| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2019 Intel Corporation */ |
| |
| #include "igc.h" |
| |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/pci.h> |
| #include <linux/ptp_classify.h> |
| #include <linux/clocksource.h> |
| #include <linux/ktime.h> |
| #include <linux/delay.h> |
| #include <linux/iopoll.h> |
| #include <net/xdp_sock_drv.h> |
| |
| #define INCVALUE_MASK 0x7fffffff |
| #define ISGN 0x80000000 |
| |
| #define IGC_PTP_TX_TIMEOUT (HZ * 15) |
| |
| #define IGC_PTM_STAT_SLEEP 2 |
| #define IGC_PTM_STAT_TIMEOUT 100 |
| |
| /* SYSTIM read access for I225 */ |
| void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u32 sec, nsec; |
| |
| /* The timestamp is latched when SYSTIML is read. */ |
| nsec = rd32(IGC_SYSTIML); |
| sec = rd32(IGC_SYSTIMH); |
| |
| ts->tv_sec = sec; |
| ts->tv_nsec = nsec; |
| } |
| |
| static void igc_ptp_write_i225(struct igc_adapter *adapter, |
| const struct timespec64 *ts) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| |
| wr32(IGC_SYSTIML, ts->tv_nsec); |
| wr32(IGC_SYSTIMH, ts->tv_sec); |
| } |
| |
| static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm) |
| { |
| struct igc_adapter *igc = container_of(ptp, struct igc_adapter, |
| ptp_caps); |
| struct igc_hw *hw = &igc->hw; |
| int neg_adj = 0; |
| u64 rate; |
| u32 inca; |
| |
| if (scaled_ppm < 0) { |
| neg_adj = 1; |
| scaled_ppm = -scaled_ppm; |
| } |
| rate = scaled_ppm; |
| rate <<= 14; |
| rate = div_u64(rate, 78125); |
| |
| inca = rate & INCVALUE_MASK; |
| if (neg_adj) |
| inca |= ISGN; |
| |
| wr32(IGC_TIMINCA, inca); |
| |
| return 0; |
| } |
| |
| static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta) |
| { |
| struct igc_adapter *igc = container_of(ptp, struct igc_adapter, |
| ptp_caps); |
| struct timespec64 now, then = ns_to_timespec64(delta); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| |
| igc_ptp_read(igc, &now); |
| now = timespec64_add(now, then); |
| igc_ptp_write_i225(igc, (const struct timespec64 *)&now); |
| |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp, |
| struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct igc_adapter *igc = container_of(ptp, struct igc_adapter, |
| ptp_caps); |
| struct igc_hw *hw = &igc->hw; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| |
| ptp_read_system_prets(sts); |
| ts->tv_nsec = rd32(IGC_SYSTIML); |
| ts->tv_sec = rd32(IGC_SYSTIMH); |
| ptp_read_system_postts(sts); |
| |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static int igc_ptp_settime_i225(struct ptp_clock_info *ptp, |
| const struct timespec64 *ts) |
| { |
| struct igc_adapter *igc = container_of(ptp, struct igc_adapter, |
| ptp_caps); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| |
| igc_ptp_write_i225(igc, ts); |
| |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| |
| return 0; |
| } |
| |
| static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext) |
| { |
| u32 *ptr = pin < 2 ? ctrl : ctrl_ext; |
| static const u32 mask[IGC_N_SDP] = { |
| IGC_CTRL_SDP0_DIR, |
| IGC_CTRL_SDP1_DIR, |
| IGC_CTRL_EXT_SDP2_DIR, |
| IGC_CTRL_EXT_SDP3_DIR, |
| }; |
| |
| if (input) |
| *ptr &= ~mask[pin]; |
| else |
| *ptr |= mask[pin]; |
| } |
| |
| static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq) |
| { |
| static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { |
| IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, |
| }; |
| static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { |
| IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, |
| }; |
| static const u32 igc_ts_sdp_en[IGC_N_SDP] = { |
| IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, |
| }; |
| static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = { |
| IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0, |
| IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0, |
| }; |
| static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = { |
| IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1, |
| IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1, |
| }; |
| static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = { |
| IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0, |
| IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0, |
| }; |
| static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = { |
| IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, |
| IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, |
| }; |
| static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = { |
| IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1, |
| IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1, |
| }; |
| struct igc_hw *hw = &igc->hw; |
