blob: 0dd61719f1edc403cb6ce7d0a19ea13d3a4d8910 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018 Intel Corporation */
#include <linux/bitfield.h>
#include <linux/delay.h>
#include "igc_hw.h"
/**
* igc_acquire_nvm_i225 - Acquire exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Acquire the necessary semaphores for exclusive access to the EEPROM.
* Set the EEPROM access request bit and wait for EEPROM access grant bit.
* Return successful if access grant bit set, else clear the request for
* EEPROM access and return -IGC_ERR_NVM (-1).
*/
static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
{
return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}
/**
* igc_release_nvm_i225 - Release exclusive access to EEPROM
* @hw: pointer to the HW structure
*
* Stop any current commands to the EEPROM and clear the EEPROM request bit,
* then release the semaphores acquired.
*/
static void igc_release_nvm_i225(struct igc_hw *hw)
{
igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}
/**
* igc_get_hw_semaphore_i225 - Acquire hardware semaphore
* @hw: pointer to the HW structure
*
* Acquire the HW semaphore to access the PHY or NVM
*/
static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
{
s32 timeout = hw->nvm.word_size + 1;
s32 i = 0;
u32 swsm;
/* Get the SW semaphore */
while (i < timeout) {
swsm = rd32(IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usleep_range(500, 600);
i++;
}
if (i == timeout) {
/* In rare circumstances, the SW semaphore may already be held
* unintentionally. Clear the semaphore once before giving up.
*/
if (hw->dev_spec._base.clear_semaphore_once) {
hw->dev_spec._base.clear_semaphore_once = false;
igc_put_hw_semaphore(hw);
for (i = 0; i < timeout; i++) {
swsm = rd32(IGC_SWSM);
if (!(swsm & IGC_SWSM_SMBI))
break;
usleep_range(500, 600);
}
}
/* If we do not have the semaphore here, we have to give up. */
if (i == timeout) {
hw_dbg("Driver can't access device - SMBI bit is set.\n");
return -IGC_ERR_NVM;
}
}
/* Get the FW semaphore. */
for (i = 0; i < timeout; i++) {
swsm = rd32(IGC_SWSM);
wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
/* Semaphore acquired if bit latched */
if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
break;
usleep_range(500, 600);
}
if (i == timeout) {
/* Release semaphores */
igc_put_hw_semaphore(hw);
hw_dbg("Driver can't access the NVM\n");
return -IGC_ERR_NVM;
}
return 0;
}
/**
* igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Acquire the SW/FW semaphore to access the PHY or NVM. The mask
* will also specify which port we're acquiring the lock for.
*/
s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
s32 i = 0, timeout = 200;
u32 fwmask = mask << 16;
u32 swmask = mask;
s32 ret_val = 0;
u32 swfw_sync;
while (i < timeout) {
if (igc_get_hw_semaphore_i225(hw)) {
ret_val = -IGC_ERR_SWFW_SYNC;
goto out;
}
swfw_sync = rd32(IGC_SW_FW_SYNC);
if (!(swfw_sync & (fwmask | swmask)))
break;
/* Firmware currently using resource (fwmask) */
igc_put_hw_semaphore(hw);
mdelay(5);
i++;
}
if (i == timeout) {
hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
ret_val = -IGC_ERR_SWFW_SYNC;
goto out;
}
swfw_sync |= swmask;
wr32(IGC_SW_FW_SYNC, swfw_sync);
igc_put_hw_semaphore(hw);
out:
return ret_val;
}
/**
* igc_release_swfw_sync_i225 - Release SW/FW semaphore
* @hw: pointer to the HW structure
* @mask: specifies which semaphore to acquire
*
* Release the SW/FW semaphore used to access the PHY or NVM. The mask
* will also specify which port we're releasing the lock for.
*/
void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
u32 swfw_sync;
/* Releasing the resource requires first getting the HW semaphore.
