blob: 3e416af2659f19f6a7377319d45ac368a6dedf38 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* NVMe over Fabrics TCP host.
* Copyright (c) 2018 Lightbits Labs. All rights reserved.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/key.h>
#include <linux/nvme-tcp.h>
#include <linux/nvme-keyring.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <net/tls.h>
#include <net/tls_prot.h>
#include <net/handshake.h>
#include <linux/blk-mq.h>
#include <crypto/hash.h>
#include <net/busy_poll.h>
#include <trace/events/sock.h>
#include "nvme.h"
#include "fabrics.h"
struct nvme_tcp_queue;
/* Define the socket priority to use for connections were it is desirable
* that the NIC consider performing optimized packet processing or filtering.
* A non-zero value being sufficient to indicate general consideration of any
* possible optimization. Making it a module param allows for alternative
* values that may be unique for some NIC implementations.
*/
static int so_priority;
module_param(so_priority, int, 0644);
MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
/*
* Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
* from sysfs.
*/
static bool wq_unbound;
module_param(wq_unbound, bool, 0644);
MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
/*
* TLS handshake timeout
*/
static int tls_handshake_timeout = 10;
#ifdef CONFIG_NVME_TCP_TLS
module_param(tls_handshake_timeout, int, 0644);
MODULE_PARM_DESC(tls_handshake_timeout,
"nvme TLS handshake timeout in seconds (default 10)");
#endif
#ifdef CONFIG_DEBUG_LOCK_ALLOC
/* lockdep can detect a circular dependency of the form
* sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
* because dependencies are tracked for both nvme-tcp and user contexts. Using
* a separate class prevents lockdep from conflating nvme-tcp socket use with
* user-space socket API use.
*/
static struct lock_class_key nvme_tcp_sk_key[2];
static struct lock_class_key nvme_tcp_slock_key[2];
static void nvme_tcp_reclassify_socket(struct socket *sock)
{
struct sock *sk = sock->sk;
if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
return;
switch (sk->sk_family) {
case AF_INET:
sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
&nvme_tcp_slock_key[0],
"sk_lock-AF_INET-NVME",
&nvme_tcp_sk_key[0]);
break;
case AF_INET6:
sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
&nvme_tcp_slock_key[1],
"sk_lock-AF_INET6-NVME",
&nvme_tcp_sk_key[1]);
break;
default:
WARN_ON_ONCE(1);
}
}
#else
static void nvme_tcp_reclassify_socket(struct socket *sock) { }
#endif
enum nvme_tcp_send_state {
NVME_TCP_SEND_CMD_PDU = 0,
NVME_TCP_SEND_H2C_PDU,
NVME_TCP_SEND_DATA,
NVME_TCP_SEND_DDGST,
};
struct nvme_tcp_request {
struct nvme_request req;
void *pdu;
struct nvme_tcp_queue *queue;
u32 data_len;
u32 pdu_len;
u32 pdu_sent;
u32 h2cdata_left;
u32 h2cdata_offset;
u16 ttag;
__le16 status;
struct list_head entry;
struct llist_node lentry;
__le32 ddgst;
struct bio *curr_bio;
struct iov_iter iter;
/* send state */
size_t offset;
size_t data_sent;
enum nvme_tcp_send_state state;
};
enum nvme_tcp_queue_flags {
NVME_TCP_Q_ALLOCATED = 0,
NVME_TCP_Q_LIVE = 1,
NVME_TCP_Q_POLLING = 2,
};
enum nvme_tcp_recv_state {
NVME_TCP_RECV_PDU = 0,
NVME_TCP_RECV_DATA,
NVME_TCP_RECV_DDGST,
};
struct nvme_tcp_ctrl;
struct nvme_tcp_queue {
struct socket *sock;
struct work_struct io_work;
int io_cpu;
struct mutex queue_lock;
struct mutex send_mutex;
struct llist_head req_list;
struct list_head send_list;
/* recv state */
void *pdu;
int pdu_remaining;
int pdu_offset;
size_t data_remaining;
size_t ddgst_remaining;
unsigned int nr_cqe;
/* send state */
struct nvme_tcp_request *request;
u32 maxh2cdata;
size_t cmnd_capsule_len;
struct nvme_tcp_ctrl *ctrl;
unsigned long flags;
bool rd_enabled;
bool hdr_digest;
bool data_digest;
bool tls_enabled;
struct ahash_request *rcv_hash;
struct ahash_request *snd_hash;
__le32 exp_ddgst;
__le32 recv_ddgst;
struct completion tls_complete;
int tls_err;
struct page_frag_cache pf_cache;
void (*state_change)(struct sock *);
void (*data_ready)(struct sock *);
void (*write_space)(struct sock *);
};
struct nvme_tcp_ctrl {
/* read only in the hot path */
struct nvme_tcp_queue *queues;
struct blk_mq_tag_set tag_set;
/* other member variables */
struct list_head list;
struct blk_mq_tag_set admin_tag_set;
struct sockaddr_storage addr;
struct sockaddr_storage src_addr;
struct nvme_ctrl ctrl;
struct work_struct err_work;
struct delayed_work connect_work;
struct nvme_tcp_request async_req;
u32 io_queues[HCTX_MAX_TYPES];
};
static LIST_HEAD(nvme_tcp_ctrl_list);
static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
static struct workqueue_struct *nvme_tcp_wq;
static const struct blk_mq_ops nvme_tcp_mq_ops;
static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
}
static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
{
return queue - queue->ctrl->queues;
}
/*
* Check if the queue is TLS encrypted
*/
static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
{
if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
return 0;
return queue->tls_enabled;
}
/*
* Check if TLS is configured for the controller.
*/
static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
{
if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
return 0;
return ctrl->opts->tls;
}
static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
{
u32 queue_idx = nvme_tcp_queue_id(queue);
if (queue_idx == 0)
return queue->ctrl->admin_tag_set.tags[queue_idx];
return queue->ctrl->tag_set.tags[queue_idx - 1];
}
static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
{
return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
}
static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
{
return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
}
static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
{
return req->pdu;
}
static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
{
/* use the pdu space in the back for the data pdu */
return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
sizeof(struct nvme_tcp_data_pdu);
}
static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
{
if (nvme_is_fabrics(req->req.cmd))
return NVME_TCP_ADMIN_CCSZ;
return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
}
static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
{
return req == &req->queue->ctrl->async_req;
}
static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
{
struct request *rq;
if (unlikely(nvme_tcp_async_req(req)))
return false; /* async events don't have a request */
rq = blk_mq_rq_from_pdu(req);
return rq_data_dir(rq) == WRITE && req->data_len &&
req->data_len <= nvme_tcp_inline_data_size(req);
}
static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
{
return req->iter.bvec->bv_page;
}
static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
{
return req->iter.bvec->bv_offset + req->iter.iov_offset;
}
static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
{
return min_t(size_t, iov_iter_single_seg_count(&req->iter),
req->pdu_len - req->pdu_sent);
}
static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
{
return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
req->pdu_len - req->pdu_sent : 0;
}
static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
int len)
{
return nvme_tcp_pdu_data_left(req) <= len;
}
static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
unsigned int dir)
{
struct request *rq = blk_mq_rq_from_pdu(req);
struct bio_vec *vec;
unsigned int size;
int nr_bvec;
size_t offset;
if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
vec = &rq->special_vec;
nr_bvec = 1;
size = blk_rq_payload_bytes(rq);
offset = 0;
} else {
struct bio *bio = req->curr_bio;
struct bvec_iter bi;
struct bio_vec bv;
vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
nr_bvec = 0;
bio_for_each_bvec(bv, bio, bi) {
nr_bvec++;
}
size = bio->bi_iter.bi_size;
offset = bio->bi_iter.bi_bvec_done;
}
iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
req->iter.iov_offset = offset;
}
static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
int len)
{
req->data_sent += len;
req->pdu_sent += len;
iov_iter_advance(&req->iter, len);
if (!iov_iter_count(&req->iter) &&
req->data_sent < req->data_len) {
req->curr_bio = req->curr_bio->bi_next;
nvme_tcp_init_iter(req, ITER_SOURCE);
}
}
static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
{
int ret;
/* drain the send queue as much as we can... */
do {
ret = nvme_tcp_try_send(queue);
} while (ret > 0);
}
static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
{
return !list_empty(&queue->send_list) ||
!llist_empty(&queue->req_list);
}
static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
{
return !nvme_tcp_queue_tls(queue) &&
nvme_tcp_queue_has_pending(queue);
}
static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
bool sync, bool last)
{
struct nvme_tcp_queue *queue = req->queue;
bool empty;
empty = llist_add(&req->lentry, &queue->req_list) &&
list_empty(&queue->send_list) && !queue->request;
/*
* if we're the first on the send_list and we can try to send
* directly, otherwise queue io_work. Also, only do that if we
* are on the same cpu, so we don't introduce contention.