| u32 ctrl, ctrl_ext, tssdp = 0; |
| |
| ctrl = rd32(IGC_CTRL); |
| ctrl_ext = rd32(IGC_CTRL_EXT); |
| tssdp = rd32(IGC_TSSDP); |
| |
| igc_pin_direction(pin, 0, &ctrl, &ctrl_ext); |
| |
| /* Make sure this pin is not enabled as an input. */ |
| if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin]) |
| tssdp &= ~IGC_AUX0_TS_SDP_EN; |
| |
| if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin]) |
| tssdp &= ~IGC_AUX1_TS_SDP_EN; |
| |
| tssdp &= ~igc_ts_sdp_sel_clr[pin]; |
| if (freq) { |
| if (chan == 1) |
| tssdp |= igc_ts_sdp_sel_fc1[pin]; |
| else |
| tssdp |= igc_ts_sdp_sel_fc0[pin]; |
| } else { |
| if (chan == 1) |
| tssdp |= igc_ts_sdp_sel_tt1[pin]; |
| else |
| tssdp |= igc_ts_sdp_sel_tt0[pin]; |
| } |
| tssdp |= igc_ts_sdp_en[pin]; |
| |
| wr32(IGC_TSSDP, tssdp); |
| wr32(IGC_CTRL, ctrl); |
| wr32(IGC_CTRL_EXT, ctrl_ext); |
| } |
| |
| static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin) |
| { |
| static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = { |
| IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3, |
| }; |
| static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = { |
| IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3, |
| }; |
| static const u32 igc_ts_sdp_en[IGC_N_SDP] = { |
| IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN, |
| }; |
| struct igc_hw *hw = &igc->hw; |
| u32 ctrl, ctrl_ext, tssdp = 0; |
| |
| ctrl = rd32(IGC_CTRL); |
| ctrl_ext = rd32(IGC_CTRL_EXT); |
| tssdp = rd32(IGC_TSSDP); |
| |
| igc_pin_direction(pin, 1, &ctrl, &ctrl_ext); |
| |
| /* Make sure this pin is not enabled as an output. */ |
| tssdp &= ~igc_ts_sdp_en[pin]; |
| |
| if (chan == 1) { |
| tssdp &= ~IGC_AUX1_SEL_SDP3; |
| tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN; |
| } else { |
| tssdp &= ~IGC_AUX0_SEL_SDP3; |
| tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN; |
| } |
| |
| wr32(IGC_TSSDP, tssdp); |
| wr32(IGC_CTRL, ctrl); |
| wr32(IGC_CTRL_EXT, ctrl_ext); |
| } |
| |
| static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp, |
| struct ptp_clock_request *rq, int on) |
| { |
| struct igc_adapter *igc = |
| container_of(ptp, struct igc_adapter, ptp_caps); |
| struct igc_hw *hw = &igc->hw; |
| unsigned long flags; |
| struct timespec64 ts; |
| int use_freq = 0, pin = -1; |
| u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout; |
| s64 ns; |
| |
| switch (rq->type) { |
| case PTP_CLK_REQ_EXTTS: |
| /* Reject requests with unsupported flags */ |
| if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | |
| PTP_RISING_EDGE | |
| PTP_FALLING_EDGE | |
| PTP_STRICT_FLAGS)) |
| return -EOPNOTSUPP; |
| |
| /* Reject requests failing to enable both edges. */ |
| if ((rq->extts.flags & PTP_STRICT_FLAGS) && |
| (rq->extts.flags & PTP_ENABLE_FEATURE) && |
| (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES) |
| return -EOPNOTSUPP; |
| |
| if (on) { |
| pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS, |
| rq->extts.index); |
| if (pin < 0) |
| return -EBUSY; |
| } |
| if (rq->extts.index == 1) { |
| tsauxc_mask = IGC_TSAUXC_EN_TS1; |
| tsim_mask = IGC_TSICR_AUTT1; |
| } else { |
| tsauxc_mask = IGC_TSAUXC_EN_TS0; |
| tsim_mask = IGC_TSICR_AUTT0; |
| } |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| tsauxc = rd32(IGC_TSAUXC); |
| tsim = rd32(IGC_TSIM); |
| if (on) { |
| igc_pin_extts(igc, rq->extts.index, pin); |
| tsauxc |= tsauxc_mask; |
| tsim |= tsim_mask; |
| } else { |
| tsauxc &= ~tsauxc_mask; |
| tsim &= ~tsim_mask; |
| } |
| wr32(IGC_TSAUXC, tsauxc); |
| wr32(IGC_TSIM, tsim); |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| return 0; |
| |
| case PTP_CLK_REQ_PEROUT: |
| /* Reject requests with unsupported flags */ |
| if (rq->perout.flags) |
| return -EOPNOTSUPP; |
| |
| if (on) { |
| pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT, |
| rq->perout.index); |
| if (pin < 0) |
| return -EBUSY; |
| } |
| ts.tv_sec = rq->perout.period.sec; |
| ts.tv_nsec = rq->perout.period.nsec; |
| ns = timespec64_to_ns(&ts); |
| ns = ns >> 1; |
| if (on && (ns <= 70000000LL || ns == 125000000LL || |
| ns == 250000000LL || ns == 500000000LL)) { |
| if (ns < 8LL) |
| return -EINVAL; |
| use_freq = 1; |
| } |
| ts = ns_to_timespec64(ns); |
| if (rq->perout.index == 1) { |
| if (use_freq) { |
| tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1; |
| tsim_mask = 0; |
| } else { |
| tsauxc_mask = IGC_TSAUXC_EN_TT1; |
| tsim_mask = IGC_TSICR_TT1; |
| } |
| trgttiml = IGC_TRGTTIML1; |
| trgttimh = IGC_TRGTTIMH1; |
| freqout = IGC_FREQOUT1; |
| } else { |
| if (use_freq) { |
| tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0; |
| tsim_mask = 0; |
