnl message. Return 0 on success, negative on
* failure.
*/
int idpf_send_delete_queues_msg(struct idpf_vport *vport)
{
struct virtchnl2_del_ena_dis_queues *eq __free(kfree) = NULL;
struct virtchnl2_create_vport *vport_params;
struct virtchnl2_queue_reg_chunks *chunks;
struct idpf_vc_xn_params xn_params = {};
struct idpf_vport_config *vport_config;
u16 vport_idx = vport->idx;
ssize_t reply_sz;
u16 num_chunks;
int buf_size;
vport_config = vport->adapter->vport_config[vport_idx];
if (vport_config->req_qs_chunks) {
chunks = &vport_config->req_qs_chunks->chunks;
} else {
vport_params = vport->adapter->vport_params_recvd[vport_idx];
chunks = &vport_params->chunks;
}
num_chunks = le16_to_cpu(chunks->num_chunks);
buf_size = struct_size(eq, chunks.chunks, num_chunks);
eq = kzalloc(buf_size, GFP_KERNEL);
if (!eq)
return -ENOMEM;
eq->vport_id = cpu_to_le32(vport->vport_id);
eq->chunks.num_chunks = cpu_to_le16(num_chunks);
idpf_convert_reg_to_queue_chunks(eq->chunks.chunks, chunks->chunks,
num_chunks);
xn_params.vc_op = VIRTCHNL2_OP_DEL_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = eq;
xn_params.send_buf.iov_len = buf_size;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_send_config_queues_msg - Send config queues virtchnl message
* @vport: Virtual port private data structure
*
* Will send config queues virtchnl message. Returns 0 on success, negative on
* failure.
*/
int idpf_send_config_queues_msg(struct idpf_vport *vport)
{
int err;
err = idpf_send_config_tx_queues_msg(vport);
if (err)
return err;
return idpf_send_config_rx_queues_msg(vport);
}
/**
* idpf_send_add_queues_msg - Send virtchnl add queues message
* @vport: Virtual port private data structure
* @num_tx_q: number of transmit queues
* @num_complq: number of transmit completion queues
* @num_rx_q: number of receive queues
* @num_rx_bufq: number of receive buffer queues
*
* Returns 0 on success, negative on failure. vport _MUST_ be const here as
* we should not change any fields within vport itself in this function.
*/
int idpf_send_add_queues_msg(const struct idpf_vport *vport, u16 num_tx_q,
u16 num_complq, u16 num_rx_q, u16 num_rx_bufq)
{
struct virtchnl2_add_queues *vc_msg __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
struct idpf_vport_config *vport_config;
struct virtchnl2_add_queues aq = {};
u16 vport_idx = vport->idx;
ssize_t reply_sz;
int size;
vc_msg = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
if (!vc_msg)
return -ENOMEM;
vport_config = vport->adapter->vport_config[vport_idx];
kfree(vport_config->req_qs_chunks);
vport_config->req_qs_chunks = NULL;
aq.vport_id = cpu_to_le32(vport->vport_id);
aq.num_tx_q = cpu_to_le16(num_tx_q);
aq.num_tx_complq = cpu_to_le16(num_complq);
aq.num_rx_q = cpu_to_le16(num_rx_q);
aq.num_rx_bufq = cpu_to_le16(num_rx_bufq);
xn_params.vc_op = VIRTCHNL2_OP_ADD_QUEUES;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = &aq;
xn_params.send_buf.iov_len = sizeof(aq);
xn_params.recv_buf.iov_base = vc_msg;
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
/* compare vc_msg num queues with vport num queues */
if (le16_to_cpu(vc_msg->num_tx_q) != num_tx_q ||
le16_to_cpu(vc_msg->num_rx_q) != num_rx_q ||
le16_to_cpu(vc_msg->num_tx_complq) != num_complq ||
le16_to_cpu(vc_msg->num_rx_bufq) != num_rx_bufq)
return -EINVAL;
size = struct_size(vc_msg, chunks.chunks,
le16_to_cpu(vc_msg->chunks.num_chunks));
if (reply_sz < size)
return -EIO;
vport_config->req_qs_chunks = kmemdup(vc_msg, size, GFP_KERNEL);
if (!vport_config->req_qs_chunks)
return -ENOMEM;
return 0;
}
/**
* idpf_send_alloc_vectors_msg - Send virtchnl alloc vectors message
* @adapter: Driver specific private structure
* @num_vectors: number of vectors to be allocated
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_alloc_vectors_msg(struct idpf_adapter *adapter, u16 num_vectors)
{
struct virtchnl2_alloc_vectors *rcvd_vec __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_alloc_vectors ac = {};
ssize_t reply_sz;
u16 num_vchunks;
int size;
ac.num_vectors = cpu_to_le16(num_vectors);
rcvd_vec = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
if (!rcvd_vec)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_ALLOC_VECTORS;
xn_params.send_buf.iov_base = &ac;
xn_params.send_buf.iov_len = sizeof(ac);
xn_params.recv_buf.iov_base = rcvd_vec;
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
num_vchunks = le16_to_cpu(rcvd_vec->vchunks.num_vchunks);
size = struct_size(rcvd_vec, vchunks.vchunks, num_vchunks);
if (reply_sz < size)
return -EIO;
if (size > IDPF_CTLQ_MAX_BUF_LEN)
return -EINVAL;
kfree(adapter->req_vec_chunks);
adapter->req_vec_chunks = kmemdup(rcvd_vec, size, GFP_KERNEL);
if (!adapter->req_vec_chunks)
return -ENOMEM;
if (le16_to_cpu(adapter->req_vec_chunks->num_vectors) < num_vectors) {
kfree(adapter->req_vec_chunks);
adapter->req_vec_chunks = NULL;
return -EINVAL;
}
return 0;
}
/**
* idpf_send_dealloc_vectors_msg - Send virtchnl de allocate vectors message