*/
if (queue->io_cpu == raw_smp_processor_id() &&
sync && empty && mutex_trylock(&queue->send_mutex)) {
nvme_tcp_send_all(queue);
mutex_unlock(&queue->send_mutex);
}
if (last && nvme_tcp_queue_has_pending(queue))
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
}
static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_request *req;
struct llist_node *node;
for (node = llist_del_all(&queue->req_list); node; node = node->next) {
req = llist_entry(node, struct nvme_tcp_request, lentry);
list_add(&req->entry, &queue->send_list);
}
}
static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_request *req;
req = list_first_entry_or_null(&queue->send_list,
struct nvme_tcp_request, entry);
if (!req) {
nvme_tcp_process_req_list(queue);
req = list_first_entry_or_null(&queue->send_list,
struct nvme_tcp_request, entry);
if (unlikely(!req))
return NULL;
}
list_del(&req->entry);
return req;
}
static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
__le32 *dgst)
{
ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
crypto_ahash_final(hash);
}
static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
struct page *page, off_t off, size_t len)
{
struct scatterlist sg;
sg_init_table(&sg, 1);
sg_set_page(&sg, page, len, off);
ahash_request_set_crypt(hash, &sg, NULL, len);
crypto_ahash_update(hash);
}
static inline void nvme_tcp_hdgst(struct ahash_request *hash,
void *pdu, size_t len)
{
struct scatterlist sg;
sg_init_one(&sg, pdu, len);
ahash_request_set_crypt(hash, &sg, pdu + len, len);
crypto_ahash_digest(hash);
}
static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
void *pdu, size_t pdu_len)
{
struct nvme_tcp_hdr *hdr = pdu;
__le32 recv_digest;
__le32 exp_digest;
if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
dev_err(queue->ctrl->ctrl.device,
"queue %d: header digest flag is cleared\n",
nvme_tcp_queue_id(queue));
return -EPROTO;
}
recv_digest = *(__le32 *)(pdu + hdr->hlen);
nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
exp_digest = *(__le32 *)(pdu + hdr->hlen);
if (recv_digest != exp_digest) {
dev_err(queue->ctrl->ctrl.device,
"header digest error: recv %#x expected %#x\n",
le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
return -EIO;
}
return 0;
}
static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
{
struct nvme_tcp_hdr *hdr = pdu;
u8 digest_len = nvme_tcp_hdgst_len(queue);
u32 len;
len = le32_to_cpu(hdr->plen) - hdr->hlen -
((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
dev_err(queue->ctrl->ctrl.device,
"queue %d: data digest flag is cleared\n",
nvme_tcp_queue_id(queue));
return -EPROTO;
}
crypto_ahash_init(queue->rcv_hash);
return 0;
}
static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx)
{
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
page_frag_free(req->pdu);
}
static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx,
unsigned int numa_node)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_tcp_cmd_pdu *pdu;
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
u8 hdgst = nvme_tcp_hdgst_len(queue);
req->pdu = page_frag_alloc(&queue->pf_cache,
sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
GFP_KERNEL | __GFP_ZERO);
if (!req->pdu)
return -ENOMEM;
pdu = req->pdu;
req->queue = queue;
nvme_req(rq)->ctrl = &ctrl->ctrl;
nvme_req(rq)->cmd = &pdu->cmd;
return 0;
}
static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
hctx->driver_data = queue;
return 0;
}
static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
struct nvme_tcp_queue *queue = &ctrl->queues[0];
hctx->driver_data = queue;
return 0;
}
static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
{
return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
(queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
NVME_TCP_RECV_DATA;
}
static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
{
queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
nvme_tcp_hdgst_len(queue);
queue->pdu_offset = 0;
queue->data_remaining = -1;
queue->ddgst_remaining = 0;
}
static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
return;
dev_warn(ctrl->device, "starting error recovery\n");
queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
}
static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
struct nvme_completion *cqe)
{
struct nvme_tcp_request *req;
struct request *rq;
rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"got bad cqe.command_id %#x on queue %d\n",
cqe->command_id, nvme_tcp_queue_id(queue));
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
return -EINVAL;
}
req = blk_mq_rq_to_pdu(rq);
if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
req->status = cqe->status;
if (!nvme_try_complete_req(rq, req->status, cqe->result))
nvme_complete_rq(rq);
queue->nr_cqe++;
return 0;
}
static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
struct nvme_tcp_data_pdu *pdu)
{
struct request *rq;
rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"got bad c2hdata.command_id %#x on queue %d\n",
pdu->command_id, nvme_tcp_queue_id(queue));
return -ENOENT;
}
if (!blk_rq_payload_bytes(rq)) {
dev_err(queue->ctrl->ctrl.device,
"queue %d tag %#x unexpected data\n",
nvme_tcp_queue_id(queue), rq->tag);
return -EIO;
}
queue->data_remaining = le32_to_cpu(pdu->data_length);
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
dev_err(queue->ctrl->ctrl.device,
"queue %d tag %#x SUCCESS set but not last PDU\n",
nvme_tcp_queue_id(queue), rq->tag);
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
return -EPROTO;
}
return 0;
}
static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
struct nvme_tcp_rsp_pdu *pdu)
{
struct nvme_completion *cqe = &pdu->cqe;
int ret = 0;
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
cqe->command_id)))
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
&cqe->result);
else
ret = nvme_tcp_process_nvme_cqe(queue, cqe);
return ret;
}
static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
{
struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
struct nvme_tcp_queue *queue = req->queue;
struct request *rq = blk_mq_rq_from_pdu(req);
u32 h2cdata_sent = req->pdu_len;
u8 hdgst = nvme_tcp_hdgst_len(queue);
u8 ddgst = nvme_tcp_ddgst_len(queue);
req->state = NVME_TCP_SEND_H2C_PDU;
req->offset = 0;
req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
req->pdu_sent = 0;
req->h2cdata_left -= req->pdu_len;
req->h2cdata_offset += h2cdata_sent;
memset(data, 0, sizeof(*data));
data->hdr.type = nvme_tcp_h2c_data;
if (!req->h2cdata_left)
data->hdr.flags = NVME_TCP_F_DATA_LAST;
if (queue->hdr_digest)
data->hdr.flags |= NVME_TCP_F_HDGST;
if (queue->data_digest)
data->hdr.flags |= NVME_TCP_F_DDGST;
data->hdr.hlen = sizeof(*data);
data->hdr.pdo = data->hdr.hlen + hdgst;
data->hdr.plen =
cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
data->ttag = req->ttag;
data->command_id = nvme_cid(rq);
data->data_offset = cpu_to_le32(req->h2cdata_offset);
data->data_length = cpu_to_le32(req->pdu_len);
}
static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
struct nvme_tcp_r2t_pdu *pdu)
{
struct nvme_tcp_request *req;
struct request *rq;
u32 r2t_length = le32_to_cpu(pdu->r2t_length);
u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"got bad r2t.command_id %#x on queue %d\n",
pdu->command_id, nvme_tcp_queue_id(queue));
return -ENOENT;
}
req = blk_mq_rq_to_pdu(rq);
if (unlikely(!r2t_length)) {
dev_err(queue->ctrl->ctrl.device,
"req %d r2t len is %u, probably a bug...\n",
rq->tag, r2t_length);
return -EPROTO;
}
if (unlikely(req->data_sent + r2t_length > req->data_len)) {
dev_err(queue->ctrl->ctrl.device,
"req %d r2t len %u exceeded data len %u (%zu sent)\n",
rq->tag, r2t_length, req->data_len, req->data_sent);
return -EPROTO;
}
if (unlikely(r2t_offset < req->data_sent)) {