| } else { |
| tsauxc_mask = IGC_TSAUXC_EN_TT0; |
| tsim_mask = IGC_TSICR_TT0; |
| } |
| trgttiml = IGC_TRGTTIML0; |
| trgttimh = IGC_TRGTTIMH0; |
| freqout = IGC_FREQOUT0; |
| } |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| tsauxc = rd32(IGC_TSAUXC); |
| tsim = rd32(IGC_TSIM); |
| if (rq->perout.index == 1) { |
| tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 | |
| IGC_TSAUXC_ST1); |
| tsim &= ~IGC_TSICR_TT1; |
| } else { |
| tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 | |
| IGC_TSAUXC_ST0); |
| tsim &= ~IGC_TSICR_TT0; |
| } |
| if (on) { |
| struct timespec64 safe_start; |
| int i = rq->perout.index; |
| |
| igc_pin_perout(igc, i, pin, use_freq); |
| igc_ptp_read(igc, &safe_start); |
| |
| /* PPS output start time is triggered by Target time(TT) |
| * register. Programming any past time value into TT |
| * register will cause PPS to never start. Need to make |
| * sure we program the TT register a time ahead in |
| * future. There isn't a stringent need to fire PPS out |
| * right away. Adding +2 seconds should take care of |
| * corner cases. Let's say if the SYSTIML is close to |
| * wrap up and the timer keeps ticking as we program the |
| * register, adding +2seconds is safe bet. |
| */ |
| safe_start.tv_sec += 2; |
| |
| if (rq->perout.start.sec < safe_start.tv_sec) |
| igc->perout[i].start.tv_sec = safe_start.tv_sec; |
| else |
| igc->perout[i].start.tv_sec = rq->perout.start.sec; |
| igc->perout[i].start.tv_nsec = rq->perout.start.nsec; |
| igc->perout[i].period.tv_sec = ts.tv_sec; |
| igc->perout[i].period.tv_nsec = ts.tv_nsec; |
| wr32(trgttimh, (u32)igc->perout[i].start.tv_sec); |
| /* For now, always select timer 0 as source. */ |
| wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec | |
| IGC_TT_IO_TIMER_SEL_SYSTIM0)); |
| if (use_freq) |
| wr32(freqout, ns); |
| tsauxc |= tsauxc_mask; |
| tsim |= tsim_mask; |
| } |
| wr32(IGC_TSAUXC, tsauxc); |
| wr32(IGC_TSIM, tsim); |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| return 0; |
| |
| case PTP_CLK_REQ_PPS: |
| spin_lock_irqsave(&igc->tmreg_lock, flags); |
| tsim = rd32(IGC_TSIM); |
| if (on) |
| tsim |= IGC_TSICR_SYS_WRAP; |
| else |
| tsim &= ~IGC_TSICR_SYS_WRAP; |
| igc->pps_sys_wrap_on = on; |
| wr32(IGC_TSIM, tsim); |
| spin_unlock_irqrestore(&igc->tmreg_lock, flags); |
| return 0; |
| |
| default: |
| break; |
| } |
| |
| return -EOPNOTSUPP; |
| } |
| |
| static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin, |
| enum ptp_pin_function func, unsigned int chan) |
| { |
| switch (func) { |
| case PTP_PF_NONE: |
| case PTP_PF_EXTTS: |
| case PTP_PF_PEROUT: |
| break; |
| case PTP_PF_PHYSYNC: |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp |
| * @adapter: board private structure |
| * @hwtstamps: timestamp structure to update |
| * @systim: unsigned 64bit system time value |
| * |
| * We need to convert the system time value stored in the RX/TXSTMP registers |
| * into a hwtstamp which can be used by the upper level timestamping functions. |
| * |
| * Returns 0 on success. |
| **/ |
| static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter, |
| struct skb_shared_hwtstamps *hwtstamps, |
| u64 systim) |
| { |
| switch (adapter->hw.mac.type) { |
| case igc_i225: |
| memset(hwtstamps, 0, sizeof(*hwtstamps)); |
| /* Upper 32 bits contain s, lower 32 bits contain ns. */ |
| hwtstamps->hwtstamp = ktime_set(systim >> 32, |
| systim & 0xFFFFFFFF); |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer |
| * @adapter: Pointer to adapter the packet buffer belongs to |
| * @buf: Pointer to start of timestamp in HW format (2 32-bit words) |
| * |
| * This function retrieves and converts the timestamp stored at @buf |
| * to ktime_t, adjusting for hardware latencies. |
| * |
| * Returns timestamp value. |
| */ |
| ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf) |
| { |
| ktime_t timestamp; |
| u32 secs, nsecs; |
| int adjust; |
| |
| nsecs = le32_to_cpu(buf[0]); |
| secs = le32_to_cpu(buf[1]); |
| |
| timestamp = ktime_set(secs, nsecs); |
| |
| /* Adjust timestamp for the RX latency based on link speed */ |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adjust = IGC_I225_RX_LATENCY_10; |
| break; |
| case SPEED_100: |
| adjust = IGC_I225_RX_LATENCY_100; |
| break; |
| case SPEED_1000: |
| adjust = IGC_I225_RX_LATENCY_1000; |
| break; |
| case SPEED_2500: |
| adjust = IGC_I225_RX_LATENCY_2500; |
| break; |
| default: |
| adjust = 0; |
| netdev_warn_once(adapter->netdev, "Imprecise timestamp\n"); |
| break; |
| } |
| |
| return ktime_sub_ns(timestamp, adjust); |
| } |
| |
| static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u32 val; |