* @adapter: Driver specific private structure
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_dealloc_vectors_msg(struct idpf_adapter *adapter)
{
struct virtchnl2_alloc_vectors *ac = adapter->req_vec_chunks;
struct virtchnl2_vector_chunks *vcs = &ac->vchunks;
struct idpf_vc_xn_params xn_params = {};
ssize_t reply_sz;
int buf_size;
buf_size = struct_size(vcs, vchunks, le16_to_cpu(vcs->num_vchunks));
xn_params.vc_op = VIRTCHNL2_OP_DEALLOC_VECTORS;
xn_params.send_buf.iov_base = vcs;
xn_params.send_buf.iov_len = buf_size;
xn_params.timeout_ms = IDPF_VC_XN_MIN_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
kfree(adapter->req_vec_chunks);
adapter->req_vec_chunks = NULL;
return 0;
}
/**
* idpf_get_max_vfs - Get max number of vfs supported
* @adapter: Driver specific private structure
*
* Returns max number of VFs
*/
static int idpf_get_max_vfs(struct idpf_adapter *adapter)
{
return le16_to_cpu(adapter->caps.max_sriov_vfs);
}
/**
* idpf_send_set_sriov_vfs_msg - Send virtchnl set sriov vfs message
* @adapter: Driver specific private structure
* @num_vfs: number of virtual functions to be created
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_set_sriov_vfs_msg(struct idpf_adapter *adapter, u16 num_vfs)
{
struct virtchnl2_sriov_vfs_info svi = {};
struct idpf_vc_xn_params xn_params = {};
ssize_t reply_sz;
svi.num_vfs = cpu_to_le16(num_vfs);
xn_params.vc_op = VIRTCHNL2_OP_SET_SRIOV_VFS;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = &svi;
xn_params.send_buf.iov_len = sizeof(svi);
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_send_get_stats_msg - Send virtchnl get statistics message
* @vport: vport to get stats for
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_get_stats_msg(struct idpf_vport *vport)
{
struct idpf_netdev_priv *np = netdev_priv(vport->netdev);
struct rtnl_link_stats64 *netstats = &np->netstats;
struct virtchnl2_vport_stats stats_msg = {};
struct idpf_vc_xn_params xn_params = {};
ssize_t reply_sz;
/* Don't send get_stats message if the link is down */
if (np->state <= __IDPF_VPORT_DOWN)
return 0;
stats_msg.vport_id = cpu_to_le32(vport->vport_id);
xn_params.vc_op = VIRTCHNL2_OP_GET_STATS;
xn_params.send_buf.iov_base = &stats_msg;
xn_params.send_buf.iov_len = sizeof(stats_msg);
xn_params.recv_buf = xn_params.send_buf;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
if (reply_sz < sizeof(stats_msg))
return -EIO;
spin_lock_bh(&np->stats_lock);
netstats->rx_packets = le64_to_cpu(stats_msg.rx_unicast) +
le64_to_cpu(stats_msg.rx_multicast) +
le64_to_cpu(stats_msg.rx_broadcast);
netstats->tx_packets = le64_to_cpu(stats_msg.tx_unicast) +
le64_to_cpu(stats_msg.tx_multicast) +
le64_to_cpu(stats_msg.tx_broadcast);
netstats->rx_bytes = le64_to_cpu(stats_msg.rx_bytes);
netstats->tx_bytes = le64_to_cpu(stats_msg.tx_bytes);
netstats->rx_errors = le64_to_cpu(stats_msg.rx_errors);
netstats->tx_errors = le64_to_cpu(stats_msg.tx_errors);
netstats->rx_dropped = le64_to_cpu(stats_msg.rx_discards);
netstats->tx_dropped = le64_to_cpu(stats_msg.tx_discards);
vport->port_stats.vport_stats = stats_msg;
spin_unlock_bh(&np->stats_lock);
return 0;
}
/**
* idpf_send_get_set_rss_lut_msg - Send virtchnl get or set rss lut message
* @vport: virtual port data structure
* @get: flag to set or get rss look up table
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_get_set_rss_lut_msg(struct idpf_vport *vport, bool get)
{
struct virtchnl2_rss_lut *recv_rl __free(kfree) = NULL;
struct virtchnl2_rss_lut *rl __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
struct idpf_rss_data *rss_data;
int buf_size, lut_buf_size;
ssize_t reply_sz;
int i;
rss_data =
&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
buf_size = struct_size(rl, lut, rss_data->rss_lut_size);
rl = kzalloc(buf_size, GFP_KERNEL);
if (!rl)
return -ENOMEM;
rl->vport_id = cpu_to_le32(vport->vport_id);
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = rl;
xn_params.send_buf.iov_len = buf_size;
if (get) {
recv_rl = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
if (!recv_rl)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_LUT;
xn_params.recv_buf.iov_base = recv_rl;
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
} else {
rl->lut_entries = cpu_to_le16(rss_data->rss_lut_size);
for (i = 0; i < rss_data->rss_lut_size; i++)
rl->lut[i] = cpu_to_le32(rss_data->rss_lut[i]);
xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_LUT;
}
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
if (!get)
return 0;
if (reply_sz < sizeof(struct virtchnl2_rss_lut))
return -EIO;
lut_buf_size = le16_to_cpu(recv_rl->lut_entries) * sizeof(u32);
if (reply_sz < lut_buf_size)
return -EIO;
/* size didn't change, we can reuse existing lut buf */
if (rss_data->rss_lut_size == le16_to_cpu(recv_rl->lut_entries))
goto do_memcpy;
rss_data->rss_lut_size = le16_to_cpu(recv_rl->lut_entries);
kfree(rss_data->rss_lut);
rss_data->rss_lut = kzalloc(lut_buf_size, GFP_KERNEL);
if (!rss_data->rss_lut) {
rss_data->rss_lut_size = 0;