dev_err(queue->ctrl->ctrl.device,
"req %d unexpected r2t offset %u (expected %zu)\n",
rq->tag, r2t_offset, req->data_sent);
return -EPROTO;
}
req->pdu_len = 0;
req->h2cdata_left = r2t_length;
req->h2cdata_offset = r2t_offset;
req->ttag = pdu->ttag;
nvme_tcp_setup_h2c_data_pdu(req);
nvme_tcp_queue_request(req, false, true);
return 0;
}
static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
unsigned int *offset, size_t *len)
{
struct nvme_tcp_hdr *hdr;
char *pdu = queue->pdu;
size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
int ret;
ret = skb_copy_bits(skb, *offset,
&pdu[queue->pdu_offset], rcv_len);
if (unlikely(ret))
return ret;
queue->pdu_remaining -= rcv_len;
queue->pdu_offset += rcv_len;
*offset += rcv_len;
*len -= rcv_len;
if (queue->pdu_remaining)
return 0;
hdr = queue->pdu;
if (queue->hdr_digest) {
ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
if (unlikely(ret))
return ret;
}
if (queue->data_digest) {
ret = nvme_tcp_check_ddgst(queue, queue->pdu);
if (unlikely(ret))
return ret;
}
switch (hdr->type) {
case nvme_tcp_c2h_data:
return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
case nvme_tcp_rsp:
nvme_tcp_init_recv_ctx(queue);
return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
case nvme_tcp_r2t:
nvme_tcp_init_recv_ctx(queue);
return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
default:
dev_err(queue->ctrl->ctrl.device,
"unsupported pdu type (%d)\n", hdr->type);
return -EINVAL;
}
}
static inline void nvme_tcp_end_request(struct request *rq, u16 status)
{
union nvme_result res = {};
if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
nvme_complete_rq(rq);
}
static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
unsigned int *offset, size_t *len)
{
struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
struct request *rq =
nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
while (true) {
int recv_len, ret;
recv_len = min_t(size_t, *len, queue->data_remaining);
if (!recv_len)
break;
if (!iov_iter_count(&req->iter)) {
req->curr_bio = req->curr_bio->bi_next;
/*
* If we don`t have any bios it means that controller
* sent more data than we requested, hence error
*/
if (!req->curr_bio) {
dev_err(queue->ctrl->ctrl.device,
"queue %d no space in request %#x",
nvme_tcp_queue_id(queue), rq->tag);
nvme_tcp_init_recv_ctx(queue);
return -EIO;
}
nvme_tcp_init_iter(req, ITER_DEST);
}
/* we can read only from what is left in this bio */
recv_len = min_t(size_t, recv_len,
iov_iter_count(&req->iter));
if (queue->data_digest)
ret = skb_copy_and_hash_datagram_iter(skb, *offset,
&req->iter, recv_len, queue->rcv_hash);
else
ret = skb_copy_datagram_iter(skb, *offset,
&req->iter, recv_len);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"queue %d failed to copy request %#x data",
nvme_tcp_queue_id(queue), rq->tag);
return ret;
}
*len -= recv_len;
*offset += recv_len;
queue->data_remaining -= recv_len;
}
if (!queue->data_remaining) {
if (queue->data_digest) {
nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
} else {
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
nvme_tcp_end_request(rq,
le16_to_cpu(req->status));
queue->nr_cqe++;
}
nvme_tcp_init_recv_ctx(queue);
}
}
return 0;
}
static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
struct sk_buff *skb, unsigned int *offset, size_t *len)
{
struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
char *ddgst = (char *)&queue->recv_ddgst;
size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
int ret;
ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
if (unlikely(ret))
return ret;
queue->ddgst_remaining -= recv_len;
*offset += recv_len;
*len -= recv_len;
if (queue->ddgst_remaining)
return 0;
if (queue->recv_ddgst != queue->exp_ddgst) {
struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
pdu->command_id);
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
dev_err(queue->ctrl->ctrl.device,
"data digest error: recv %#x expected %#x\n",
le32_to_cpu(queue->recv_ddgst),
le32_to_cpu(queue->exp_ddgst));
}
if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
pdu->command_id);
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
nvme_tcp_end_request(rq, le16_to_cpu(req->status));
queue->nr_cqe++;
}
nvme_tcp_init_recv_ctx(queue);
return 0;
}
static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
unsigned int offset, size_t len)
{
struct nvme_tcp_queue *queue = desc->arg.data;
size_t consumed = len;
int result;
if (unlikely(!queue->rd_enabled))
return -EFAULT;
while (len) {
switch (nvme_tcp_recv_state(queue)) {
case NVME_TCP_RECV_PDU:
result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
break;
case NVME_TCP_RECV_DATA:
result = nvme_tcp_recv_data(queue, skb, &offset, &len);
break;
case NVME_TCP_RECV_DDGST:
result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
break;
default:
result = -EFAULT;
}
if (result) {
dev_err(queue->ctrl->ctrl.device,
"receive failed: %d\n", result);
queue->rd_enabled = false;
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
return result;
}
}
return consumed;
}
static void nvme_tcp_data_ready(struct sock *sk)
{
struct nvme_tcp_queue *queue;
trace_sk_data_ready(sk);
read_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (likely(queue && queue->rd_enabled) &&
!test_bit(NVME_TCP_Q_POLLING, &queue->flags))
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
read_unlock_bh(&sk->sk_callback_lock);
}
static void nvme_tcp_write_space(struct sock *sk)
{
struct nvme_tcp_queue *queue;
read_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (likely(queue && sk_stream_is_writeable(sk))) {
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
}
read_unlock_bh(&sk->sk_callback_lock);
}
static void nvme_tcp_state_change(struct sock *sk)
{
struct nvme_tcp_queue *queue;
read_lock_bh(&sk->sk_callback_lock);
queue = sk->sk_user_data;
if (!queue)
goto done;
switch (sk->sk_state) {
case TCP_CLOSE:
case TCP_CLOSE_WAIT:
case TCP_LAST_ACK:
case TCP_FIN_WAIT1:
case TCP_FIN_WAIT2:
nvme_tcp_error_recovery(&queue->ctrl->ctrl);
break;
default:
dev_info(queue->ctrl->ctrl.device,
"queue %d socket state %d\n",
nvme_tcp_queue_id(queue), sk->sk_state);
}
queue->state_change(sk);
done:
read_unlock_bh(&sk->sk_callback_lock);
}
static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
{
queue->request = NULL;
}
static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
{
if (nvme_tcp_async_req(req)) {
union nvme_result res = {};
nvme_complete_async_event(&req->queue->ctrl->ctrl,
cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
} else {
nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
NVME_SC_HOST_PATH_ERROR);
}
}
static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
{
struct nvme_tcp_queue *queue = req->queue;
int req_data_len = req->data_len;
u32 h2cdata_left = req->h2cdata_left;
while (true) {
struct bio_vec bvec;
struct msghdr msg = {
.msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
};
struct page *page = nvme_tcp_req_cur_page(req);
size_t offset = nvme_tcp_req_cur_offset(req);
size_t len = nvme_tcp_req_cur_length(req);
bool last = nvme_tcp_pdu_last_send(req, len);
int req_data_sent = req->data_sent;
int ret;
if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
msg.msg_flags |= MSG_EOR;
else
msg.msg_flags |= MSG_MORE;
if (!sendpages_ok(page, len, offset))
msg.msg_flags &= ~MSG_SPLICE_PAGES;
bvec_set_page(&bvec, page, len, offset);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
ret = sock_sendmsg(queue->sock, &msg);
if (ret <= 0)
return ret;
if (queue->data_digest)
nvme_tcp_ddgst_update(queue->snd_hash, page,
offset, ret);
/*
* update the request iterator except for the last payload send
* in the request where we don't want to modify it as we may
* compete with the RX path completing the request.