| int i; |
| |
| wr32(IGC_TSYNCRXCTL, 0); |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| val = rd32(IGC_SRRCTL(i)); |
| val &= ~IGC_SRRCTL_TIMESTAMP; |
| wr32(IGC_SRRCTL(i), val); |
| } |
| |
| val = rd32(IGC_RXPBS); |
| val &= ~IGC_RXPBS_CFG_TS_EN; |
| wr32(IGC_RXPBS, val); |
| } |
| |
| static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u32 val; |
| int i; |
| |
| val = rd32(IGC_RXPBS); |
| val |= IGC_RXPBS_CFG_TS_EN; |
| wr32(IGC_RXPBS, val); |
| |
| for (i = 0; i < adapter->num_rx_queues; i++) { |
| val = rd32(IGC_SRRCTL(i)); |
| /* Enable retrieving timestamps from timer 0, the |
| * "adjustable clock" and timer 1 the "free running |
| * clock". |
| */ |
| val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) | |
| IGC_SRRCTL_TIMESTAMP; |
| wr32(IGC_SRRCTL(i), val); |
| } |
| |
| val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL | |
| IGC_TSYNCRXCTL_RXSYNSIG; |
| wr32(IGC_TSYNCRXCTL, val); |
| } |
| |
| static void igc_ptp_free_tx_buffer(struct igc_adapter *adapter, |
| struct igc_tx_timestamp_request *tstamp) |
| { |
| if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) { |
| /* Release the transmit completion */ |
| tstamp->xsk_tx_buffer->xsk_pending_ts = false; |
| |
| /* Note: tstamp->skb and tstamp->xsk_tx_buffer are in union. |
| * By setting tstamp->xsk_tx_buffer to NULL, tstamp->skb will |
| * become NULL as well. |
| */ |
| tstamp->xsk_tx_buffer = NULL; |
| tstamp->buffer_type = 0; |
| |
| /* Trigger txrx interrupt for transmit completion */ |
| igc_xsk_wakeup(adapter->netdev, tstamp->xsk_queue_index, 0); |
| |
| return; |
| } |
| |
| dev_kfree_skb_any(tstamp->skb); |
| tstamp->skb = NULL; |
| } |
| |
| static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter) |
| { |
| unsigned long flags; |
| int i; |
| |
| spin_lock_irqsave(&adapter->ptp_tx_lock, flags); |
| |
| for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { |
| struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; |
| |
| if (tstamp->skb) |
| igc_ptp_free_tx_buffer(adapter, tstamp); |
| } |
| |
| spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); |
| } |
| |
| static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| int i; |
| |
| /* Clear the flags first to avoid new packets to be enqueued |
| * for TX timestamping. |
| */ |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| struct igc_ring *tx_ring = adapter->tx_ring[i]; |
| |
| clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); |
| } |
| |
| /* Now we can clean the pending TX timestamp requests. */ |
| igc_ptp_clear_tx_tstamp(adapter); |
| |
| wr32(IGC_TSYNCTXCTL, 0); |
| } |
| |
| static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| int i; |
| |
| wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG); |
| |
| /* Read TXSTMP registers to discard any timestamp previously stored. */ |
| rd32(IGC_TXSTMPL); |
| rd32(IGC_TXSTMPH); |
| |
| /* The hardware is ready to accept TX timestamp requests, |
| * notify the transmit path. |
| */ |
| for (i = 0; i < adapter->num_tx_queues; i++) { |
| struct igc_ring *tx_ring = adapter->tx_ring[i]; |
| |
| set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags); |
| } |
| |
| } |
| |
| /** |
| * igc_ptp_set_timestamp_mode - setup hardware for timestamping |
| * @adapter: networking device structure |
| * @config: hwtstamp configuration |
| * |
| * Return: 0 in case of success, negative errno code otherwise. |
| */ |
| static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter, |
| struct hwtstamp_config *config) |
| { |
| switch (config->tx_type) { |
| case HWTSTAMP_TX_OFF: |
| igc_ptp_disable_tx_timestamp(adapter); |
| break; |
| case HWTSTAMP_TX_ON: |
| igc_ptp_enable_tx_timestamp(adapter); |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| switch (config->rx_filter) { |
| case HWTSTAMP_FILTER_NONE: |
| igc_ptp_disable_rx_timestamp(adapter); |
| break; |
| case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: |
| case HWTSTAMP_FILTER_PTP_V2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: |
| case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: |
| case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: |
| case HWTSTAMP_FILTER_NTP_ALL: |
| case HWTSTAMP_FILTER_ALL: |
| igc_ptp_enable_rx_timestamp(adapter); |
| config->rx_filter = HWTSTAMP_FILTER_ALL; |
| break; |
| default: |
| return -ERANGE; |
| } |
| |
| return 0; |
| } |
| |
| /* Requires adapter->ptp_tx_lock held by caller. */ |
| static void igc_ptp_tx_timeout(struct igc_adapter *adapter, |
| struct igc_tx_timestamp_request *tstamp) |
| { |
| if (tstamp->skb) |
| igc_ptp_free_tx_buffer(adapter, tstamp); |