return -ENOMEM;
}
do_memcpy:
memcpy(rss_data->rss_lut, recv_rl->lut, rss_data->rss_lut_size);
return 0;
}
/**
* idpf_send_get_set_rss_key_msg - Send virtchnl get or set rss key message
* @vport: virtual port data structure
* @get: flag to set or get rss look up table
*
* Returns 0 on success, negative on failure
*/
int idpf_send_get_set_rss_key_msg(struct idpf_vport *vport, bool get)
{
struct virtchnl2_rss_key *recv_rk __free(kfree) = NULL;
struct virtchnl2_rss_key *rk __free(kfree) = NULL;
struct idpf_vc_xn_params xn_params = {};
struct idpf_rss_data *rss_data;
ssize_t reply_sz;
int i, buf_size;
u16 key_size;
rss_data =
&vport->adapter->vport_config[vport->idx]->user_config.rss_data;
buf_size = struct_size(rk, key_flex, rss_data->rss_key_size);
rk = kzalloc(buf_size, GFP_KERNEL);
if (!rk)
return -ENOMEM;
rk->vport_id = cpu_to_le32(vport->vport_id);
xn_params.send_buf.iov_base = rk;
xn_params.send_buf.iov_len = buf_size;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
if (get) {
recv_rk = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
if (!recv_rk)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_GET_RSS_KEY;
xn_params.recv_buf.iov_base = recv_rk;
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
} else {
rk->key_len = cpu_to_le16(rss_data->rss_key_size);
for (i = 0; i < rss_data->rss_key_size; i++)
rk->key_flex[i] = rss_data->rss_key[i];
xn_params.vc_op = VIRTCHNL2_OP_SET_RSS_KEY;
}
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
if (!get)
return 0;
if (reply_sz < sizeof(struct virtchnl2_rss_key))
return -EIO;
key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
le16_to_cpu(recv_rk->key_len));
if (reply_sz < key_size)
return -EIO;
/* key len didn't change, reuse existing buf */
if (rss_data->rss_key_size == key_size)
goto do_memcpy;
rss_data->rss_key_size = key_size;
kfree(rss_data->rss_key);
rss_data->rss_key = kzalloc(key_size, GFP_KERNEL);
if (!rss_data->rss_key) {
rss_data->rss_key_size = 0;
return -ENOMEM;
}
do_memcpy:
memcpy(rss_data->rss_key, recv_rk->key_flex, rss_data->rss_key_size);
return 0;
}
/**
* idpf_fill_ptype_lookup - Fill L3 specific fields in ptype lookup table
* @ptype: ptype lookup table
* @pstate: state machine for ptype lookup table
* @ipv4: ipv4 or ipv6
* @frag: fragmentation allowed
*
*/
static void idpf_fill_ptype_lookup(struct libeth_rx_pt *ptype,
struct idpf_ptype_state *pstate,
bool ipv4, bool frag)
{
if (!pstate->outer_ip || !pstate->outer_frag) {
pstate->outer_ip = true;
if (ipv4)
ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV4;
else
ptype->outer_ip = LIBETH_RX_PT_OUTER_IPV6;
if (frag) {
ptype->outer_frag = LIBETH_RX_PT_FRAG;
pstate->outer_frag = true;
}
} else {
ptype->tunnel_type = LIBETH_RX_PT_TUNNEL_IP_IP;
pstate->tunnel_state = IDPF_PTYPE_TUNNEL_IP;
if (ipv4)
ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV4;
else
ptype->tunnel_end_prot = LIBETH_RX_PT_TUNNEL_END_IPV6;
if (frag)
ptype->tunnel_end_frag = LIBETH_RX_PT_FRAG;
}
}
static void idpf_finalize_ptype_lookup(struct libeth_rx_pt *ptype)
{
if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
ptype->inner_prot)
ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L4;
else if (ptype->payload_layer == LIBETH_RX_PT_PAYLOAD_L2 &&
ptype->outer_ip)
ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L3;
else if (ptype->outer_ip == LIBETH_RX_PT_OUTER_L2)
ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_L2;
else
ptype->payload_layer = LIBETH_RX_PT_PAYLOAD_NONE;
libeth_rx_pt_gen_hash_type(ptype);
}
/**
* idpf_send_get_rx_ptype_msg - Send virtchnl for ptype info
* @vport: virtual port data structure
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_get_rx_ptype_msg(struct idpf_vport *vport)
{
struct virtchnl2_get_ptype_info *get_ptype_info __free(kfree) = NULL;
struct virtchnl2_get_ptype_info *ptype_info __free(kfree) = NULL;
struct libeth_rx_pt *ptype_lkup __free(kfree) = NULL;
int max_ptype, ptypes_recvd = 0, ptype_offset;
struct idpf_adapter *adapter = vport->adapter;
struct idpf_vc_xn_params xn_params = {};
u16 next_ptype_id = 0;
ssize_t reply_sz;
int i, j, k;
if (vport->rx_ptype_lkup)
return 0;
if (idpf_is_queue_model_split(vport->rxq_model))
max_ptype = IDPF_RX_MAX_PTYPE;
else
max_ptype = IDPF_RX_MAX_BASE_PTYPE;
ptype_lkup = kcalloc(max_ptype, sizeof(*ptype_lkup), GFP_KERNEL);
if (!ptype_lkup)
return -ENOMEM;
get_ptype_info = kzalloc(sizeof(*get_ptype_info), GFP_KERNEL);
if (!get_ptype_info)
return -ENOMEM;
ptype_info = kzalloc(IDPF_CTLQ_MAX_BUF_LEN, GFP_KERNEL);
if (!ptype_info)
return -ENOMEM;
xn_params.vc_op = VIRTCHNL2_OP_GET_PTYPE_INFO;
xn_params.send_buf.iov_base = get_ptype_info;
xn_params.send_buf.iov_len = sizeof(*get_ptype_info);
xn_params.recv_buf.iov_base = ptype_info;
xn_params.recv_buf.iov_len = IDPF_CTLQ_MAX_BUF_LEN;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
while (next_ptype_id < max_ptype) {
get_ptype_info->start_ptype_id = cpu_to_le16(next_ptype_id);
if ((next_ptype_id + IDPF_RX_MAX_PTYPES_PER_BUF) > max_ptype)