*/
if (req_data_sent + ret < req_data_len)
nvme_tcp_advance_req(req, ret);
/* fully successful last send in current PDU */
if (last && ret == len) {
if (queue->data_digest) {
nvme_tcp_ddgst_final(queue->snd_hash,
&req->ddgst);
req->state = NVME_TCP_SEND_DDGST;
req->offset = 0;
} else {
if (h2cdata_left)
nvme_tcp_setup_h2c_data_pdu(req);
else
nvme_tcp_done_send_req(queue);
}
return 1;
}
}
return -EAGAIN;
}
static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
{
struct nvme_tcp_queue *queue = req->queue;
struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
struct bio_vec bvec;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
bool inline_data = nvme_tcp_has_inline_data(req);
u8 hdgst = nvme_tcp_hdgst_len(queue);
int len = sizeof(*pdu) + hdgst - req->offset;
int ret;
if (inline_data || nvme_tcp_queue_more(queue))
msg.msg_flags |= MSG_MORE;
else
msg.msg_flags |= MSG_EOR;
if (queue->hdr_digest && !req->offset)
nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
ret = sock_sendmsg(queue->sock, &msg);
if (unlikely(ret <= 0))
return ret;
len -= ret;
if (!len) {
if (inline_data) {
req->state = NVME_TCP_SEND_DATA;
if (queue->data_digest)
crypto_ahash_init(queue->snd_hash);
} else {
nvme_tcp_done_send_req(queue);
}
return 1;
}
req->offset += ret;
return -EAGAIN;
}
static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
{
struct nvme_tcp_queue *queue = req->queue;
struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
struct bio_vec bvec;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
u8 hdgst = nvme_tcp_hdgst_len(queue);
int len = sizeof(*pdu) - req->offset + hdgst;
int ret;
if (queue->hdr_digest && !req->offset)
nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
if (!req->h2cdata_left)
msg.msg_flags |= MSG_SPLICE_PAGES;
bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
ret = sock_sendmsg(queue->sock, &msg);
if (unlikely(ret <= 0))
return ret;
len -= ret;
if (!len) {
req->state = NVME_TCP_SEND_DATA;
if (queue->data_digest)
crypto_ahash_init(queue->snd_hash);
return 1;
}
req->offset += ret;
return -EAGAIN;
}
static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
{
struct nvme_tcp_queue *queue = req->queue;
size_t offset = req->offset;
u32 h2cdata_left = req->h2cdata_left;
int ret;
struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
struct kvec iov = {
.iov_base = (u8 *)&req->ddgst + req->offset,
.iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
};
if (nvme_tcp_queue_more(queue))
msg.msg_flags |= MSG_MORE;
else
msg.msg_flags |= MSG_EOR;
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
if (unlikely(ret <= 0))
return ret;
if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
if (h2cdata_left)
nvme_tcp_setup_h2c_data_pdu(req);
else
nvme_tcp_done_send_req(queue);
return 1;
}
req->offset += ret;
return -EAGAIN;
}
static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_request *req;
unsigned int noreclaim_flag;
int ret = 1;
if (!queue->request) {
queue->request = nvme_tcp_fetch_request(queue);
if (!queue->request)
return 0;
}
req = queue->request;
noreclaim_flag = memalloc_noreclaim_save();
if (req->state == NVME_TCP_SEND_CMD_PDU) {
ret = nvme_tcp_try_send_cmd_pdu(req);
if (ret <= 0)
goto done;
if (!nvme_tcp_has_inline_data(req))
goto out;
}
if (req->state == NVME_TCP_SEND_H2C_PDU) {
ret = nvme_tcp_try_send_data_pdu(req);
if (ret <= 0)
goto done;
}
if (req->state == NVME_TCP_SEND_DATA) {
ret = nvme_tcp_try_send_data(req);
if (ret <= 0)
goto done;
}
if (req->state == NVME_TCP_SEND_DDGST)
ret = nvme_tcp_try_send_ddgst(req);
done:
if (ret == -EAGAIN) {
ret = 0;
} else if (ret < 0) {
dev_err(queue->ctrl->ctrl.device,
"failed to send request %d\n", ret);
nvme_tcp_fail_request(queue->request);
nvme_tcp_done_send_req(queue);
}
out:
memalloc_noreclaim_restore(noreclaim_flag);
return ret;
}
static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
{
struct socket *sock = queue->sock;
struct sock *sk = sock->sk;
read_descriptor_t rd_desc;
int consumed;
rd_desc.arg.data = queue;
rd_desc.count = 1;
lock_sock(sk);
queue->nr_cqe = 0;
consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
release_sock(sk);
return consumed;
}
static void nvme_tcp_io_work(struct work_struct *w)
{
struct nvme_tcp_queue *queue =
container_of(w, struct nvme_tcp_queue, io_work);
unsigned long deadline = jiffies + msecs_to_jiffies(1);
do {
bool pending = false;
int result;
if (mutex_trylock(&queue->send_mutex)) {
result = nvme_tcp_try_send(queue);
mutex_unlock(&queue->send_mutex);
if (result > 0)
pending = true;
else if (unlikely(result < 0))
break;
}
result = nvme_tcp_try_recv(queue);
if (result > 0)
pending = true;
else if (unlikely(result < 0))
return;
if (!pending || !queue->rd_enabled)
return;
} while (!time_after(jiffies, deadline)); /* quota is exhausted */
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
}
static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
ahash_request_free(queue->rcv_hash);
ahash_request_free(queue->snd_hash);
crypto_free_ahash(tfm);
}
static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
{
struct crypto_ahash *tfm;
tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
if (!queue->snd_hash)
goto free_tfm;
ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
if (!queue->rcv_hash)
goto free_snd_hash;
ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
return 0;
free_snd_hash:
ahash_request_free(queue->snd_hash);
free_tfm:
crypto_free_ahash(tfm);
return -ENOMEM;
}
static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
{
struct nvme_tcp_request *async = &ctrl->async_req;
page_frag_free(async->pdu);
}
static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
{
struct nvme_tcp_queue *queue = &ctrl->queues[0];
struct nvme_tcp_request *async = &ctrl->async_req;
u8 hdgst = nvme_tcp_hdgst_len(queue);
async->pdu = page_frag_alloc(&queue->pf_cache,
sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
GFP_KERNEL | __GFP_ZERO);
if (!async->pdu)
return -ENOMEM;
async->queue = &ctrl->queues[0];
return 0;
}
static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
unsigned int noreclaim_flag;
if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
return;
if (queue->hdr_digest || queue->data_digest)
nvme_tcp_free_crypto(queue);
page_frag_cache_drain(&queue->pf_cache);
noreclaim_flag = memalloc_noreclaim_save();
/* ->sock will be released by fput() */
fput(queue->sock->file);
queue->sock = NULL;
memalloc_noreclaim_restore(noreclaim_flag);
kfree(queue->pdu);
mutex_destroy(&queue->send_mutex);
mutex_destroy(&queue->queue_lock);
}
static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_icreq_pdu *icreq;
struct nvme_tcp_icresp_pdu *icresp;
char cbuf[CMSG_LEN(sizeof(char))] = {};
u8 ctype;
struct msghdr msg = {};
struct kvec iov;
bool ctrl_hdgst, ctrl_ddgst;
u32 maxh2cdata;
int ret;
icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
if (!icreq)
return -ENOMEM;
icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
if (!icresp) {
ret = -ENOMEM;
goto free_icreq;
}
icreq->hdr.type = nvme_tcp_icreq;
icreq->hdr.hlen = sizeof(*icreq);
icreq->hdr.pdo = 0;
icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
icreq->maxr2t = 0; /* single inflight r2t supported */
icreq->hpda = 0; /* no alignment constraint */
if (queue->hdr_digest)
icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
if (queue->data_digest)
icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
iov.iov_base = icreq;
iov.iov_len = sizeof(*icreq);
ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
if (ret < 0) {
pr_warn("queue %d: failed to send icreq, error %d\n",
nvme_tcp_queue_id(queue), ret);
goto free_icresp;
}
memset(&msg, 0, sizeof(msg));
iov.iov_base = icresp;
iov.iov_len = sizeof(*icresp);
if (nvme_tcp_queue_tls(queue)) {
msg.msg_control = cbuf;
msg.msg_controllen = sizeof(cbuf);
}
ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
iov.iov_len, msg.msg_flags);
if (ret < 0) {
pr_warn("queue %d: failed to receive icresp, error %d\n",
nvme_tcp_queue_id(queue), ret);
goto free_icresp;
}
ret = -ENOTCONN;
if (nvme_tcp_queue_tls(queue)) {
ctype = tls_get_record_type(queue->sock->sk,
(struct cmsghdr *)cbuf);
if (ctype != TLS_RECORD_TYPE_DATA) {
pr_err("queue %d: unhandled TLS record %d\n",
nvme_tcp_queue_id(queue), ctype);
goto free_icresp;
}
}
ret = -EINVAL;
if (icresp->hdr.type != nvme_tcp_icresp) {
pr_err("queue %d: bad type returned %d\n",
nvme_tcp_queue_id(queue), icresp->hdr.type);
goto free_icresp;
}
if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
pr_err("queue %d: bad pdu length returned %d\n",
nvme_tcp_queue_id(queue), icresp->hdr.plen);
goto free_icresp;
}
if (icresp->pfv != NVME_TCP_PFV_1_0) {
pr_err("queue %d: bad pfv returned %d\n",
nvme_tcp_queue_id(queue), icresp->pfv);
goto free_icresp;
}
ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
if ((queue->data_digest && !ctrl_ddgst) ||