| |
| adapter->tx_hwtstamp_timeouts++; |
| |
| netdev_warn(adapter->netdev, "Tx timestamp timeout\n"); |
| } |
| |
| void igc_ptp_tx_hang(struct igc_adapter *adapter) |
| { |
| struct igc_tx_timestamp_request *tstamp; |
| struct igc_hw *hw = &adapter->hw; |
| unsigned long flags; |
| bool found = false; |
| int i; |
| |
| spin_lock_irqsave(&adapter->ptp_tx_lock, flags); |
| |
| for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) { |
| tstamp = &adapter->tx_tstamp[i]; |
| |
| if (!tstamp->skb) |
| continue; |
| |
| if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT)) |
| continue; |
| |
| igc_ptp_tx_timeout(adapter, tstamp); |
| found = true; |
| } |
| |
| if (found) { |
| /* Reading the high register of the first set of timestamp registers |
| * clears all the equivalent bits in the TSYNCTXCTL register. |
| */ |
| rd32(IGC_TXSTMPH_0); |
| } |
| |
| spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); |
| } |
| |
| static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter, |
| struct igc_tx_timestamp_request *tstamp, u64 regval) |
| { |
| struct skb_shared_hwtstamps shhwtstamps; |
| struct sk_buff *skb; |
| int adjust = 0; |
| |
| skb = tstamp->skb; |
| if (!skb) |
| return; |
| |
| if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval)) |
| return; |
| |
| switch (adapter->link_speed) { |
| case SPEED_10: |
| adjust = IGC_I225_TX_LATENCY_10; |
| break; |
| case SPEED_100: |
| adjust = IGC_I225_TX_LATENCY_100; |
| break; |
| case SPEED_1000: |
| adjust = IGC_I225_TX_LATENCY_1000; |
| break; |
| case SPEED_2500: |
| adjust = IGC_I225_TX_LATENCY_2500; |
| break; |
| } |
| |
| shhwtstamps.hwtstamp = |
| ktime_add_ns(shhwtstamps.hwtstamp, adjust); |
| |
| /* Copy the tx hardware timestamp into xdp metadata or skb */ |
| if (tstamp->buffer_type == IGC_TX_BUFFER_TYPE_XSK) { |
| struct xsk_buff_pool *xsk_pool; |
| |
| xsk_pool = adapter->tx_ring[tstamp->xsk_queue_index]->xsk_pool; |
| if (xsk_pool && xp_tx_metadata_enabled(xsk_pool)) { |
| xsk_tx_metadata_complete(&tstamp->xsk_meta, |
| &igc_xsk_tx_metadata_ops, |
| &shhwtstamps.hwtstamp); |
| } |
| } else { |
| skb_tstamp_tx(skb, &shhwtstamps); |
| } |
| |
| igc_ptp_free_tx_buffer(adapter, tstamp); |
| } |
| |
| /** |
| * igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp |
| * @adapter: Board private structure |
| * |
| * Check against the ready mask for which of the timestamp register |
| * sets are ready to be retrieved, then retrieve that and notify the |
| * rest of the stack. |
| * |
| * Context: Expects adapter->ptp_tx_lock to be held by caller. |
| */ |
| static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u64 regval; |
| u32 mask; |
| int i; |
| |
| mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY; |
| if (mask & IGC_TSYNCTXCTL_TXTT_0) { |
| regval = rd32(IGC_TXSTMPL); |
| regval |= (u64)rd32(IGC_TXSTMPH) << 32; |
| } else { |
| /* There's a bug in the hardware that could cause |
| * missing interrupts for TX timestamping. The issue |
| * is that for new interrupts to be triggered, the |
| * IGC_TXSTMPH_0 register must be read. |
| * |
| * To avoid discarding a valid timestamp that just |
| * happened at the "wrong" time, we need to confirm |
| * that there was no timestamp captured, we do that by |
| * assuming that no two timestamps in sequence have |
| * the same nanosecond value. |
| * |
| * So, we read the "low" register, read the "high" |
| * register (to latch a new timestamp) and read the |
| * "low" register again, if "old" and "new" versions |
| * of the "low" register are different, a valid |
| * timestamp was captured, we can read the "high" |
| * register again. |
| */ |
| u32 txstmpl_old, txstmpl_new; |
| |
| txstmpl_old = rd32(IGC_TXSTMPL); |
| rd32(IGC_TXSTMPH); |
| txstmpl_new = rd32(IGC_TXSTMPL); |
| |
| if (txstmpl_old == txstmpl_new) |
| goto done; |
| |
| regval = txstmpl_new; |
| regval |= (u64)rd32(IGC_TXSTMPH) << 32; |
| } |
| |
| igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval); |
| |
| done: |
| /* Now that the problematic first register was handled, we can |
| * use retrieve the timestamps from the other registers |
| * (starting from '1') with less complications. |
| */ |
| for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) { |
| struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i]; |
| |
| if (!(tstamp->mask & mask)) |
| continue; |
| |
| regval = rd32(tstamp->regl); |
| regval |= (u64)rd32(tstamp->regh) << 32; |
| |
| igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval); |
| } |
| } |
| |
| /** |
| * igc_ptp_tx_tstamp_event |
| * @adapter: board private structure |
| * |