get_ptype_info->num_ptypes =
cpu_to_le16(max_ptype - next_ptype_id);
else
get_ptype_info->num_ptypes =
cpu_to_le16(IDPF_RX_MAX_PTYPES_PER_BUF);
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
ptypes_recvd += le16_to_cpu(ptype_info->num_ptypes);
if (ptypes_recvd > max_ptype)
return -EINVAL;
next_ptype_id = le16_to_cpu(get_ptype_info->start_ptype_id) +
le16_to_cpu(get_ptype_info->num_ptypes);
ptype_offset = IDPF_RX_PTYPE_HDR_SZ;
for (i = 0; i < le16_to_cpu(ptype_info->num_ptypes); i++) {
struct idpf_ptype_state pstate = { };
struct virtchnl2_ptype *ptype;
u16 id;
ptype = (struct virtchnl2_ptype *)
((u8 *)ptype_info + ptype_offset);
ptype_offset += IDPF_GET_PTYPE_SIZE(ptype);
if (ptype_offset > IDPF_CTLQ_MAX_BUF_LEN)
return -EINVAL;
/* 0xFFFF indicates end of ptypes */
if (le16_to_cpu(ptype->ptype_id_10) ==
IDPF_INVALID_PTYPE_ID)
goto out;
if (idpf_is_queue_model_split(vport->rxq_model))
k = le16_to_cpu(ptype->ptype_id_10);
else
k = ptype->ptype_id_8;
for (j = 0; j < ptype->proto_id_count; j++) {
id = le16_to_cpu(ptype->proto_id[j]);
switch (id) {
case VIRTCHNL2_PROTO_HDR_GRE:
if (pstate.tunnel_state ==
IDPF_PTYPE_TUNNEL_IP) {
ptype_lkup[k].tunnel_type =
LIBETH_RX_PT_TUNNEL_IP_GRENAT;
pstate.tunnel_state |=
IDPF_PTYPE_TUNNEL_IP_GRENAT;
}
break;
case VIRTCHNL2_PROTO_HDR_MAC:
ptype_lkup[k].outer_ip =
LIBETH_RX_PT_OUTER_L2;
if (pstate.tunnel_state ==
IDPF_TUN_IP_GRE) {
ptype_lkup[k].tunnel_type =
LIBETH_RX_PT_TUNNEL_IP_GRENAT_MAC;
pstate.tunnel_state |=
IDPF_PTYPE_TUNNEL_IP_GRENAT_MAC;
}
break;
case VIRTCHNL2_PROTO_HDR_IPV4:
idpf_fill_ptype_lookup(&ptype_lkup[k],
&pstate, true,
false);
break;
case VIRTCHNL2_PROTO_HDR_IPV6:
idpf_fill_ptype_lookup(&ptype_lkup[k],
&pstate, false,
false);
break;
case VIRTCHNL2_PROTO_HDR_IPV4_FRAG:
idpf_fill_ptype_lookup(&ptype_lkup[k],
&pstate, true,
true);
break;
case VIRTCHNL2_PROTO_HDR_IPV6_FRAG:
idpf_fill_ptype_lookup(&ptype_lkup[k],
&pstate, false,
true);
break;
case VIRTCHNL2_PROTO_HDR_UDP:
ptype_lkup[k].inner_prot =
LIBETH_RX_PT_INNER_UDP;
break;
case VIRTCHNL2_PROTO_HDR_TCP:
ptype_lkup[k].inner_prot =
LIBETH_RX_PT_INNER_TCP;
break;
case VIRTCHNL2_PROTO_HDR_SCTP:
ptype_lkup[k].inner_prot =
LIBETH_RX_PT_INNER_SCTP;
break;
case VIRTCHNL2_PROTO_HDR_ICMP:
ptype_lkup[k].inner_prot =
LIBETH_RX_PT_INNER_ICMP;
break;
case VIRTCHNL2_PROTO_HDR_PAY:
ptype_lkup[k].payload_layer =
LIBETH_RX_PT_PAYLOAD_L2;
break;
case VIRTCHNL2_PROTO_HDR_ICMPV6:
case VIRTCHNL2_PROTO_HDR_IPV6_EH:
case VIRTCHNL2_PROTO_HDR_PRE_MAC:
case VIRTCHNL2_PROTO_HDR_POST_MAC:
case VIRTCHNL2_PROTO_HDR_ETHERTYPE:
case VIRTCHNL2_PROTO_HDR_SVLAN:
case VIRTCHNL2_PROTO_HDR_CVLAN:
case VIRTCHNL2_PROTO_HDR_MPLS:
case VIRTCHNL2_PROTO_HDR_MMPLS:
case VIRTCHNL2_PROTO_HDR_PTP:
case VIRTCHNL2_PROTO_HDR_CTRL:
case VIRTCHNL2_PROTO_HDR_LLDP:
case VIRTCHNL2_PROTO_HDR_ARP:
case VIRTCHNL2_PROTO_HDR_ECP:
case VIRTCHNL2_PROTO_HDR_EAPOL:
case VIRTCHNL2_PROTO_HDR_PPPOD:
case VIRTCHNL2_PROTO_HDR_PPPOE:
case VIRTCHNL2_PROTO_HDR_IGMP:
case VIRTCHNL2_PROTO_HDR_AH:
case VIRTCHNL2_PROTO_HDR_ESP:
case VIRTCHNL2_PROTO_HDR_IKE:
case VIRTCHNL2_PROTO_HDR_NATT_KEEP:
case VIRTCHNL2_PROTO_HDR_L2TPV2:
case VIRTCHNL2_PROTO_HDR_L2TPV2_CONTROL:
case VIRTCHNL2_PROTO_HDR_L2TPV3:
case VIRTCHNL2_PROTO_HDR_GTP:
case VIRTCHNL2_PROTO_HDR_GTP_EH:
case VIRTCHNL2_PROTO_HDR_GTPCV2:
case VIRTCHNL2_PROTO_HDR_GTPC_TEID:
case VIRTCHNL2_PROTO_HDR_GTPU:
case VIRTCHNL2_PROTO_HDR_GTPU_UL:
case VIRTCHNL2_PROTO_HDR_GTPU_DL:
case VIRTCHNL2_PROTO_HDR_ECPRI:
case VIRTCHNL2_PROTO_HDR_VRRP:
case VIRTCHNL2_PROTO_HDR_OSPF:
case VIRTCHNL2_PROTO_HDR_TUN:
case VIRTCHNL2_PROTO_HDR_NVGRE:
case VIRTCHNL2_PROTO_HDR_VXLAN:
case VIRTCHNL2_PROTO_HDR_VXLAN_GPE:
case VIRTCHNL2_PROTO_HDR_GENEVE:
case VIRTCHNL2_PROTO_HDR_NSH:
case VIRTCHNL2_PROTO_HDR_QUIC:
case VIRTCHNL2_PROTO_HDR_PFCP:
case VIRTCHNL2_PROTO_HDR_PFCP_NODE:
case VIRTCHNL2_PROTO_HDR_PFCP_SESSION:
case VIRTCHNL2_PROTO_HDR_RTP:
case VIRTCHNL2_PROTO_HDR_NO_PROTO:
break;
default:
break;
}
}
idpf_finalize_ptype_lookup(&ptype_lkup[k]);
}
}
out:
vport->rx_ptype_lkup = no_free_ptr(ptype_lkup);
return 0;
}
/**
* idpf_send_ena_dis_loopback_msg - Send virtchnl enable/disable loopback
* message
* @vport: virtual port data structure
*
* Returns 0 on success, negative on failure.
*/
int idpf_send_ena_dis_loopback_msg(struct idpf_vport *vport)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_loopback loopback;
ssize_t reply_sz;
loopback.vport_id = cpu_to_le32(vport->vport_id);
loopback.enable = idpf_is_feature_ena(vport, NETIF_F_LOOPBACK);
xn_params.vc_op = VIRTCHNL2_OP_LOOPBACK;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = &loopback;
xn_params.send_buf.iov_len = sizeof(loopback);
reply_sz = idpf_vc_xn_exec(vport->adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}
/**
* idpf_find_ctlq - Given a type and id, find ctlq info
* @hw: hardware struct
* @type: type of ctrlq to find
* @id: ctlq id to find
*
* Returns pointer to found ctlq info struct, NULL otherwise.
