blob: d5507b63b6cdb3ceca517daed87f7a395c9636d0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel IFC VF NIC driver for virtio dataplane offloading
*
* Copyright (C) 2020 Intel Corporation.
*
* Author: Zhu Lingshan <lingshan.zhu@intel.com>
*
*/
#include "ifcvf_base.h"
u16 ifcvf_set_vq_vector(struct ifcvf_hw *hw, u16 qid, int vector)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite16(qid, &cfg->queue_select);
vp_iowrite16(vector, &cfg->queue_msix_vector);
return vp_ioread16(&cfg->queue_msix_vector);
}
u16 ifcvf_set_config_vector(struct ifcvf_hw *hw, int vector)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite16(vector, &cfg->msix_config);
return vp_ioread16(&cfg->msix_config);
}
static void __iomem *get_cap_addr(struct ifcvf_hw *hw,
struct virtio_pci_cap *cap)
{
u32 length, offset;
u8 bar;
length = le32_to_cpu(cap->length);
offset = le32_to_cpu(cap->offset);
bar = cap->bar;
if (bar >= IFCVF_PCI_MAX_RESOURCE) {
IFCVF_DBG(hw->pdev,
"Invalid bar number %u to get capabilities\n", bar);
return NULL;
}
if (offset + length > pci_resource_len(hw->pdev, bar)) {
IFCVF_DBG(hw->pdev,
"offset(%u) + len(%u) overflows bar%u's capability\n",
offset, length, bar);
return NULL;
}
return hw->base[bar] + offset;
}
static int ifcvf_read_config_range(struct pci_dev *dev,
uint32_t *val, int size, int where)
{
int ret, i;
for (i = 0; i < size; i += 4) {
ret = pci_read_config_dword(dev, where + i, val + i / 4);
if (ret < 0)
return ret;
}
return 0;
}
u16 ifcvf_get_vq_size(struct ifcvf_hw *hw, u16 qid)
{
u16 queue_size;
if (qid >= hw->nr_vring)
return 0;
vp_iowrite16(qid, &hw->common_cfg->queue_select);
queue_size = vp_ioread16(&hw->common_cfg->queue_size);
return queue_size;
}
u16 ifcvf_get_max_vq_size(struct ifcvf_hw *hw)
{
u16 queue_size, max_size, qid;
max_size = ifcvf_get_vq_size(hw, 0);
for (qid = 1; qid < hw->nr_vring; qid++) {
queue_size = ifcvf_get_vq_size(hw, qid);
/* 0 means the queue is unavailable */
if (!queue_size)
continue;
max_size = max(queue_size, max_size);
}
return max_size;
}
int ifcvf_init_hw(struct ifcvf_hw *hw, struct pci_dev *pdev)
{
struct virtio_pci_cap cap;
u16 notify_off;
int ret;
u8 pos;
u32 i;
ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
if (ret) {
IFCVF_ERR(pdev, "Failed to read PCI capability list\n");
return -EIO;
}
hw->pdev = pdev;
while (pos) {
ret = ifcvf_read_config_range(pdev, (u32 *)&cap,
sizeof(cap), pos);
if (ret < 0) {
IFCVF_ERR(pdev,
"Failed to get PCI capability at %x\n", pos);
break;
}
if (cap.cap_vndr != PCI_CAP_ID_VNDR)
goto next;
switch (cap.cfg_type) {
case VIRTIO_PCI_CAP_COMMON_CFG:
hw->common_cfg = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->common_cfg = %p\n",
hw->common_cfg);
break;
case VIRTIO_PCI_CAP_NOTIFY_CFG:
pci_read_config_dword(pdev, pos + sizeof(cap),
&hw->notify_off_multiplier);
hw->notify_bar = cap.bar;
hw->notify_base = get_cap_addr(hw, &cap);
hw->notify_base_pa = pci_resource_start(pdev, cap.bar) +
le32_to_cpu(cap.offset);
IFCVF_DBG(pdev, "hw->notify_base = %p\n",
hw->notify_base);
break;
case VIRTIO_PCI_CAP_ISR_CFG:
hw->isr = get_cap_addr(hw, &cap);
IFCVF_DBG(pdev, "hw->isr = %p\n", hw->isr);