* If we fail to get the semaphore, there is nothing we can do,
* except log an error and quit. We are not allowed to hang here
* indefinitely, as it may cause denial of service or system crash.
*/
if (igc_get_hw_semaphore_i225(hw)) {
hw_dbg("Failed to release SW_FW_SYNC.\n");
return;
}
swfw_sync = rd32(IGC_SW_FW_SYNC);
swfw_sync &= ~mask;
wr32(IGC_SW_FW_SYNC, swfw_sync);
igc_put_hw_semaphore(hw);
}
/**
* igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
* @hw: pointer to the HW structure
* @offset: offset of word in the Shadow Ram to read
* @words: number of words to read
* @data: word read from the Shadow Ram
*
* Reads a 16 bit word from the Shadow Ram using the EERD register.
* Uses necessary synchronization semaphores.
*/
static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = 0;
u16 i, count;
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to read in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
status = hw->nvm.ops.acquire(hw);
if (status)
break;
status = igc_read_nvm_eerd(hw, offset, count, data + i);
hw->nvm.ops.release(hw);
if (status)
break;
}
return status;
}
/**
* igc_write_nvm_srwr - Write to Shadow Ram using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow Ram to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow Ram
*
* Writes data to Shadow Ram at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* Shadow Ram will most likely contain an invalid checksum.
*/
static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
struct igc_nvm_info *nvm = &hw->nvm;
s32 ret_val = -IGC_ERR_NVM;
u32 attempts = 100000;
u32 i, k, eewr = 0;
/* A check for invalid values: offset too large, too many words,
* too many words for the offset, and not enough words.
*/
if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
words == 0) {
hw_dbg("nvm parameter(s) out of bounds\n");
return ret_val;
}
for (i = 0; i < words; i++) {
ret_val = -IGC_ERR_NVM;
eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
(data[i] << IGC_NVM_RW_REG_DATA) |
IGC_NVM_RW_REG_START;
wr32(IGC_SRWR, eewr);
for (k = 0; k < attempts; k++) {
if (IGC_NVM_RW_REG_DONE &
rd32(IGC_SRWR)) {
ret_val = 0;
break;
}
udelay(5);
}
if (ret_val) {
hw_dbg("Shadow RAM write EEWR timed out\n");
break;
}
}
return ret_val;
}
/**
* igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
* @hw: pointer to the HW structure
* @offset: offset within the Shadow RAM to be written to
* @words: number of words to write
* @data: 16 bit word(s) to be written to the Shadow RAM
*
* Writes data to Shadow RAM at offset using EEWR register.
*
* If igc_update_nvm_checksum is not called after this function , the
* data will not be committed to FLASH and also Shadow RAM will most likely
* contain an invalid checksum.
*
* If error code is returned, data and Shadow RAM may be inconsistent - buffer
* partially written.
*/
static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
u16 *data)
{
s32 status = 0;
u16 i, count;
/* We cannot hold synchronization semaphores for too long,
* because of forceful takeover procedure. However it is more efficient
* to write in bursts than synchronizing access for each word.
*/
for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
IGC_EERD_EEWR_MAX_COUNT : (words - i);
status = hw->nvm.ops.acquire(hw);
if (status)
break;
status = igc_write_nvm_srwr(hw, offset, count, data + i);
hw->nvm.ops.release(hw);
if (status)
break;
}
return status;
}
/**
* igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
* @hw: pointer to the HW structure
*
* Calculates the EEPROM checksum by reading/adding each word of the EEPROM
* and then verifies that the sum of the EEPROM is equal to 0xBABA.
*/
static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
{
s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
u16 *data);
s32 status = 0;
status = hw->nvm.ops.acquire(hw);
if (status)
goto out;
/* Replace the read function with semaphore grabbing with
* the one that skips this for a while.
* We have semaphore taken already here.