*/
static struct idpf_ctlq_info *idpf_find_ctlq(struct idpf_hw *hw,
enum idpf_ctlq_type type, int id)
{
struct idpf_ctlq_info *cq, *tmp;
list_for_each_entry_safe(cq, tmp, &hw->cq_list_head, cq_list)
if (cq->q_id == id && cq->cq_type == type)
return cq;
return NULL;
}
/**
* idpf_init_dflt_mbx - Setup default mailbox parameters and make request
* @adapter: adapter info struct
*
* Returns 0 on success, negative otherwise
*/
int idpf_init_dflt_mbx(struct idpf_adapter *adapter)
{
struct idpf_ctlq_create_info ctlq_info[] = {
{
.type = IDPF_CTLQ_TYPE_MAILBOX_TX,
.id = IDPF_DFLT_MBX_ID,
.len = IDPF_DFLT_MBX_Q_LEN,
.buf_size = IDPF_CTLQ_MAX_BUF_LEN
},
{
.type = IDPF_CTLQ_TYPE_MAILBOX_RX,
.id = IDPF_DFLT_MBX_ID,
.len = IDPF_DFLT_MBX_Q_LEN,
.buf_size = IDPF_CTLQ_MAX_BUF_LEN
}
};
struct idpf_hw *hw = &adapter->hw;
int err;
adapter->dev_ops.reg_ops.ctlq_reg_init(ctlq_info);
err = idpf_ctlq_init(hw, IDPF_NUM_DFLT_MBX_Q, ctlq_info);
if (err)
return err;
hw->asq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_TX,
IDPF_DFLT_MBX_ID);
hw->arq = idpf_find_ctlq(hw, IDPF_CTLQ_TYPE_MAILBOX_RX,
IDPF_DFLT_MBX_ID);
if (!hw->asq || !hw->arq) {
idpf_ctlq_deinit(hw);
return -ENOENT;
}
adapter->state = __IDPF_VER_CHECK;
return 0;
}
/**
* idpf_deinit_dflt_mbx - Free up ctlqs setup
* @adapter: Driver specific private data structure
*/
void idpf_deinit_dflt_mbx(struct idpf_adapter *adapter)
{
if (adapter->hw.arq && adapter->hw.asq) {
idpf_mb_clean(adapter);
idpf_ctlq_deinit(&adapter->hw);
}
adapter->hw.arq = NULL;
adapter->hw.asq = NULL;
}
/**
* idpf_vport_params_buf_rel - Release memory for MailBox resources
* @adapter: Driver specific private data structure
*
* Will release memory to hold the vport parameters received on MailBox
*/
static void idpf_vport_params_buf_rel(struct idpf_adapter *adapter)
{
kfree(adapter->vport_params_recvd);
adapter->vport_params_recvd = NULL;
kfree(adapter->vport_params_reqd);
adapter->vport_params_reqd = NULL;
kfree(adapter->vport_ids);
adapter->vport_ids = NULL;
}
/**
* idpf_vport_params_buf_alloc - Allocate memory for MailBox resources
* @adapter: Driver specific private data structure
*
* Will alloc memory to hold the vport parameters received on MailBox
*/
static int idpf_vport_params_buf_alloc(struct idpf_adapter *adapter)
{
u16 num_max_vports = idpf_get_max_vports(adapter);
adapter->vport_params_reqd = kcalloc(num_max_vports,
sizeof(*adapter->vport_params_reqd),
GFP_KERNEL);
if (!adapter->vport_params_reqd)
return -ENOMEM;
adapter->vport_params_recvd = kcalloc(num_max_vports,
sizeof(*adapter->vport_params_recvd),
GFP_KERNEL);
if (!adapter->vport_params_recvd)
goto err_mem;
adapter->vport_ids = kcalloc(num_max_vports, sizeof(u32), GFP_KERNEL);
if (!adapter->vport_ids)
goto err_mem;
if (adapter->vport_config)
return 0;
adapter->vport_config = kcalloc(num_max_vports,
sizeof(*adapter->vport_config),
GFP_KERNEL);
if (!adapter->vport_config)
goto err_mem;
return 0;
err_mem:
idpf_vport_params_buf_rel(adapter);
return -ENOMEM;
}
/**
* idpf_vc_core_init - Initialize state machine and get driver specific
* resources
* @adapter: Driver specific private structure
*
* This function will initialize the state machine and request all necessary
* resources required by the device driver. Once the state machine is
* initialized, allocate memory to store vport specific information and also
* requests required interrupts.
*
* Returns 0 on success, -EAGAIN function will get called again,
* otherwise negative on failure.
*/
int idpf_vc_core_init(struct idpf_adapter *adapter)
{
int task_delay = 30;
u16 num_max_vports;
int err = 0;
if (!adapter->vcxn_mngr) {
adapter->vcxn_mngr = kzalloc(sizeof(*adapter->vcxn_mngr), GFP_KERNEL);
if (!adapter->vcxn_mngr) {
err = -ENOMEM;
goto init_failed;
}
}
idpf_vc_xn_init(adapter->vcxn_mngr);
while (adapter->state != __IDPF_INIT_SW) {
switch (adapter->state) {
case __IDPF_VER_CHECK:
err = idpf_send_ver_msg(adapter);
switch (err) {
case 0:
/* success, move state machine forward */
adapter->state = __IDPF_GET_CAPS;
fallthrough;
case -EAGAIN:
goto restart;
default:
/* Something bad happened, try again but only a
* few times.
*/
goto init_failed;
}
case __IDPF_GET_CAPS:
err = idpf_send_get_caps_msg(adapter);
if (err)
goto init_failed;
adapter->state = __IDPF_INIT_SW;
break;
default:
dev_err(&adapter->pdev->dev, "Device is in bad state: %d\n",
adapter->state);
err = -EINVAL;
goto init_failed;
}
break;
restart:
/* Give enough time before proceeding further with
* state machine
*/
msleep(task_delay);
}
pci_sriov_set_totalvfs(adapter->pdev, idpf_get_max_vfs(adapter));
num_max_vports = idpf_get_max_vports(adapter);
adapter->max_vports = num_max_vports;
adapter->vports = kcalloc(num_max_vports, sizeof(*adapter->vports),
GFP_KERNEL);
if (!adapter->vports)
return -ENOMEM;
if (!adapter->netdevs) {
adapter->netdevs = kcalloc(num_max_vports,
sizeof(struct net_device *),
GFP_KERNEL);
if (!adapter->netdevs) {
err = -ENOMEM;
goto err_netdev_alloc;
}
}
err = idpf_vport_params_buf_alloc(adapter);
if (err) {
dev_err(&adapter->pdev->dev, "Failed to alloc vport params buffer: %d\n",
err);
goto err_netdev_alloc;
}
/* Start the mailbox task before requesting vectors. This will ensure
* vector information response from mailbox is handled
*/
queue_delayed_work(adapter->mbx_wq, &adapter->mbx_task, 0);
queue_delayed_work(adapter->serv_wq, &adapter->serv_task,
msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
err = idpf_intr_req(adapter);
if (err) {
dev_err(&adapter->pdev->dev, "failed to enable interrupt vectors: %d\n",
err);
goto err_intr_req;
}
idpf_init_avail_queues(adapter);
/* Skew the delay for init tasks for each function based on fn number
* to prevent every function from making the same call simultaneously.
*/
queue_delayed_work(adapter->init_wq, &adapter->init_task,
msecs_to_jiffies(5 * (adapter->pdev->devfn & 0x07)));
set_bit(IDPF_VC_CORE_INIT, adapter->flags);
return 0;
err_intr_req:
cancel_delayed_work_sync(&adapter->serv_task);
cancel_delayed_work_sync(&adapter->mbx_task);
idpf_vport_params_buf_rel(adapter);
err_netdev_alloc:
kfree(adapter->vports);
adapter->vports = NULL;
return err;
init_failed:
/* Don't retry if we're trying to go down, just bail. */
if (test_bit(IDPF_REMOVE_IN_PROG, adapter->flags))
return err;
if (++adapter->mb_wait_count > IDPF_MB_MAX_ERR) {
dev_err(&adapter->pdev->dev, "Failed to establish mailbox communications with hardware\n");
return -EFAULT;
}
/* If it reached here, it is possible that mailbox queue initialization
* register writes might not have taken effect. Retry to initialize
* the mailbox again
*/
adapter->state = __IDPF_VER_CHECK;
if (adapter->vcxn_mngr)
idpf_vc_xn_shutdown(adapter->vcxn_mngr);
set_bit(IDPF_HR_DRV_LOAD, adapter->flags);
queue_delayed_work(adapter->vc_event_wq, &adapter->vc_event_task,
msecs_to_jiffies(task_delay));
return -EAGAIN;
}
/**
* idpf_vc_core_deinit - Device deinit routine
* @adapter: Driver specific private structure
*
*/
void idpf_vc_core_deinit(struct idpf_adapter *adapter)
{
if (!test_bit(IDPF_VC_CORE_INIT, adapter->flags))
return;
idpf_deinit_task(adapter);
idpf_intr_rel(adapter);
idpf_vc_xn_shutdown(adapter->vcxn_mngr);
cancel_delayed_work_sync(&adapter->serv_task);
cancel_delayed_work_sync(&adapter->mbx_task);
idpf_vport_params_buf_rel(adapter);
kfree(adapter->vports);
adapter->vports = NULL;
clear_bit(IDPF_VC_CORE_INIT, adapter->flags);
}
/**
* idpf_vport_alloc_vec_indexes - Get relative vector indexes
* @vport: virtual port data struct
*
* This function requests the vector information required for the vport and
* stores the vector indexes received from the 'global vector distribution'
* in the vport's queue vectors array.