(!queue->data_digest && ctrl_ddgst)) {
pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
nvme_tcp_queue_id(queue),
queue->data_digest ? "enabled" : "disabled",
ctrl_ddgst ? "enabled" : "disabled");
goto free_icresp;
}
ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
if ((queue->hdr_digest && !ctrl_hdgst) ||
(!queue->hdr_digest && ctrl_hdgst)) {
pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
nvme_tcp_queue_id(queue),
queue->hdr_digest ? "enabled" : "disabled",
ctrl_hdgst ? "enabled" : "disabled");
goto free_icresp;
}
if (icresp->cpda != 0) {
pr_err("queue %d: unsupported cpda returned %d\n",
nvme_tcp_queue_id(queue), icresp->cpda);
goto free_icresp;
}
maxh2cdata = le32_to_cpu(icresp->maxdata);
if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
pr_err("queue %d: invalid maxh2cdata returned %u\n",
nvme_tcp_queue_id(queue), maxh2cdata);
goto free_icresp;
}
queue->maxh2cdata = maxh2cdata;
ret = 0;
free_icresp:
kfree(icresp);
free_icreq:
kfree(icreq);
return ret;
}
static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
{
return nvme_tcp_queue_id(queue) == 0;
}
static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
int qid = nvme_tcp_queue_id(queue);
return !nvme_tcp_admin_queue(queue) &&
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
}
static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
int qid = nvme_tcp_queue_id(queue);
return !nvme_tcp_admin_queue(queue) &&
!nvme_tcp_default_queue(queue) &&
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
ctrl->io_queues[HCTX_TYPE_READ];
}
static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
int qid = nvme_tcp_queue_id(queue);
return !nvme_tcp_admin_queue(queue) &&
!nvme_tcp_default_queue(queue) &&
!nvme_tcp_read_queue(queue) &&
qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
ctrl->io_queues[HCTX_TYPE_READ] +
ctrl->io_queues[HCTX_TYPE_POLL];
}
static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
{
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
int qid = nvme_tcp_queue_id(queue);
int n = 0;
if (nvme_tcp_default_queue(queue))
n = qid - 1;
else if (nvme_tcp_read_queue(queue))
n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
else if (nvme_tcp_poll_queue(queue))
n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
ctrl->io_queues[HCTX_TYPE_READ] - 1;
if (wq_unbound)
queue->io_cpu = WORK_CPU_UNBOUND;
else
queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
}
static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
{
struct nvme_tcp_queue *queue = data;
struct nvme_tcp_ctrl *ctrl = queue->ctrl;
int qid = nvme_tcp_queue_id(queue);
struct key *tls_key;
dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
qid, pskid, status);
if (status) {
queue->tls_err = -status;
goto out_complete;
}
tls_key = nvme_tls_key_lookup(pskid);
if (IS_ERR(tls_key)) {
dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
qid, pskid);
queue->tls_err = -ENOKEY;
} else {
queue->tls_enabled = true;
if (qid == 0)
ctrl->ctrl.tls_pskid = key_serial(tls_key);
key_put(tls_key);
queue->tls_err = 0;
}
out_complete:
complete(&queue->tls_complete);
}
static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
struct nvme_tcp_queue *queue,
key_serial_t pskid)
{
int qid = nvme_tcp_queue_id(queue);
int ret;
struct tls_handshake_args args;
unsigned long tmo = tls_handshake_timeout * HZ;
key_serial_t keyring = nvme_keyring_id();
dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
qid, pskid);
memset(&args, 0, sizeof(args));
args.ta_sock = queue->sock;
args.ta_done = nvme_tcp_tls_done;
args.ta_data = queue;
args.ta_my_peerids[0] = pskid;
args.ta_num_peerids = 1;
if (nctrl->opts->keyring)
keyring = key_serial(nctrl->opts->keyring);
args.ta_keyring = keyring;
args.ta_timeout_ms = tls_handshake_timeout * 1000;
queue->tls_err = -EOPNOTSUPP;
init_completion(&queue->tls_complete);
ret = tls_client_hello_psk(&args, GFP_KERNEL);
if (ret) {
dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
qid, ret);
return ret;
}
ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
if (ret <= 0) {
if (ret == 0)
ret = -ETIMEDOUT;
dev_err(nctrl->device,
"queue %d: TLS handshake failed, error %d\n",
qid, ret);
tls_handshake_cancel(queue->sock->sk);
} else {
dev_dbg(nctrl->device,
"queue %d: TLS handshake complete, error %d\n",
qid, queue->tls_err);
ret = queue->tls_err;
}
return ret;
}
static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
key_serial_t pskid)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
int ret, rcv_pdu_size;
struct file *sock_file;
mutex_init(&queue->queue_lock);
queue->ctrl = ctrl;
init_llist_head(&queue->req_list);
INIT_LIST_HEAD(&queue->send_list);
mutex_init(&queue->send_mutex);
INIT_WORK(&queue->io_work, nvme_tcp_io_work);
if (qid > 0)
queue->cmnd_capsule_len = nctrl->ioccsz * 16;
else
queue->cmnd_capsule_len = sizeof(struct nvme_command) +
NVME_TCP_ADMIN_CCSZ;
ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
IPPROTO_TCP, &queue->sock);
if (ret) {
dev_err(nctrl->device,
"failed to create socket: %d\n", ret);
goto err_destroy_mutex;
}
sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
if (IS_ERR(sock_file)) {
ret = PTR_ERR(sock_file);
goto err_destroy_mutex;
}
nvme_tcp_reclassify_socket(queue->sock);
/* Single syn retry */
tcp_sock_set_syncnt(queue->sock->sk, 1);
/* Set TCP no delay */
tcp_sock_set_nodelay(queue->sock->sk);
/*
* Cleanup whatever is sitting in the TCP transmit queue on socket
* close. This is done to prevent stale data from being sent should
* the network connection be restored before TCP times out.
*/
sock_no_linger(queue->sock->sk);
if (so_priority > 0)
sock_set_priority(queue->sock->sk, so_priority);
/* Set socket type of service */
if (nctrl->opts->tos >= 0)
ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
/* Set 10 seconds timeout for icresp recvmsg */
queue->sock->sk->sk_rcvtimeo = 10 * HZ;
queue->sock->sk->sk_allocation = GFP_ATOMIC;
queue->sock->sk->sk_use_task_frag = false;
nvme_tcp_set_queue_io_cpu(queue);
queue->request = NULL;
queue->data_remaining = 0;
queue->ddgst_remaining = 0;
queue->pdu_remaining = 0;
queue->pdu_offset = 0;
sk_set_memalloc(queue->sock->sk);
if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
sizeof(ctrl->src_addr));
if (ret) {
dev_err(nctrl->device,
"failed to bind queue %d socket %d\n",
qid, ret);
goto err_sock;
}
}
if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
char *iface = nctrl->opts->host_iface;
sockptr_t optval = KERNEL_SOCKPTR(iface);
ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
optval, strlen(iface));
if (ret) {
dev_err(nctrl->device,
"failed to bind to interface %s queue %d err %d\n",
iface, qid, ret);
goto err_sock;
}
}
queue->hdr_digest = nctrl->opts->hdr_digest;
queue->data_digest = nctrl->opts->data_digest;
if (queue->hdr_digest || queue->data_digest) {
ret = nvme_tcp_alloc_crypto(queue);
if (ret) {
dev_err(nctrl->device,
"failed to allocate queue %d crypto\n", qid);
goto err_sock;
}
}
rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
nvme_tcp_hdgst_len(queue);
queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
if (!queue->pdu) {
ret = -ENOMEM;
goto err_crypto;
}
dev_dbg(nctrl->device, "connecting queue %d\n",
nvme_tcp_queue_id(queue));
ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
sizeof(ctrl->addr), 0);
if (ret) {
dev_err(nctrl->device,
"failed to connect socket: %d\n", ret);
goto err_rcv_pdu;
}
/* If PSKs are configured try to start TLS */
if (nvme_tcp_tls_configured(nctrl) && pskid) {
ret = nvme_tcp_start_tls(nctrl, queue, pskid);
if (ret)
goto err_init_connect;
}
ret = nvme_tcp_init_connection(queue);
if (ret)
goto err_init_connect;
set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
return 0;
err_init_connect:
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
err_rcv_pdu:
kfree(queue->pdu);
err_crypto:
if (queue->hdr_digest || queue->data_digest)
nvme_tcp_free_crypto(queue);
err_sock:
/* ->sock will be released by fput() */
fput(queue->sock->file);
queue->sock = NULL;
err_destroy_mutex:
mutex_destroy(&queue->send_mutex);
mutex_destroy(&queue->queue_lock);
return ret;
}
static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
{
struct socket *sock = queue->sock;
write_lock_bh(&sock->sk->sk_callback_lock);
sock->sk->sk_user_data = NULL;
sock->sk->sk_data_ready = queue->data_ready;
sock->sk->sk_state_change = queue->state_change;
sock->sk->sk_write_space = queue->write_space;
write_unlock_bh(&sock->sk->sk_callback_lock);
}
static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
{
kernel_sock_shutdown(queue->sock, SHUT_RDWR);
nvme_tcp_restore_sock_ops(queue);
cancel_work_sync(&queue->io_work);
}
static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
struct nvme_tcp_queue *queue = &ctrl->queues[qid];
if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
return;
mutex_lock(&queue->queue_lock);