*/
read_op_ptr = hw->nvm.ops.read;
hw->nvm.ops.read = igc_read_nvm_eerd;
status = igc_validate_nvm_checksum(hw);
/* Revert original read operation. */
hw->nvm.ops.read = read_op_ptr;
hw->nvm.ops.release(hw);
out:
return status;
}
/**
* igc_pool_flash_update_done_i225 - Pool FLUDONE status
* @hw: pointer to the HW structure
*/
static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
{
s32 ret_val = -IGC_ERR_NVM;
u32 i, reg;
for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
reg = rd32(IGC_EECD);
if (reg & IGC_EECD_FLUDONE_I225) {
ret_val = 0;
break;
}
udelay(5);
}
return ret_val;
}
/**
* igc_update_flash_i225 - Commit EEPROM to the flash
* @hw: pointer to the HW structure
*/
static s32 igc_update_flash_i225(struct igc_hw *hw)
{
s32 ret_val = 0;
u32 flup;
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val == -IGC_ERR_NVM) {
hw_dbg("Flash update time out\n");
goto out;
}
flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
wr32(IGC_EECD, flup);
ret_val = igc_pool_flash_update_done_i225(hw);
if (ret_val)
hw_dbg("Flash update time out\n");
else
hw_dbg("Flash update complete\n");
out:
return ret_val;
}
/**
* igc_update_nvm_checksum_i225 - Update EEPROM checksum
* @hw: pointer to the HW structure
*
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
* up to the checksum. Then calculates the EEPROM checksum and writes the
* value to the EEPROM. Next commit EEPROM data onto the Flash.
*/
static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
{
u16 checksum = 0;
s32 ret_val = 0;
u16 i, nvm_data;
/* Read the first word from the EEPROM. If this times out or fails, do
* not continue or we could be in for a very long wait while every
* EEPROM read fails
*/
ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
if (ret_val) {
hw_dbg("EEPROM read failed\n");
goto out;
}
ret_val = hw->nvm.ops.acquire(hw);
if (ret_val)
goto out;
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
* because we do not want to take the synchronization
* semaphores twice here.
*/
for (i = 0; i < NVM_CHECKSUM_REG; i++) {
ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
if (ret_val) {
hw->nvm.ops.release(hw);
hw_dbg("NVM Read Error while updating checksum.\n");
goto out;
}
checksum += nvm_data;
}
checksum = (u16)NVM_SUM - checksum;
ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
&checksum);
if (ret_val) {
hw->nvm.ops.release(hw);
hw_dbg("NVM Write Error while updating checksum.\n");
goto out;
}
hw->nvm.ops.release(hw);
ret_val = igc_update_flash_i225(hw);
out:
return ret_val;
}
/**
* igc_get_flash_presence_i225 - Check if flash device is detected
* @hw: pointer to the HW structure
*/
bool igc_get_flash_presence_i225(struct igc_hw *hw)
{
bool ret_val = false;
u32 eec = 0;
eec = rd32(IGC_EECD);
if (eec & IGC_EECD_FLASH_DETECTED_I225)
ret_val = true;
return ret_val;
}
/**
* igc_init_nvm_params_i225 - Init NVM func ptrs.
* @hw: pointer to the HW structure
*/
s32 igc_init_nvm_params_i225(struct igc_hw *hw)
{
struct igc_nvm_info *nvm = &hw->nvm;
nvm->ops.acquire = igc_acquire_nvm_i225;
nvm->ops.release = igc_release_nvm_i225;
/* NVM Function Pointers */
if (igc_get_flash_presence_i225(hw)) {
nvm->ops.read = igc_read_nvm_srrd_i225;
nvm->ops.write = igc_write_nvm_srwr_i225;
nvm->ops.validate = igc_validate_nvm_checksum_i225;
nvm->ops.update = igc_update_nvm_checksum_i225;
} else {
nvm->ops.read = igc_read_nvm_eerd;
nvm->ops.write = NULL;
nvm->ops.validate = NULL;
nvm->ops.update = NULL;
}
return 0;
}
/**
* igc_set_eee_i225 - Enable/disable EEE support
* @hw: pointer to the HW structure
* @adv2p5G: boolean flag enabling 2.5G EEE advertisement
* @adv1G: boolean flag enabling 1G EEE advertisement
* @adv100M: boolean flag enabling 100M EEE advertisement
*
* Enable/disable EEE based on setting in dev_spec structure.