*
* Return 0 on success, error on failure
*/
int idpf_vport_alloc_vec_indexes(struct idpf_vport *vport)
{
struct idpf_vector_info vec_info;
int num_alloc_vecs;
vec_info.num_curr_vecs = vport->num_q_vectors;
vec_info.num_req_vecs = max(vport->num_txq, vport->num_rxq);
vec_info.default_vport = vport->default_vport;
vec_info.index = vport->idx;
num_alloc_vecs = idpf_req_rel_vector_indexes(vport->adapter,
vport->q_vector_idxs,
&vec_info);
if (num_alloc_vecs <= 0) {
dev_err(&vport->adapter->pdev->dev, "Vector distribution failed: %d\n",
num_alloc_vecs);
return -EINVAL;
}
vport->num_q_vectors = num_alloc_vecs;
return 0;
}
/**
* idpf_vport_init - Initialize virtual port
* @vport: virtual port to be initialized
* @max_q: vport max queue info
*
* Will initialize vport with the info received through MB earlier
*/
void idpf_vport_init(struct idpf_vport *vport, struct idpf_vport_max_q *max_q)
{
struct idpf_adapter *adapter = vport->adapter;
struct virtchnl2_create_vport *vport_msg;
struct idpf_vport_config *vport_config;
u16 tx_itr[] = {2, 8, 64, 128, 256};
u16 rx_itr[] = {2, 8, 32, 96, 128};
struct idpf_rss_data *rss_data;
u16 idx = vport->idx;
vport_config = adapter->vport_config[idx];
rss_data = &vport_config->user_config.rss_data;
vport_msg = adapter->vport_params_recvd[idx];
vport_config->max_q.max_txq = max_q->max_txq;
vport_config->max_q.max_rxq = max_q->max_rxq;
vport_config->max_q.max_complq = max_q->max_complq;
vport_config->max_q.max_bufq = max_q->max_bufq;
vport->txq_model = le16_to_cpu(vport_msg->txq_model);
vport->rxq_model = le16_to_cpu(vport_msg->rxq_model);
vport->vport_type = le16_to_cpu(vport_msg->vport_type);
vport->vport_id = le32_to_cpu(vport_msg->vport_id);
rss_data->rss_key_size = min_t(u16, NETDEV_RSS_KEY_LEN,
le16_to_cpu(vport_msg->rss_key_size));
rss_data->rss_lut_size = le16_to_cpu(vport_msg->rss_lut_size);
ether_addr_copy(vport->default_mac_addr, vport_msg->default_mac_addr);
vport->max_mtu = le16_to_cpu(vport_msg->max_mtu) - LIBETH_RX_LL_LEN;
/* Initialize Tx and Rx profiles for Dynamic Interrupt Moderation */
memcpy(vport->rx_itr_profile, rx_itr, IDPF_DIM_PROFILE_SLOTS);
memcpy(vport->tx_itr_profile, tx_itr, IDPF_DIM_PROFILE_SLOTS);
idpf_vport_set_hsplit(vport, ETHTOOL_TCP_DATA_SPLIT_ENABLED);
idpf_vport_init_num_qs(vport, vport_msg);
idpf_vport_calc_num_q_desc(vport);
idpf_vport_calc_num_q_groups(vport);
idpf_vport_alloc_vec_indexes(vport);
vport->crc_enable = adapter->crc_enable;
}
/**
* idpf_get_vec_ids - Initialize vector id from Mailbox parameters
* @adapter: adapter structure to get the mailbox vector id
* @vecids: Array of vector ids
* @num_vecids: number of vector ids
* @chunks: vector ids received over mailbox
*
* Will initialize the mailbox vector id which is received from the
* get capabilities and data queue vector ids with ids received as
* mailbox parameters.
* Returns number of ids filled
*/
int idpf_get_vec_ids(struct idpf_adapter *adapter,
u16 *vecids, int num_vecids,
struct virtchnl2_vector_chunks *chunks)
{
u16 num_chunks = le16_to_cpu(chunks->num_vchunks);
int num_vecid_filled = 0;
int i, j;
vecids[num_vecid_filled] = adapter->mb_vector.v_idx;
num_vecid_filled++;
for (j = 0; j < num_chunks; j++) {
struct virtchnl2_vector_chunk *chunk;
u16 start_vecid, num_vec;
chunk = &chunks->vchunks[j];
num_vec = le16_to_cpu(chunk->num_vectors);
start_vecid = le16_to_cpu(chunk->start_vector_id);
for (i = 0; i < num_vec; i++) {
if ((num_vecid_filled + i) < num_vecids) {
vecids[num_vecid_filled + i] = start_vecid;
start_vecid++;
} else {
break;
}
}
num_vecid_filled = num_vecid_filled + i;
}
return num_vecid_filled;
}
/**
* idpf_vport_get_queue_ids - Initialize queue id from Mailbox parameters
* @qids: Array of queue ids
* @num_qids: number of queue ids
* @q_type: queue model
* @chunks: queue ids received over mailbox
*
* Will initialize all queue ids with ids received as mailbox parameters
* Returns number of ids filled
*/
static int idpf_vport_get_queue_ids(u32 *qids, int num_qids, u16 q_type,
struct virtchnl2_queue_reg_chunks *chunks)
{
u16 num_chunks = le16_to_cpu(chunks->num_chunks);
u32 num_q_id_filled = 0, i;
u32 start_q_id, num_q;
while (num_chunks--) {
struct virtchnl2_queue_reg_chunk *chunk;
chunk = &chunks->chunks[num_chunks];
if (le32_to_cpu(chunk->type) != q_type)
continue;
num_q = le32_to_cpu(chunk->num_queues);
start_q_id = le32_to_cpu(chunk->start_queue_id);
for (i = 0; i < num_q; i++) {
if ((num_q_id_filled + i) < num_qids) {
qids[num_q_id_filled + i] = start_q_id;
start_q_id++;
} else {
break;
}
}
num_q_id_filled = num_q_id_filled + i;
}
return num_q_id_filled;
}
/**
* __idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
* @vport: virtual port for which the queues ids are initialized
* @qids: queue ids
* @num_qids: number of queue ids
* @q_type: type of queue
*
* Will initialize all queue ids with ids received as mailbox
* parameters. Returns number of queue ids initialized.