| * Called when a TX timestamp interrupt happens to retrieve the |
| * timestamp and send it up to the socket. |
| */ |
| void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&adapter->ptp_tx_lock, flags); |
| |
| igc_ptp_tx_hwtstamp(adapter); |
| |
| spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags); |
| } |
| |
| /** |
| * igc_ptp_set_ts_config - set hardware time stamping config |
| * @netdev: network interface device structure |
| * @ifr: interface request data |
| * |
| **/ |
| int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igc_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config config; |
| int err; |
| |
| if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) |
| return -EFAULT; |
| |
| err = igc_ptp_set_timestamp_mode(adapter, &config); |
| if (err) |
| return err; |
| |
| /* save these settings for future reference */ |
| memcpy(&adapter->tstamp_config, &config, |
| sizeof(adapter->tstamp_config)); |
| |
| return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? |
| -EFAULT : 0; |
| } |
| |
| /** |
| * igc_ptp_get_ts_config - get hardware time stamping config |
| * @netdev: network interface device structure |
| * @ifr: interface request data |
| * |
| * Get the hwtstamp_config settings to return to the user. Rather than attempt |
| * to deconstruct the settings from the registers, just return a shadow copy |
| * of the last known settings. |
| **/ |
| int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) |
| { |
| struct igc_adapter *adapter = netdev_priv(netdev); |
| struct hwtstamp_config *config = &adapter->tstamp_config; |
| |
| return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? |
| -EFAULT : 0; |
| } |
| |
| /* The two conditions below must be met for cross timestamping via |
| * PCIe PTM: |
| * |
| * 1. We have an way to convert the timestamps in the PTM messages |
| * to something related to the system clocks (right now, only |
| * X86 systems with support for the Always Running Timer allow that); |
| * |
| * 2. We have PTM enabled in the path from the device to the PCIe root port. |
| */ |
| static bool igc_is_crosststamp_supported(struct igc_adapter *adapter) |
| { |
| if (!IS_ENABLED(CONFIG_X86_TSC)) |
| return false; |
| |
| /* FIXME: it was noticed that enabling support for PCIe PTM in |
| * some i225-V models could cause lockups when bringing the |
| * interface up/down. There should be no downsides to |
| * disabling crosstimestamping support for i225-V, as it |
| * doesn't have any PTP support. That way we gain some time |
| * while root causing the issue. |
| */ |
| if (adapter->pdev->device == IGC_DEV_ID_I225_V) |
| return false; |
| |
| return pcie_ptm_enabled(adapter->pdev); |
| } |
| |
| static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp) |
| { |
| #if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML) |
| return (struct system_counterval_t) { |
| .cs_id = CSID_X86_ART, |
| .cycles = tstamp, |
| .use_nsecs = true, |
| }; |
| #else |
| return (struct system_counterval_t) { }; |
| #endif |
| } |
| |
| static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat) |
| { |
| struct net_device *netdev = adapter->netdev; |
| |
| switch (ptm_stat) { |
| case IGC_PTM_STAT_RET_ERR: |
| netdev_err(netdev, "PTM Error: Root port timeout\n"); |
| break; |
| case IGC_PTM_STAT_BAD_PTM_RES: |
| netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n"); |
| break; |
| case IGC_PTM_STAT_T4M1_OVFL: |
| netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n"); |
| break; |
| case IGC_PTM_STAT_ADJUST_1ST: |
| netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n"); |
| break; |
| case IGC_PTM_STAT_ADJUST_CYC: |
| netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n"); |
| break; |
| default: |
| netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat); |
| break; |
| } |
| } |
| |
| static int igc_phc_get_syncdevicetime(ktime_t *device, |
| struct system_counterval_t *system, |
| void *ctx) |
| { |
| u32 stat, t2_curr_h, t2_curr_l, ctrl; |
| struct igc_adapter *adapter = ctx; |
| struct igc_hw *hw = &adapter->hw; |
| int err, count = 100; |
| ktime_t t1, t2_curr; |
| |
| /* Get a snapshot of system clocks to use as historic value. */ |
| ktime_get_snapshot(&adapter->snapshot); |
| |
| do { |
| /* Doing this in a loop because in the event of a |
| * badly timed (ha!) system clock adjustment, we may |
| * get PTM errors from the PCI root, but these errors |
| * are transitory. Repeating the process returns valid |
| * data eventually. |
| */ |
| |
| /* To "manually" start the PTM cycle we need to clear and |
| * then set again the TRIG bit. |
| */ |
| ctrl = rd32(IGC_PTM_CTRL); |