if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
__nvme_tcp_stop_queue(queue);
/* Stopping the queue will disable TLS */
queue->tls_enabled = false;
mutex_unlock(&queue->queue_lock);
}
static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
{
write_lock_bh(&queue->sock->sk->sk_callback_lock);
queue->sock->sk->sk_user_data = queue;
queue->state_change = queue->sock->sk->sk_state_change;
queue->data_ready = queue->sock->sk->sk_data_ready;
queue->write_space = queue->sock->sk->sk_write_space;
queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
queue->sock->sk->sk_state_change = nvme_tcp_state_change;
queue->sock->sk->sk_write_space = nvme_tcp_write_space;
#ifdef CONFIG_NET_RX_BUSY_POLL
queue->sock->sk->sk_ll_usec = 1;
#endif
write_unlock_bh(&queue->sock->sk->sk_callback_lock);
}
static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
struct nvme_tcp_queue *queue = &ctrl->queues[idx];
int ret;
queue->rd_enabled = true;
nvme_tcp_init_recv_ctx(queue);
nvme_tcp_setup_sock_ops(queue);
if (idx)
ret = nvmf_connect_io_queue(nctrl, idx);
else
ret = nvmf_connect_admin_queue(nctrl);
if (!ret) {
set_bit(NVME_TCP_Q_LIVE, &queue->flags);
} else {
if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
__nvme_tcp_stop_queue(queue);
dev_err(nctrl->device,
"failed to connect queue: %d ret=%d\n", idx, ret);
}
return ret;
}
static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
{
if (to_tcp_ctrl(ctrl)->async_req.pdu) {
cancel_work_sync(&ctrl->async_event_work);
nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
}
nvme_tcp_free_queue(ctrl, 0);
}
static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->queue_count; i++)
nvme_tcp_free_queue(ctrl, i);
}
static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->queue_count; i++)
nvme_tcp_stop_queue(ctrl, i);
}
static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
int first, int last)
{
int i, ret;
for (i = first; i < last; i++) {
ret = nvme_tcp_start_queue(ctrl, i);
if (ret)
goto out_stop_queues;
}
return 0;
out_stop_queues:
for (i--; i >= first; i--)
nvme_tcp_stop_queue(ctrl, i);
return ret;
}
static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
{
int ret;
key_serial_t pskid = 0;
if (nvme_tcp_tls_configured(ctrl)) {
if (ctrl->opts->tls_key)
pskid = key_serial(ctrl->opts->tls_key);
else {
pskid = nvme_tls_psk_default(ctrl->opts->keyring,
ctrl->opts->host->nqn,
ctrl->opts->subsysnqn);
if (!pskid) {
dev_err(ctrl->device, "no valid PSK found\n");
return -ENOKEY;
}
}
}
ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
if (ret)
return ret;
ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
if (ret)
goto out_free_queue;
return 0;
out_free_queue:
nvme_tcp_free_queue(ctrl, 0);
return ret;
}
static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
{
int i, ret;
if (nvme_tcp_tls_configured(ctrl) && !ctrl->tls_pskid) {
dev_err(ctrl->device, "no PSK negotiated\n");
return -ENOKEY;
}
for (i = 1; i < ctrl->queue_count; i++) {
ret = nvme_tcp_alloc_queue(ctrl, i,
ctrl->tls_pskid);
if (ret)
goto out_free_queues;
}
return 0;
out_free_queues:
for (i--; i >= 1; i--)
nvme_tcp_free_queue(ctrl, i);
return ret;
}
static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
{
unsigned int nr_io_queues;
int ret;
nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
ret = nvme_set_queue_count(ctrl, &nr_io_queues);
if (ret)
return ret;
if (nr_io_queues == 0) {
dev_err(ctrl->device,
"unable to set any I/O queues\n");
return -ENOMEM;
}
ctrl->queue_count = nr_io_queues + 1;
dev_info(ctrl->device,
"creating %d I/O queues.\n", nr_io_queues);
nvmf_set_io_queues(ctrl->opts, nr_io_queues,
to_tcp_ctrl(ctrl)->io_queues);
return __nvme_tcp_alloc_io_queues(ctrl);
}
static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
{
nvme_tcp_stop_io_queues(ctrl);
if (remove)
nvme_remove_io_tag_set(ctrl);
nvme_tcp_free_io_queues(ctrl);
}
static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
{
int ret, nr_queues;
ret = nvme_tcp_alloc_io_queues(ctrl);
if (ret)
return ret;
if (new) {
ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
&nvme_tcp_mq_ops,
ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
sizeof(struct nvme_tcp_request));
if (ret)
goto out_free_io_queues;
}
/*
* Only start IO queues for which we have allocated the tagset
* and limitted it to the available queues. On reconnects, the
* queue number might have changed.
*/
nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
if (ret)
goto out_cleanup_connect_q;
if (!new) {
nvme_start_freeze(ctrl);
nvme_unquiesce_io_queues(ctrl);
if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
/*
* If we timed out waiting for freeze we are likely to
* be stuck. Fail the controller initialization just
* to be safe.
*/
ret = -ENODEV;
nvme_unfreeze(ctrl);
goto out_wait_freeze_timed_out;
}
blk_mq_update_nr_hw_queues(ctrl->tagset,
ctrl->queue_count - 1);
nvme_unfreeze(ctrl);
}
/*
* If the number of queues has increased (reconnect case)
* start all new queues now.
*/
ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
ctrl->tagset->nr_hw_queues + 1);
if (ret)
goto out_wait_freeze_timed_out;
return 0;
out_wait_freeze_timed_out:
nvme_quiesce_io_queues(ctrl);
nvme_sync_io_queues(ctrl);
nvme_tcp_stop_io_queues(ctrl);
out_cleanup_connect_q:
nvme_cancel_tagset(ctrl);
if (new)
nvme_remove_io_tag_set(ctrl);
out_free_io_queues:
nvme_tcp_free_io_queues(ctrl);
return ret;
}
static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
{
nvme_tcp_stop_queue(ctrl, 0);
if (remove)
nvme_remove_admin_tag_set(ctrl);
nvme_tcp_free_admin_queue(ctrl);
}
static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
{
int error;
error = nvme_tcp_alloc_admin_queue(ctrl);
if (error)
return error;
if (new) {
error = nvme_alloc_admin_tag_set(ctrl,
&to_tcp_ctrl(ctrl)->admin_tag_set,
&nvme_tcp_admin_mq_ops,
sizeof(struct nvme_tcp_request));
if (error)
goto out_free_queue;
}
error = nvme_tcp_start_queue(ctrl, 0);
if (error)
goto out_cleanup_tagset;
error = nvme_enable_ctrl(ctrl);
if (error)
goto out_stop_queue;
nvme_unquiesce_admin_queue(ctrl);
error = nvme_init_ctrl_finish(ctrl, false);
if (error)
goto out_quiesce_queue;
return 0;
out_quiesce_queue:
nvme_quiesce_admin_queue(ctrl);
blk_sync_queue(ctrl->admin_q);
out_stop_queue:
nvme_tcp_stop_queue(ctrl, 0);
nvme_cancel_admin_tagset(ctrl);
out_cleanup_tagset:
if (new)
nvme_remove_admin_tag_set(ctrl);
out_free_queue:
nvme_tcp_free_admin_queue(ctrl);
return error;
}
static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
bool remove)
{
nvme_quiesce_admin_queue(ctrl);
blk_sync_queue(ctrl->admin_q);
nvme_tcp_stop_queue(ctrl, 0);
nvme_cancel_admin_tagset(ctrl);
if (remove)
nvme_unquiesce_admin_queue(ctrl);
nvme_tcp_destroy_admin_queue(ctrl, remove);
if (ctrl->tls_pskid) {
dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
ctrl->tls_pskid);
ctrl->tls_pskid = 0;
}
}
static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
bool remove)
{
if (ctrl->queue_count <= 1)
return;
nvme_quiesce_admin_queue(ctrl);
nvme_quiesce_io_queues(ctrl);
nvme_sync_io_queues(ctrl);
nvme_tcp_stop_io_queues(ctrl);
nvme_cancel_tagset(ctrl);
if (remove)
nvme_unquiesce_io_queues(ctrl);
nvme_tcp_destroy_io_queues(ctrl, remove);
}
static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
int status)
{
enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
/* If we are resetting/deleting then do nothing */
if (state != NVME_CTRL_CONNECTING) {
WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
return;
}
if (nvmf_should_reconnect(ctrl, status)) {
dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
ctrl->opts->reconnect_delay);
queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
ctrl->opts->reconnect_delay * HZ);
} else {
dev_info(ctrl->device, "Removing controller (%d)...\n",
status);
nvme_delete_ctrl(ctrl);
}
}
static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
{
struct nvmf_ctrl_options *opts = ctrl->opts;
int ret;
ret = nvme_tcp_configure_admin_queue(ctrl, new);
if (ret)
return ret;
if (ctrl->icdoff) {
ret = -EOPNOTSUPP;
dev_err(ctrl->device, "icdoff is not supported!\n");
goto destroy_admin;
}
if (!nvme_ctrl_sgl_supported(ctrl)) {
ret = -EOPNOTSUPP;
dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
goto destroy_admin;
}
if (opts->queue_size > ctrl->sqsize + 1)
dev_warn(ctrl->device,
"queue_size %zu > ctrl sqsize %u, clamping down\n",
opts->queue_size, ctrl->sqsize + 1);
if (ctrl->sqsize + 1 > ctrl->maxcmd) {
dev_warn(ctrl->device,
"sqsize %u > ctrl maxcmd %u, clamping down\n",
ctrl->sqsize + 1, ctrl->maxcmd);
ctrl->sqsize = ctrl->maxcmd - 1;
}
if (ctrl->queue_count > 1) {
ret = nvme_tcp_configure_io_queues(ctrl, new);
if (ret)
goto destroy_admin;
}
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
/*
* state change failure is ok if we started ctrl delete,
* unless we're during creation of a new controller to
* avoid races with teardown flow.