*/
static int __idpf_vport_queue_ids_init(struct idpf_vport *vport,
const u32 *qids,
int num_qids,
u32 q_type)
{
int i, j, k = 0;
switch (q_type) {
case VIRTCHNL2_QUEUE_TYPE_TX:
for (i = 0; i < vport->num_txq_grp; i++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
for (j = 0; j < tx_qgrp->num_txq && k < num_qids; j++, k++)
tx_qgrp->txqs[j]->q_id = qids[k];
}
break;
case VIRTCHNL2_QUEUE_TYPE_RX:
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u16 num_rxq;
if (idpf_is_queue_model_split(vport->rxq_model))
num_rxq = rx_qgrp->splitq.num_rxq_sets;
else
num_rxq = rx_qgrp->singleq.num_rxq;
for (j = 0; j < num_rxq && k < num_qids; j++, k++) {
struct idpf_rx_queue *q;
if (idpf_is_queue_model_split(vport->rxq_model))
q = &rx_qgrp->splitq.rxq_sets[j]->rxq;
else
q = rx_qgrp->singleq.rxqs[j];
q->q_id = qids[k];
}
}
break;
case VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION:
for (i = 0; i < vport->num_txq_grp && k < num_qids; i++, k++) {
struct idpf_txq_group *tx_qgrp = &vport->txq_grps[i];
tx_qgrp->complq->q_id = qids[k];
}
break;
case VIRTCHNL2_QUEUE_TYPE_RX_BUFFER:
for (i = 0; i < vport->num_rxq_grp; i++) {
struct idpf_rxq_group *rx_qgrp = &vport->rxq_grps[i];
u8 num_bufqs = vport->num_bufqs_per_qgrp;
for (j = 0; j < num_bufqs && k < num_qids; j++, k++) {
struct idpf_buf_queue *q;
q = &rx_qgrp->splitq.bufq_sets[j].bufq;
q->q_id = qids[k];
}
}
break;
default:
break;
}
return k;
}
/**
* idpf_vport_queue_ids_init - Initialize queue ids from Mailbox parameters
* @vport: virtual port for which the queues ids are initialized
*
* Will initialize all queue ids with ids received as mailbox parameters.
* Returns 0 on success, negative if all the queues are not initialized.
*/
int idpf_vport_queue_ids_init(struct idpf_vport *vport)
{
struct virtchnl2_create_vport *vport_params;
struct virtchnl2_queue_reg_chunks *chunks;
struct idpf_vport_config *vport_config;
u16 vport_idx = vport->idx;
int num_ids, err = 0;
u16 q_type;
u32 *qids;
vport_config = vport->adapter->vport_config[vport_idx];
if (vport_config->req_qs_chunks) {
struct virtchnl2_add_queues *vc_aq =
(struct virtchnl2_add_queues *)vport_config->req_qs_chunks;
chunks = &vc_aq->chunks;
} else {
vport_params = vport->adapter->vport_params_recvd[vport_idx];
chunks = &vport_params->chunks;
}
qids = kcalloc(IDPF_MAX_QIDS, sizeof(u32), GFP_KERNEL);
if (!qids)
return -ENOMEM;
num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
VIRTCHNL2_QUEUE_TYPE_TX,
chunks);
if (num_ids < vport->num_txq) {
err = -EINVAL;
goto mem_rel;
}
num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
VIRTCHNL2_QUEUE_TYPE_TX);
if (num_ids < vport->num_txq) {
err = -EINVAL;
goto mem_rel;
}
num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS,
VIRTCHNL2_QUEUE_TYPE_RX,
chunks);
if (num_ids < vport->num_rxq) {
err = -EINVAL;
goto mem_rel;
}
num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids,
VIRTCHNL2_QUEUE_TYPE_RX);
if (num_ids < vport->num_rxq) {
err = -EINVAL;
goto mem_rel;
}
if (!idpf_is_queue_model_split(vport->txq_model))
goto check_rxq;
q_type = VIRTCHNL2_QUEUE_TYPE_TX_COMPLETION;
num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
if (num_ids < vport->num_complq) {
err = -EINVAL;
goto mem_rel;
}
num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
if (num_ids < vport->num_complq) {
err = -EINVAL;
goto mem_rel;
}
check_rxq:
if (!idpf_is_queue_model_split(vport->rxq_model))
goto mem_rel;
q_type = VIRTCHNL2_QUEUE_TYPE_RX_BUFFER;
num_ids = idpf_vport_get_queue_ids(qids, IDPF_MAX_QIDS, q_type, chunks);
if (num_ids < vport->num_bufq) {
err = -EINVAL;
goto mem_rel;
}
num_ids = __idpf_vport_queue_ids_init(vport, qids, num_ids, q_type);
if (num_ids < vport->num_bufq)
err = -EINVAL;
mem_rel:
kfree(qids);
return err;
}
/**
* idpf_vport_adjust_qs - Adjust to new requested queues
* @vport: virtual port data struct
*
* Renegotiate queues. Returns 0 on success, negative on failure.
*/
int idpf_vport_adjust_qs(struct idpf_vport *vport)
{
struct virtchnl2_create_vport vport_msg;
int err;
vport_msg.txq_model = cpu_to_le16(vport->txq_model);
vport_msg.rxq_model = cpu_to_le16(vport->rxq_model);
err = idpf_vport_calc_total_qs(vport->adapter, vport->idx, &vport_msg,
NULL);
if (err)
return err;
idpf_vport_init_num_qs(vport, &vport_msg);
idpf_vport_calc_num_q_groups(vport);
return 0;
}
/**
* idpf_is_capability_ena - Default implementation of capability checking
* @adapter: Private data struct
* @all: all or one flag
* @field: caps field to check for flags
* @flag: flag to check
*
* Return true if all capabilities are supported, false otherwise
*/
bool idpf_is_capability_ena(struct idpf_adapter *adapter, bool all,
enum idpf_cap_field field, u64 flag)
{
u8 *caps = (u8 *)&adapter->caps;
u32 *cap_field;
if (!caps)
return false;
if (field == IDPF_BASE_CAPS)
return false;
cap_field = (u32 *)(caps + field);
if (all)
return (*cap_field & flag) == flag;
else
return !!(*cap_field & flag);
}
/**
* idpf_get_vport_id: Get vport id
* @vport: virtual port structure
*
* Return vport id from the adapter persistent data
*/
u32 idpf_get_vport_id(struct idpf_vport *vport)
{
struct virtchnl2_create_vport *vport_msg;
vport_msg = vport->adapter->vport_params_recvd[vport->idx];
return le32_to_cpu(vport_msg->vport_id);
}
/**
* idpf_mac_filter_async_handler - Async callback for mac filters
* @adapter: private data struct
* @xn: transaction for message
* @ctlq_msg: received message
*
* In some scenarios driver can't sleep and wait for a reply (e.g.: stack is
* holding rtnl_lock) when adding a new mac filter. It puts us in a difficult
* situation to deal with errors returned on the reply. The best we can
* ultimately do is remove it from our list of mac filters and report the
* error.