break;
case VIRTIO_PCI_CAP_DEVICE_CFG:
hw->dev_cfg = get_cap_addr(hw, &cap);
hw->cap_dev_config_size = le32_to_cpu(cap.length);
IFCVF_DBG(pdev, "hw->dev_cfg = %p\n", hw->dev_cfg);
break;
}
next:
pos = cap.cap_next;
}
if (hw->common_cfg == NULL || hw->notify_base == NULL ||
hw->isr == NULL || hw->dev_cfg == NULL) {
IFCVF_ERR(pdev, "Incomplete PCI capabilities\n");
return -EIO;
}
hw->nr_vring = vp_ioread16(&hw->common_cfg->num_queues);
hw->vring = kzalloc(sizeof(struct vring_info) * hw->nr_vring, GFP_KERNEL);
if (!hw->vring)
return -ENOMEM;
for (i = 0; i < hw->nr_vring; i++) {
vp_iowrite16(i, &hw->common_cfg->queue_select);
notify_off = vp_ioread16(&hw->common_cfg->queue_notify_off);
hw->vring[i].notify_addr = hw->notify_base +
notify_off * hw->notify_off_multiplier;
hw->vring[i].notify_pa = hw->notify_base_pa +
notify_off * hw->notify_off_multiplier;
hw->vring[i].irq = -EINVAL;
}
hw->lm_cfg = hw->base[IFCVF_LM_BAR];
IFCVF_DBG(pdev,
"PCI capability mapping: common cfg: %p, notify base: %p\n, isr cfg: %p, device cfg: %p, multiplier: %u\n",
hw->common_cfg, hw->notify_base, hw->isr,
hw->dev_cfg, hw->notify_off_multiplier);
hw->vqs_reused_irq = -EINVAL;
hw->config_irq = -EINVAL;
return 0;
}
u8 ifcvf_get_status(struct ifcvf_hw *hw)
{
return vp_ioread8(&hw->common_cfg->device_status);
}
void ifcvf_set_status(struct ifcvf_hw *hw, u8 status)
{
vp_iowrite8(status, &hw->common_cfg->device_status);
}
void ifcvf_reset(struct ifcvf_hw *hw)
{
ifcvf_set_status(hw, 0);
while (ifcvf_get_status(hw))
msleep(1);
}
u64 ifcvf_get_hw_features(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u32 features_lo, features_hi;
u64 features;
vp_iowrite32(0, &cfg->device_feature_select);
features_lo = vp_ioread32(&cfg->device_feature);
vp_iowrite32(1, &cfg->device_feature_select);
features_hi = vp_ioread32(&cfg->device_feature);
features = ((u64)features_hi << 32) | features_lo;
return features;
}
/* return provisioned vDPA dev features */
u64 ifcvf_get_dev_features(struct ifcvf_hw *hw)
{
return hw->dev_features;
}
u64 ifcvf_get_driver_features(struct ifcvf_hw *hw)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u32 features_lo, features_hi;
u64 features;
vp_iowrite32(0, &cfg->device_feature_select);
features_lo = vp_ioread32(&cfg->guest_feature);
vp_iowrite32(1, &cfg->device_feature_select);
features_hi = vp_ioread32(&cfg->guest_feature);
features = ((u64)features_hi << 32) | features_lo;
return features;
}
int ifcvf_verify_min_features(struct ifcvf_hw *hw, u64 features)
{
if (!(features & BIT_ULL(VIRTIO_F_ACCESS_PLATFORM)) && features) {
IFCVF_ERR(hw->pdev, "VIRTIO_F_ACCESS_PLATFORM is not negotiated\n");
return -EINVAL;
}
return 0;
}
u32 ifcvf_get_config_size(struct ifcvf_hw *hw)
{
u32 net_config_size = sizeof(struct virtio_net_config);
u32 blk_config_size = sizeof(struct virtio_blk_config);
u32 cap_size = hw->cap_dev_config_size;
u32 config_size;
/* If the onboard device config space size is greater than
* the size of struct virtio_net/blk_config, only the spec
* implementing contents size is returned, this is very
* unlikely, defensive programming.