*/
enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
state != NVME_CTRL_DELETING_NOIO);
WARN_ON_ONCE(new);
ret = -EINVAL;
goto destroy_io;
}
nvme_start_ctrl(ctrl);
return 0;
destroy_io:
if (ctrl->queue_count > 1) {
nvme_quiesce_io_queues(ctrl);
nvme_sync_io_queues(ctrl);
nvme_tcp_stop_io_queues(ctrl);
nvme_cancel_tagset(ctrl);
nvme_tcp_destroy_io_queues(ctrl, new);
}
destroy_admin:
nvme_stop_keep_alive(ctrl);
nvme_tcp_teardown_admin_queue(ctrl, false);
return ret;
}
static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
{
struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
struct nvme_tcp_ctrl, connect_work);
struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
int ret;
++ctrl->nr_reconnects;
ret = nvme_tcp_setup_ctrl(ctrl, false);
if (ret)
goto requeue;
dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
ctrl->nr_reconnects, ctrl->opts->max_reconnects);
ctrl->nr_reconnects = 0;
return;
requeue:
dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
ctrl->nr_reconnects, ctrl->opts->max_reconnects);
nvme_tcp_reconnect_or_remove(ctrl, ret);
}
static void nvme_tcp_error_recovery_work(struct work_struct *work)
{
struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
struct nvme_tcp_ctrl, err_work);
struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
nvme_stop_keep_alive(ctrl);
flush_work(&ctrl->async_event_work);
nvme_tcp_teardown_io_queues(ctrl, false);
/* unquiesce to fail fast pending requests */
nvme_unquiesce_io_queues(ctrl);
nvme_tcp_teardown_admin_queue(ctrl, false);
nvme_unquiesce_admin_queue(ctrl);
nvme_auth_stop(ctrl);
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure is ok if we started ctrl delete */
enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
state != NVME_CTRL_DELETING_NOIO);
return;
}
nvme_tcp_reconnect_or_remove(ctrl, 0);
}
static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
{
nvme_tcp_teardown_io_queues(ctrl, shutdown);
nvme_quiesce_admin_queue(ctrl);
nvme_disable_ctrl(ctrl, shutdown);
nvme_tcp_teardown_admin_queue(ctrl, shutdown);
}
static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
{
nvme_tcp_teardown_ctrl(ctrl, true);
}
static void nvme_reset_ctrl_work(struct work_struct *work)
{
struct nvme_ctrl *ctrl =
container_of(work, struct nvme_ctrl, reset_work);
int ret;
nvme_stop_ctrl(ctrl);
nvme_tcp_teardown_ctrl(ctrl, false);
if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure is ok if we started ctrl delete */
enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
state != NVME_CTRL_DELETING_NOIO);
return;
}
ret = nvme_tcp_setup_ctrl(ctrl, false);
if (ret)
goto out_fail;
return;
out_fail:
++ctrl->nr_reconnects;
nvme_tcp_reconnect_or_remove(ctrl, ret);
}
static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
{
flush_work(&to_tcp_ctrl(ctrl)->err_work);
cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
}
static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
if (list_empty(&ctrl->list))
goto free_ctrl;
mutex_lock(&nvme_tcp_ctrl_mutex);
list_del(&ctrl->list);
mutex_unlock(&nvme_tcp_ctrl_mutex);
nvmf_free_options(nctrl->opts);
free_ctrl:
kfree(ctrl->queues);
kfree(ctrl);
}
static void nvme_tcp_set_sg_null(struct nvme_command *c)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
sg->addr = 0;
sg->length = 0;
sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
NVME_SGL_FMT_TRANSPORT_A;
}
static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
struct nvme_command *c, u32 data_len)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
sg->length = cpu_to_le32(data_len);
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
}
static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
u32 data_len)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
sg->addr = 0;
sg->length = cpu_to_le32(data_len);
sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
NVME_SGL_FMT_TRANSPORT_A;
}
static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
struct nvme_tcp_queue *queue = &ctrl->queues[0];
struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
struct nvme_command *cmd = &pdu->cmd;
u8 hdgst = nvme_tcp_hdgst_len(queue);
memset(pdu, 0, sizeof(*pdu));
pdu->hdr.type = nvme_tcp_cmd;
if (queue->hdr_digest)
pdu->hdr.flags |= NVME_TCP_F_HDGST;
pdu->hdr.hlen = sizeof(*pdu);
pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
cmd->common.opcode = nvme_admin_async_event;
cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
cmd->common.flags |= NVME_CMD_SGL_METABUF;
nvme_tcp_set_sg_null(cmd);
ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
ctrl->async_req.offset = 0;
ctrl->async_req.curr_bio = NULL;
ctrl->async_req.data_len = 0;
nvme_tcp_queue_request(&ctrl->async_req, true, true);
}
static void nvme_tcp_complete_timed_out(struct request *rq)
{
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
nvmf_complete_timed_out_request(rq);
}
static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
{
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
struct nvme_command *cmd = &pdu->cmd;
int qid = nvme_tcp_queue_id(req->queue);
dev_warn(ctrl->device,
"I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
nvme_fabrics_opcode_str(qid, cmd), qid);
if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
/*
* If we are resetting, connecting or deleting we should
* complete immediately because we may block controller
* teardown or setup sequence
* - ctrl disable/shutdown fabrics requests
* - connect requests
* - initialization admin requests
* - I/O requests that entered after unquiescing and
* the controller stopped responding
*
* All other requests should be cancelled by the error
* recovery work, so it's fine that we fail it here.
*/
nvme_tcp_complete_timed_out(rq);
return BLK_EH_DONE;
}
/*
* LIVE state should trigger the normal error recovery which will
* handle completing this request.