**/
s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
bool adv100M)
{
u32 ipcnfg, eeer;
ipcnfg = rd32(IGC_IPCNFG);
eeer = rd32(IGC_EEER);
/* enable or disable per user setting */
if (hw->dev_spec._base.eee_enable) {
u32 eee_su = rd32(IGC_EEE_SU);
if (adv100M)
ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;
if (adv1G)
ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;
if (adv2p5G)
ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
else
ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;
eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
IGC_EEER_LPI_FC);
/* This bit should not be set in normal operation. */
if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
hw_dbg("LPI Clock Stop Bit should not be set!\n");
} else {
ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
IGC_IPCNFG_EEE_100M_AN);
eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
IGC_EEER_LPI_FC);
}
wr32(IGC_IPCNFG, ipcnfg);
wr32(IGC_EEER, eeer);
rd32(IGC_IPCNFG);
rd32(IGC_EEER);
return IGC_SUCCESS;
}
/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
* @hw: pointer to the HW structure
* @link: bool indicating link status
*
* Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
* settings, otherwise specify that there is no LTR requirement.
*/
s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
{
u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
u16 speed, duplex;
s32 size;
/* If we do not have link, LTR thresholds are zero. */
if (link) {
hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
/* Check if using copper interface with EEE enabled or if the
* link speed is 10 Mbps.
*/
if (hw->dev_spec._base.eee_enable &&
speed != SPEED_10) {
/* EEE enabled, so send LTRMAX threshold. */
ltrc = rd32(IGC_LTRC) |
IGC_LTRC_EEEMS_EN;
wr32(IGC_LTRC, ltrc);
/* Calculate tw_system (nsec). */
if (speed == SPEED_100) {
tw_system = FIELD_GET(IGC_TW_SYSTEM_100_MASK,
rd32(IGC_EEE_SU)) * 500;
} else {
tw_system = (rd32(IGC_EEE_SU) &
IGC_TW_SYSTEM_1000_MASK) * 500;
}
} else {
tw_system = 0;
}
/* Get the Rx packet buffer size. */
size = rd32(IGC_RXPBS) &
IGC_RXPBS_SIZE_I225_MASK;
/* Convert size to bytes, subtract the MTU, and then
* convert the size to bits.
*/
size *= 1024;
size *= 8;
if (size < 0) {
hw_dbg("Invalid effective Rx buffer size %d\n",
size);
return -IGC_ERR_CONFIG;
}
/* Calculate the thresholds. Since speed is in Mbps, simplify
* the calculation by multiplying size/speed by 1000 for result
* to be in nsec before dividing by the scale in nsec. Set the
* scale such that the LTR threshold fits in the register.
*/
ltr_min = (1000 * size) / speed;
ltr_max = ltr_min + tw_system;
scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
IGC_LTRMINV_SCALE_32768;
scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
IGC_LTRMAXV_SCALE_32768;
ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
ltr_min -= 1;
ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
ltr_max -= 1;
/* Only write the LTR thresholds if they differ from before. */
ltrv = rd32(IGC_LTRMINV);
if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
(scale_min << IGC_LTRMINV_SCALE_SHIFT);
wr32(IGC_LTRMINV, ltrv);
}
ltrv = rd32(IGC_LTRMAXV);
if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
(scale_max << IGC_LTRMAXV_SCALE_SHIFT);
wr32(IGC_LTRMAXV, ltrv);
}
}
return IGC_SUCCESS;
}