| ctrl &= ~IGC_PTM_CTRL_TRIG; |
| wr32(IGC_PTM_CTRL, ctrl); |
| ctrl |= IGC_PTM_CTRL_TRIG; |
| wr32(IGC_PTM_CTRL, ctrl); |
| |
| /* The cycle only starts "for real" when software notifies |
| * that it has read the registers, this is done by setting |
| * VALID bit. |
| */ |
| wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); |
| |
| err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat, |
| stat, IGC_PTM_STAT_SLEEP, |
| IGC_PTM_STAT_TIMEOUT); |
| if (err < 0) { |
| netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n"); |
| return err; |
| } |
| |
| if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID) |
| break; |
| |
| if (stat & ~IGC_PTM_STAT_VALID) { |
| /* An error occurred, log it. */ |
| igc_ptm_log_error(adapter, stat); |
| /* The STAT register is write-1-to-clear (W1C), |
| * so write the previous error status to clear it. |
| */ |
| wr32(IGC_PTM_STAT, stat); |
| continue; |
| } |
| } while (--count); |
| |
| if (!count) { |
| netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n"); |
| return -ETIMEDOUT; |
| } |
| |
| t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L)); |
| |
| t2_curr_l = rd32(IGC_PTM_CURR_T2_L); |
| t2_curr_h = rd32(IGC_PTM_CURR_T2_H); |
| |
| /* FIXME: When the register that tells the endianness of the |
| * PTM registers are implemented, check them here and add the |
| * appropriate conversion. |
| */ |
| t2_curr_h = swab32(t2_curr_h); |
| |
| t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l); |
| |
| *device = t1; |
| *system = igc_device_tstamp_to_system(t2_curr); |
| |
| return 0; |
| } |
| |
| static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp, |
| struct system_device_crosststamp *cts) |
| { |
| struct igc_adapter *adapter = container_of(ptp, struct igc_adapter, |
| ptp_caps); |
| |
| return get_device_system_crosststamp(igc_phc_get_syncdevicetime, |
| adapter, &adapter->snapshot, cts); |
| } |
| |
| static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp, |
| struct timespec64 *ts, |
| struct ptp_system_timestamp *sts) |
| { |
| struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps); |
| struct igc_hw *hw = &igc->hw; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&igc->free_timer_lock, flags); |
| |
| ptp_read_system_prets(sts); |
| ts->tv_nsec = rd32(IGC_SYSTIML_1); |
| ts->tv_sec = rd32(IGC_SYSTIMH_1); |
| ptp_read_system_postts(sts); |
| |
| spin_unlock_irqrestore(&igc->free_timer_lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * igc_ptp_init - Initialize PTP functionality |
| * @adapter: Board private structure |
| * |
| * This function is called at device probe to initialize the PTP |
| * functionality. |
| */ |
| void igc_ptp_init(struct igc_adapter *adapter) |
| { |
| struct net_device *netdev = adapter->netdev; |
| struct igc_tx_timestamp_request *tstamp; |
| struct igc_hw *hw = &adapter->hw; |
| int i; |
| |
| tstamp = &adapter->tx_tstamp[0]; |
| tstamp->mask = IGC_TSYNCTXCTL_TXTT_0; |
| tstamp->regl = IGC_TXSTMPL_0; |
| tstamp->regh = IGC_TXSTMPH_0; |
| tstamp->flags = 0; |
| |
| tstamp = &adapter->tx_tstamp[1]; |
| tstamp->mask = IGC_TSYNCTXCTL_TXTT_1; |
| tstamp->regl = IGC_TXSTMPL_1; |
| tstamp->regh = IGC_TXSTMPH_1; |
| tstamp->flags = IGC_TX_FLAGS_TSTAMP_1; |
| |
| tstamp = &adapter->tx_tstamp[2]; |
| tstamp->mask = IGC_TSYNCTXCTL_TXTT_2; |
| tstamp->regl = IGC_TXSTMPL_2; |
| tstamp->regh = IGC_TXSTMPH_2; |
| tstamp->flags = IGC_TX_FLAGS_TSTAMP_2; |
| |
| tstamp = &adapter->tx_tstamp[3]; |
| tstamp->mask = IGC_TSYNCTXCTL_TXTT_3; |
| tstamp->regl = IGC_TXSTMPL_3; |
| tstamp->regh = IGC_TXSTMPH_3; |
| tstamp->flags = IGC_TX_FLAGS_TSTAMP_3; |
| |
| switch (hw->mac.type) { |
| case igc_i225: |
| for (i = 0; i < IGC_N_SDP; i++) { |
| struct ptp_pin_desc *ppd = &adapter->sdp_config[i]; |
| |
| snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i); |
| ppd->index = i; |
| ppd->func = PTP_PF_NONE; |
| } |
| snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); |
| adapter->ptp_caps.owner = THIS_MODULE; |
| adapter->ptp_caps.max_adj = 62499999; |
| adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225; |
| adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225; |
| adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225; |
| adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64; |
| adapter->ptp_caps.settime64 = igc_ptp_settime_i225; |
| adapter->ptp_caps.enable = igc_ptp_feature_enable_i225; |
| adapter->ptp_caps.pps = 1; |
| adapter->ptp_caps.pin_config = adapter->sdp_config; |
| adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS; |
| adapter->ptp_caps.n_per_out = IGC_N_PEROUT; |
| adapter->ptp_caps.n_pins = IGC_N_SDP; |