*/
static int idpf_mac_filter_async_handler(struct idpf_adapter *adapter,
struct idpf_vc_xn *xn,
const struct idpf_ctlq_msg *ctlq_msg)
{
struct virtchnl2_mac_addr_list *ma_list;
struct idpf_vport_config *vport_config;
struct virtchnl2_mac_addr *mac_addr;
struct idpf_mac_filter *f, *tmp;
struct list_head *ma_list_head;
struct idpf_vport *vport;
u16 num_entries;
int i;
/* if success we're done, we're only here if something bad happened */
if (!ctlq_msg->cookie.mbx.chnl_retval)
return 0;
/* make sure at least struct is there */
if (xn->reply_sz < sizeof(*ma_list))
goto invalid_payload;
ma_list = ctlq_msg->ctx.indirect.payload->va;
mac_addr = ma_list->mac_addr_list;
num_entries = le16_to_cpu(ma_list->num_mac_addr);
/* we should have received a buffer at least this big */
if (xn->reply_sz < struct_size(ma_list, mac_addr_list, num_entries))
goto invalid_payload;
vport = idpf_vid_to_vport(adapter, le32_to_cpu(ma_list->vport_id));
if (!vport)
goto invalid_payload;
vport_config = adapter->vport_config[le32_to_cpu(ma_list->vport_id)];
ma_list_head = &vport_config->user_config.mac_filter_list;
/* We can't do much to reconcile bad filters at this point, however we
* should at least remove them from our list one way or the other so we
* have some idea what good filters we have.
*/
spin_lock_bh(&vport_config->mac_filter_list_lock);
list_for_each_entry_safe(f, tmp, ma_list_head, list)
for (i = 0; i < num_entries; i++)
if (ether_addr_equal(mac_addr[i].addr, f->macaddr))
list_del(&f->list);
spin_unlock_bh(&vport_config->mac_filter_list_lock);
dev_err_ratelimited(&adapter->pdev->dev, "Received error sending MAC filter request (op %d)\n",
xn->vc_op);
return 0;
invalid_payload:
dev_err_ratelimited(&adapter->pdev->dev, "Received invalid MAC filter payload (op %d) (len %zd)\n",
xn->vc_op, xn->reply_sz);
return -EINVAL;
}
/**
* idpf_add_del_mac_filters - Add/del mac filters
* @vport: Virtual port data structure
* @np: Netdev private structure
* @add: Add or delete flag
* @async: Don't wait for return message
*
* Returns 0 on success, error on failure.
**/
int idpf_add_del_mac_filters(struct idpf_vport *vport,
struct idpf_netdev_priv *np,
bool add, bool async)
{
struct virtchnl2_mac_addr_list *ma_list __free(kfree) = NULL;
struct virtchnl2_mac_addr *mac_addr __free(kfree) = NULL;
struct idpf_adapter *adapter = np->adapter;
struct idpf_vc_xn_params xn_params = {};
struct idpf_vport_config *vport_config;
u32 num_msgs, total_filters = 0;
struct idpf_mac_filter *f;
ssize_t reply_sz;
int i = 0, k;
xn_params.vc_op = add ? VIRTCHNL2_OP_ADD_MAC_ADDR :
VIRTCHNL2_OP_DEL_MAC_ADDR;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.async = async;
xn_params.async_handler = idpf_mac_filter_async_handler;
vport_config = adapter->vport_config[np->vport_idx];
spin_lock_bh(&vport_config->mac_filter_list_lock);
/* Find the number of newly added filters */
list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
list) {
if (add && f->add)
total_filters++;
else if (!add && f->remove)
total_filters++;
}
if (!total_filters) {
spin_unlock_bh(&vport_config->mac_filter_list_lock);
return 0;
}
/* Fill all the new filters into virtchannel message */
mac_addr = kcalloc(total_filters, sizeof(struct virtchnl2_mac_addr),
GFP_ATOMIC);
if (!mac_addr) {
spin_unlock_bh(&vport_config->mac_filter_list_lock);
return -ENOMEM;
}
list_for_each_entry(f, &vport_config->user_config.mac_filter_list,
list) {
if (add && f->add) {
ether_addr_copy(mac_addr[i].addr, f->macaddr);
i++;
f->add = false;
if (i == total_filters)
break;
}
if (!add && f->remove) {
ether_addr_copy(mac_addr[i].addr, f->macaddr);
i++;
f->remove = false;
if (i == total_filters)
break;
}
}
spin_unlock_bh(&vport_config->mac_filter_list_lock);
/* Chunk up the filters into multiple messages to avoid
* sending a control queue message buffer that is too large
*/
num_msgs = DIV_ROUND_UP(total_filters, IDPF_NUM_FILTERS_PER_MSG);
for (i = 0, k = 0; i < num_msgs; i++) {
u32 entries_size, buf_size, num_entries;
num_entries = min_t(u32, total_filters,
IDPF_NUM_FILTERS_PER_MSG);
entries_size = sizeof(struct virtchnl2_mac_addr) * num_entries;
buf_size = struct_size(ma_list, mac_addr_list, num_entries);
if (!ma_list || num_entries != IDPF_NUM_FILTERS_PER_MSG) {
kfree(ma_list);
ma_list = kzalloc(buf_size, GFP_ATOMIC);
if (!ma_list)
return -ENOMEM;
} else {
memset(ma_list, 0, buf_size);
}
ma_list->vport_id = cpu_to_le32(np->vport_id);
ma_list->num_mac_addr = cpu_to_le16(num_entries);
memcpy(ma_list->mac_addr_list, &mac_addr[k], entries_size);
xn_params.send_buf.iov_base = ma_list;
xn_params.send_buf.iov_len = buf_size;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
if (reply_sz < 0)
return reply_sz;
k += num_entries;
total_filters -= num_entries;
}
return 0;
}
/**
* idpf_set_promiscuous - set promiscuous and send message to mailbox
* @adapter: Driver specific private structure
* @config_data: Vport specific config data
* @vport_id: Vport identifier
*
* Request to enable promiscuous mode for the vport. Message is sent
* asynchronously and won't wait for response. Returns 0 on success, negative
* on failure;
*/
int idpf_set_promiscuous(struct idpf_adapter *adapter,
struct idpf_vport_user_config_data *config_data,
u32 vport_id)
{
struct idpf_vc_xn_params xn_params = {};
struct virtchnl2_promisc_info vpi;
ssize_t reply_sz;
u16 flags = 0;
if (test_bit(__IDPF_PROMISC_UC, config_data->user_flags))
flags |= VIRTCHNL2_UNICAST_PROMISC;
if (test_bit(__IDPF_PROMISC_MC, config_data->user_flags))
flags |= VIRTCHNL2_MULTICAST_PROMISC;
vpi.vport_id = cpu_to_le32(vport_id);
vpi.flags = cpu_to_le16(flags);
xn_params.vc_op = VIRTCHNL2_OP_CONFIG_PROMISCUOUS_MODE;
xn_params.timeout_ms = IDPF_VC_XN_DEFAULT_TIMEOUT_MSEC;
xn_params.send_buf.iov_base = &vpi;
xn_params.send_buf.iov_len = sizeof(vpi);
/* setting promiscuous is only ever done asynchronously */
xn_params.async = true;
reply_sz = idpf_vc_xn_exec(adapter, &xn_params);
return reply_sz < 0 ? reply_sz : 0;
}