*/
switch (hw->dev_type) {
case VIRTIO_ID_NET:
config_size = min(cap_size, net_config_size);
break;
case VIRTIO_ID_BLOCK:
config_size = min(cap_size, blk_config_size);
break;
default:
config_size = 0;
IFCVF_ERR(hw->pdev, "VIRTIO ID %u not supported\n", hw->dev_type);
}
return config_size;
}
void ifcvf_read_dev_config(struct ifcvf_hw *hw, u64 offset,
void *dst, int length)
{
u8 old_gen, new_gen, *p;
int i;
WARN_ON(offset + length > hw->config_size);
do {
old_gen = vp_ioread8(&hw->common_cfg->config_generation);
p = dst;
for (i = 0; i < length; i++)
*p++ = vp_ioread8(hw->dev_cfg + offset + i);
new_gen = vp_ioread8(&hw->common_cfg->config_generation);
} while (old_gen != new_gen);
}
void ifcvf_write_dev_config(struct ifcvf_hw *hw, u64 offset,
const void *src, int length)
{
const u8 *p;
int i;
p = src;
WARN_ON(offset + length > hw->config_size);
for (i = 0; i < length; i++)
vp_iowrite8(*p++, hw->dev_cfg + offset + i);
}
void ifcvf_set_driver_features(struct ifcvf_hw *hw, u64 features)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite32(0, &cfg->guest_feature_select);
vp_iowrite32((u32)features, &cfg->guest_feature);
vp_iowrite32(1, &cfg->guest_feature_select);
vp_iowrite32(features >> 32, &cfg->guest_feature);
}
u16 ifcvf_get_vq_state(struct ifcvf_hw *hw, u16 qid)
{
struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg;
u16 last_avail_idx;
last_avail_idx = vp_ioread16(&lm_cfg->vq_state_region + qid * 2);
return last_avail_idx;
}
int ifcvf_set_vq_state(struct ifcvf_hw *hw, u16 qid, u16 num)
{
struct ifcvf_lm_cfg __iomem *lm_cfg = hw->lm_cfg;
vp_iowrite16(num, &lm_cfg->vq_state_region + qid * 2);
return 0;
}
void ifcvf_set_vq_num(struct ifcvf_hw *hw, u16 qid, u32 num)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite16(qid, &cfg->queue_select);
vp_iowrite16(num, &cfg->queue_size);
}
int ifcvf_set_vq_address(struct ifcvf_hw *hw, u16 qid, u64 desc_area,
u64 driver_area, u64 device_area)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite16(qid, &cfg->queue_select);
vp_iowrite64_twopart(desc_area, &cfg->queue_desc_lo,
&cfg->queue_desc_hi);
vp_iowrite64_twopart(driver_area, &cfg->queue_avail_lo,
&cfg->queue_avail_hi);
vp_iowrite64_twopart(device_area, &cfg->queue_used_lo,
&cfg->queue_used_hi);
return 0;
}
bool ifcvf_get_vq_ready(struct ifcvf_hw *hw, u16 qid)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
u16 queue_enable;
vp_iowrite16(qid, &cfg->queue_select);
queue_enable = vp_ioread16(&cfg->queue_enable);
return (bool)queue_enable;
}
void ifcvf_set_vq_ready(struct ifcvf_hw *hw, u16 qid, bool ready)
{
struct virtio_pci_common_cfg __iomem *cfg = hw->common_cfg;
vp_iowrite16(qid, &cfg->queue_select);
vp_iowrite16(ready, &cfg->queue_enable);
}
static void ifcvf_reset_vring(struct ifcvf_hw *hw)
{
u16 qid;
for (qid = 0; qid < hw->nr_vring; qid++) {
hw->vring[qid].cb.callback = NULL;
hw->vring[qid].cb.private = NULL;
ifcvf_set_vq_vector(hw, qid, VIRTIO_MSI_NO_VECTOR);
}
}
static void ifcvf_reset_config_handler(struct ifcvf_hw *hw)
{
hw->config_cb.callback = NULL;
hw->config_cb.private = NULL;
ifcvf_set_config_vector(hw, VIRTIO_MSI_NO_VECTOR);
}
static void ifcvf_synchronize_irq(struct ifcvf_hw *hw)
{
u32 nvectors = hw->num_msix_vectors;
struct pci_dev *pdev = hw->pdev;
int i, irq;
for (i = 0; i < nvectors; i++) {
irq = pci_irq_vector(pdev, i);
if (irq >= 0)
synchronize_irq(irq);
}
}
void ifcvf_stop(struct ifcvf_hw *hw)
{
ifcvf_synchronize_irq(hw);
ifcvf_reset_vring(hw);
ifcvf_reset_config_handler(hw);
}
void ifcvf_notify_queue(struct ifcvf_hw *hw, u16 qid)
{
vp_iowrite16(qid, hw->vring[qid].notify_addr);
}