| adapter->ptp_caps.verify = igc_ptp_verify_pin; |
| |
| if (!igc_is_crosststamp_supported(adapter)) |
| break; |
| |
| adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp; |
| break; |
| default: |
| adapter->ptp_clock = NULL; |
| return; |
| } |
| |
| spin_lock_init(&adapter->ptp_tx_lock); |
| spin_lock_init(&adapter->free_timer_lock); |
| spin_lock_init(&adapter->tmreg_lock); |
| |
| adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; |
| adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; |
| |
| adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real()); |
| adapter->ptp_reset_start = ktime_get(); |
| |
| adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, |
| &adapter->pdev->dev); |
| if (IS_ERR(adapter->ptp_clock)) { |
| adapter->ptp_clock = NULL; |
| netdev_err(netdev, "ptp_clock_register failed\n"); |
| } else if (adapter->ptp_clock) { |
| netdev_info(netdev, "PHC added\n"); |
| adapter->ptp_flags |= IGC_PTP_ENABLED; |
| } |
| } |
| |
| static void igc_ptp_time_save(struct igc_adapter *adapter) |
| { |
| igc_ptp_read(adapter, &adapter->prev_ptp_time); |
| adapter->ptp_reset_start = ktime_get(); |
| } |
| |
| static void igc_ptp_time_restore(struct igc_adapter *adapter) |
| { |
| struct timespec64 ts = adapter->prev_ptp_time; |
| ktime_t delta; |
| |
| delta = ktime_sub(ktime_get(), adapter->ptp_reset_start); |
| |
| timespec64_add_ns(&ts, ktime_to_ns(delta)); |
| |
| igc_ptp_write_i225(adapter, &ts); |
| } |
| |
| static void igc_ptm_stop(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u32 ctrl; |
| |
| ctrl = rd32(IGC_PTM_CTRL); |
| ctrl &= ~IGC_PTM_CTRL_EN; |
| |
| wr32(IGC_PTM_CTRL, ctrl); |
| } |
| |
| /** |
| * igc_ptp_suspend - Disable PTP work items and prepare for suspend |
| * @adapter: Board private structure |
| * |
| * This function stops the overflow check work and PTP Tx timestamp work, and |
| * will prepare the device for OS suspend. |
| */ |
| void igc_ptp_suspend(struct igc_adapter *adapter) |
| { |
| if (!(adapter->ptp_flags & IGC_PTP_ENABLED)) |
| return; |
| |
| igc_ptp_clear_tx_tstamp(adapter); |
| |
| if (pci_device_is_present(adapter->pdev)) { |
| igc_ptp_time_save(adapter); |
| igc_ptm_stop(adapter); |
| } |
| } |
| |
| /** |
| * igc_ptp_stop - Disable PTP device and stop the overflow check. |
| * @adapter: Board private structure. |
| * |
| * This function stops the PTP support and cancels the delayed work. |
| **/ |
| void igc_ptp_stop(struct igc_adapter *adapter) |
| { |
| igc_ptp_suspend(adapter); |
| |
| if (adapter->ptp_clock) { |
| ptp_clock_unregister(adapter->ptp_clock); |
| netdev_info(adapter->netdev, "PHC removed\n"); |
| adapter->ptp_flags &= ~IGC_PTP_ENABLED; |
| } |
| } |
| |
| /** |
| * igc_ptp_reset - Re-enable the adapter for PTP following a reset. |
| * @adapter: Board private structure. |
| * |
| * This function handles the reset work required to re-enable the PTP device. |
| **/ |
| void igc_ptp_reset(struct igc_adapter *adapter) |
| { |
| struct igc_hw *hw = &adapter->hw; |
| u32 cycle_ctrl, ctrl; |
| unsigned long flags; |
| u32 timadj; |
| |
| /* reset the tstamp_config */ |
| igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); |
| |
| spin_lock_irqsave(&adapter->tmreg_lock, flags); |
| |
| switch (adapter->hw.mac.type) { |
| case igc_i225: |
| timadj = rd32(IGC_TIMADJ); |
| timadj |= IGC_TIMADJ_ADJUST_METH; |
| wr32(IGC_TIMADJ, timadj); |
| |
| wr32(IGC_TSAUXC, 0x0); |
| wr32(IGC_TSSDP, 0x0); |
| wr32(IGC_TSIM, |
| IGC_TSICR_INTERRUPTS | |
| (adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0)); |
| wr32(IGC_IMS, IGC_IMS_TS); |
| |
| if (!igc_is_crosststamp_supported(adapter)) |
| break; |
| |
| wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT); |
| wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT); |
| |
| cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT); |
| |
| wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl); |
| |
| ctrl = IGC_PTM_CTRL_EN | |
| IGC_PTM_CTRL_START_NOW | |
| IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) | |
| IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) | |
| IGC_PTM_CTRL_TRIG; |
| |
| wr32(IGC_PTM_CTRL, ctrl); |
| |
| /* Force the first cycle to run. */ |
| wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID); |
| |
| break; |
| default: |
| /* No work to do. */ |
| goto out; |
| } |
| |
| /* Re-initialize the timer. */ |
| if (hw->mac.type == igc_i225) { |
| igc_ptp_time_restore(adapter); |
| } else { |
| timecounter_init(&adapter->tc, &adapter->cc, |
| ktime_to_ns(ktime_get_real())); |
| } |
| out: |
| spin_unlock_irqrestore(&adapter->tmreg_lock, flags); |
| |
| wrfl(); |
| } |