*/
nvme_tcp_error_recovery(ctrl);
return BLK_EH_RESET_TIMER;
}
static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
struct request *rq)
{
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
struct nvme_command *c = &pdu->cmd;
c->common.flags |= NVME_CMD_SGL_METABUF;
if (!blk_rq_nr_phys_segments(rq))
nvme_tcp_set_sg_null(c);
else if (rq_data_dir(rq) == WRITE &&
req->data_len <= nvme_tcp_inline_data_size(req))
nvme_tcp_set_sg_inline(queue, c, req->data_len);
else
nvme_tcp_set_sg_host_data(c, req->data_len);
return 0;
}
static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
struct request *rq)
{
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
struct nvme_tcp_queue *queue = req->queue;
u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
blk_status_t ret;
ret = nvme_setup_cmd(ns, rq);
if (ret)
return ret;
req->state = NVME_TCP_SEND_CMD_PDU;
req->status = cpu_to_le16(NVME_SC_SUCCESS);
req->offset = 0;
req->data_sent = 0;
req->pdu_len = 0;
req->pdu_sent = 0;
req->h2cdata_left = 0;
req->data_len = blk_rq_nr_phys_segments(rq) ?
blk_rq_payload_bytes(rq) : 0;
req->curr_bio = rq->bio;
if (req->curr_bio && req->data_len)
nvme_tcp_init_iter(req, rq_data_dir(rq));
if (rq_data_dir(rq) == WRITE &&
req->data_len <= nvme_tcp_inline_data_size(req))
req->pdu_len = req->data_len;
pdu->hdr.type = nvme_tcp_cmd;
pdu->hdr.flags = 0;
if (queue->hdr_digest)
pdu->hdr.flags |= NVME_TCP_F_HDGST;
if (queue->data_digest && req->pdu_len) {
pdu->hdr.flags |= NVME_TCP_F_DDGST;
ddgst = nvme_tcp_ddgst_len(queue);
}
pdu->hdr.hlen = sizeof(*pdu);
pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
pdu->hdr.plen =
cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
ret = nvme_tcp_map_data(queue, rq);
if (unlikely(ret)) {
nvme_cleanup_cmd(rq);
dev_err(queue->ctrl->ctrl.device,
"Failed to map data (%d)\n", ret);
return ret;
}
return 0;
}
static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
{
struct nvme_tcp_queue *queue = hctx->driver_data;
if (!llist_empty(&queue->req_list))
queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
}
static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_tcp_queue *queue = hctx->driver_data;
struct request *rq = bd->rq;
struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
blk_status_t ret;
if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
ret = nvme_tcp_setup_cmd_pdu(ns, rq);
if (unlikely(ret))
return ret;
nvme_start_request(rq);
nvme_tcp_queue_request(req, true, bd->last);
return BLK_STS_OK;
}
static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
{
struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
}
static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
{
struct nvme_tcp_queue *queue = hctx->driver_data;
struct sock *sk = queue->sock->sk;
if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
return 0;
set_bit(NVME_TCP_Q_POLLING, &queue->flags);
if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
sk_busy_loop(sk, true);
nvme_tcp_try_recv(queue);
clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
return queue->nr_cqe;
}
static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
{
struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
struct sockaddr_storage src_addr;
int ret, len;
len = nvmf_get_address(ctrl, buf, size);
if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
return len;
mutex_lock(&queue->queue_lock);
ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
if (ret > 0) {
if (len > 0)
len--; /* strip trailing newline */
len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
(len) ? "," : "", &src_addr);
}
mutex_unlock(&queue->queue_lock);
return len;
}
static const struct blk_mq_ops nvme_tcp_mq_ops = {
.queue_rq = nvme_tcp_queue_rq,
.commit_rqs = nvme_tcp_commit_rqs,
.complete = nvme_complete_rq,
.init_request = nvme_tcp_init_request,
.exit_request = nvme_tcp_exit_request,
.init_hctx = nvme_tcp_init_hctx,
.timeout = nvme_tcp_timeout,
.map_queues = nvme_tcp_map_queues,
.poll = nvme_tcp_poll,
};
static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
.queue_rq = nvme_tcp_queue_rq,
.complete = nvme_complete_rq,
.init_request = nvme_tcp_init_request,
.exit_request = nvme_tcp_exit_request,
.init_hctx = nvme_tcp_init_admin_hctx,
.timeout = nvme_tcp_timeout,
};
static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
.name = "tcp",
.module = THIS_MODULE,
.flags = NVME_F_FABRICS | NVME_F_BLOCKING,
.reg_read32 = nvmf_reg_read32,
.reg_read64 = nvmf_reg_read64,
.reg_write32 = nvmf_reg_write32,
.subsystem_reset = nvmf_subsystem_reset,
.free_ctrl = nvme_tcp_free_ctrl,
.submit_async_event = nvme_tcp_submit_async_event,
.delete_ctrl = nvme_tcp_delete_ctrl,
.get_address = nvme_tcp_get_address,
.stop_ctrl = nvme_tcp_stop_ctrl,
};
static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
{
struct nvme_tcp_ctrl *ctrl;
bool found = false;
mutex_lock(&nvme_tcp_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
found = nvmf_ip_options_match(&ctrl->ctrl, opts);
if (found)
break;
}
mutex_unlock(&nvme_tcp_ctrl_mutex);
return found;
}
static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_tcp_ctrl *ctrl;
int ret;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&ctrl->list);
ctrl->ctrl.opts = opts;
ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
opts->nr_poll_queues + 1;
ctrl->ctrl.sqsize = opts->queue_size - 1;
ctrl->ctrl.kato = opts->kato;
INIT_DELAYED_WORK(&ctrl->connect_work,
nvme_tcp_reconnect_ctrl_work);
INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
if (!(opts->mask & NVMF_OPT_TRSVCID)) {
opts->trsvcid =
kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
if (!opts->trsvcid) {
ret = -ENOMEM;
goto out_free_ctrl;
}
opts->mask |= NVMF_OPT_TRSVCID;
}
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->traddr, opts->trsvcid, &ctrl->addr);
if (ret) {
pr_err("malformed address passed: %s:%s\n",
opts->traddr, opts->trsvcid);
goto out_free_ctrl;
}
if (opts->mask & NVMF_OPT_HOST_TRADDR) {
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->host_traddr, NULL, &ctrl->src_addr);
if (ret) {
pr_err("malformed src address passed: %s\n",
opts->host_traddr);
goto out_free_ctrl;
}
}
if (opts->mask & NVMF_OPT_HOST_IFACE) {
if (!__dev_get_by_name(&init_net, opts->host_iface)) {
pr_err("invalid interface passed: %s\n",
opts->host_iface);
ret = -ENODEV;
goto out_free_ctrl;
}
}
if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
ret = -EALREADY;
goto out_free_ctrl;
}
ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
GFP_KERNEL);
if (!ctrl->queues) {
ret = -ENOMEM;
goto out_free_ctrl;
}
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
if (ret)
goto out_kfree_queues;
return ctrl;
out_kfree_queues:
kfree(ctrl->queues);
out_free_ctrl:
kfree(ctrl);
return ERR_PTR(ret);
}
static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_tcp_ctrl *ctrl;
int ret;
ctrl = nvme_tcp_alloc_ctrl(dev, opts);
if (IS_ERR(ctrl))
return ERR_CAST(ctrl);
ret = nvme_add_ctrl(&ctrl->ctrl);
if (ret)
goto out_put_ctrl;
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
WARN_ON_ONCE(1);
ret = -EINTR;
goto out_uninit_ctrl;
}
ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
if (ret)
goto out_uninit_ctrl;
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
mutex_lock(&nvme_tcp_ctrl_mutex);
list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
mutex_unlock(&nvme_tcp_ctrl_mutex);
return &ctrl->ctrl;
out_uninit_ctrl:
nvme_uninit_ctrl(&ctrl->ctrl);
out_put_ctrl:
nvme_put_ctrl(&ctrl->ctrl);
if (ret > 0)
ret = -EIO;
return ERR_PTR(ret);
}
static struct nvmf_transport_ops nvme_tcp_transport = {
.name = "tcp",
.module = THIS_MODULE,
.required_opts = NVMF_OPT_TRADDR,
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
.create_ctrl = nvme_tcp_create_ctrl,
};
static int __init nvme_tcp_init_module(void)
{
unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
if (wq_unbound)
wq_flags |= WQ_UNBOUND;
nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
if (!nvme_tcp_wq)
return -ENOMEM;
nvmf_register_transport(&nvme_tcp_transport);
return 0;
}
static void __exit nvme_tcp_cleanup_module(void)
{
struct nvme_tcp_ctrl *ctrl;
nvmf_unregister_transport(&nvme_tcp_transport);
mutex_lock(&nvme_tcp_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
nvme_delete_ctrl(&ctrl->ctrl);
mutex_unlock(&nvme_tcp_ctrl_mutex);
flush_workqueue(nvme_delete_wq);
destroy_workqueue(nvme_tcp_wq);
}
module_init(nvme_tcp_init_module);
module_exit(nvme_tcp_cleanup_module);
MODULE_DESCRIPTION("NVMe host TCP transport driver");
MODULE_LICENSE("GPL v2");