blob: d0aed41ded2f19c1d7c6165e15d8385665b53c59 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* cfg80211 scan result handling
*
* Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2013-2014 Intel Mobile Communications GmbH
* Copyright 2016 Intel Deutschland GmbH
* Copyright (C) 2018-2024 Intel Corporation
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <linux/nl80211.h>
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/bitfield.h>
#include <net/arp.h>
#include <net/cfg80211.h>
#include <net/cfg80211-wext.h>
#include <net/iw_handler.h>
#include <kunit/visibility.h>
#include "core.h"
#include "nl80211.h"
#include "wext-compat.h"
#include "rdev-ops.h"
/**
* DOC: BSS tree/list structure
*
* At the top level, the BSS list is kept in both a list in each
* registered device (@bss_list) as well as an RB-tree for faster
* lookup. In the RB-tree, entries can be looked up using their
* channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
* for other BSSes.
*
* Due to the possibility of hidden SSIDs, there's a second level
* structure, the "hidden_list" and "hidden_beacon_bss" pointer.
* The hidden_list connects all BSSes belonging to a single AP
* that has a hidden SSID, and connects beacon and probe response
* entries. For a probe response entry for a hidden SSID, the
* hidden_beacon_bss pointer points to the BSS struct holding the
* beacon's information.
*
* Reference counting is done for all these references except for
* the hidden_list, so that a beacon BSS struct that is otherwise
* not referenced has one reference for being on the bss_list and
* one for each probe response entry that points to it using the
* hidden_beacon_bss pointer. When a BSS struct that has such a
* pointer is get/put, the refcount update is also propagated to
* the referenced struct, this ensure that it cannot get removed
* while somebody is using the probe response version.
*
* Note that the hidden_beacon_bss pointer never changes, due to
* the reference counting. Therefore, no locking is needed for
* it.
*
* Also note that the hidden_beacon_bss pointer is only relevant
* if the driver uses something other than the IEs, e.g. private
* data stored in the BSS struct, since the beacon IEs are
* also linked into the probe response struct.
*/
/*
* Limit the number of BSS entries stored in mac80211. Each one is
* a bit over 4k at most, so this limits to roughly 4-5M of memory.
* If somebody wants to really attack this though, they'd likely
* use small beacons, and only one type of frame, limiting each of
* the entries to a much smaller size (in order to generate more
* entries in total, so overhead is bigger.)
*/
static int bss_entries_limit = 1000;
module_param(bss_entries_limit, int, 0644);
MODULE_PARM_DESC(bss_entries_limit,
"limit to number of scan BSS entries (per wiphy, default 1000)");
#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
static void bss_free(struct cfg80211_internal_bss *bss)
{
struct cfg80211_bss_ies *ies;
if (WARN_ON(atomic_read(&bss->hold)))
return;
ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
if (ies && !bss->pub.hidden_beacon_bss)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
/*
* This happens when the module is removed, it doesn't
* really matter any more save for completeness
*/
if (!list_empty(&bss->hidden_list))
list_del(&bss->hidden_list);
kfree(bss);
}
static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
bss->refcount++;
if (bss->pub.hidden_beacon_bss)
bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
if (bss->pub.transmitted_bss)
bss_from_pub(bss->pub.transmitted_bss)->refcount++;
}
static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (bss->pub.hidden_beacon_bss) {
struct cfg80211_internal_bss *hbss;
hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
hbss->refcount--;
if (hbss->refcount == 0)
bss_free(hbss);
}
if (bss->pub.transmitted_bss) {
struct cfg80211_internal_bss *tbss;
tbss = bss_from_pub(bss->pub.transmitted_bss);
tbss->refcount--;
if (tbss->refcount == 0)
bss_free(tbss);
}
bss->refcount--;
if (bss->refcount == 0)
bss_free(bss);
}
static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (!list_empty(&bss->hidden_list)) {
/*
* don't remove the beacon entry if it has
* probe responses associated with it
*/
if (!bss->pub.hidden_beacon_bss)
return false;
/*
* if it's a probe response entry break its
* link to the other entries in the group
*/
list_del_init(&bss->hidden_list);
}
list_del_init(&bss->list);
list_del_init(&bss->pub.nontrans_list);
rb_erase(&bss->rbn, &rdev->bss_tree);
rdev->bss_entries--;
WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
"rdev bss entries[%d]/list[empty:%d] corruption\n",
rdev->bss_entries, list_empty(&rdev->bss_list));
bss_ref_put(rdev, bss);
return true;
}
bool cfg80211_is_element_inherited(const struct element *elem,
const struct element *non_inherit_elem)
{
u8 id_len, ext_id_len, i, loop_len, id;
const u8 *list;
if (elem->id == WLAN_EID_MULTIPLE_BSSID)
return false;
if (elem->id == WLAN_EID_EXTENSION && elem->datalen > 1 &&
elem->data[0] == WLAN_EID_EXT_EHT_MULTI_LINK)
return false;
if (!non_inherit_elem || non_inherit_elem->datalen < 2)
return true;
/*
* non inheritance element format is:
* ext ID (56) | IDs list len | list | extension IDs list len | list
* Both lists are optional. Both lengths are mandatory.
* This means valid length is:
* elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
*/
id_len = non_inherit_elem->data[1];
if (non_inherit_elem->datalen < 3 + id_len)
return true;
ext_id_len = non_inherit_elem->data[2 + id_len];
if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
return true;
if (elem->id == WLAN_EID_EXTENSION) {
if (!ext_id_len)
return true;
loop_len = ext_id_len;
list = &non_inherit_elem->data[3 + id_len];
id = elem->data[0];
} else {
if (!id_len)
return true;
loop_len = id_len;
list = &non_inherit_elem->data[2];
id = elem->id;
}
for (i = 0; i < loop_len; i++) {
if (list[i] == id)
return false;
}
return true;
}
EXPORT_SYMBOL(cfg80211_is_element_inherited);
static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
const u8 *ie, size_t ie_len,
u8 **pos, u8 *buf, size_t buf_len)
{
if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
elem->data + elem->datalen > ie + ie_len))
return 0;
if (elem->datalen + 2 > buf + buf_len - *pos)
return 0;
memcpy(*pos, elem, elem->datalen + 2);
*pos += elem->datalen + 2;
/* Finish if it is not fragmented */
if (elem->datalen != 255)
return *pos - buf;
ie_len = ie + ie_len - elem->data - elem->datalen;
ie = (const u8 *)elem->data + elem->datalen;
for_each_element(elem, ie, ie_len) {
if (elem->id != WLAN_EID_FRAGMENT)
break;
if (elem->datalen + 2 > buf + buf_len - *pos)
return 0;
memcpy(*pos, elem, elem->datalen + 2);
*pos += elem->datalen + 2;
if (elem->datalen != 255)
break;
}
return *pos - buf;
}
VISIBLE_IF_CFG80211_KUNIT size_t
cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
const u8 *subie, size_t subie_len,
u8 *new_ie, size_t new_ie_len)
{
const struct element *non_inherit_elem, *parent, *sub;
u8 *pos = new_ie;
u8 id, ext_id;
unsigned int match_len;
non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
subie, subie_len);
/* We copy the elements one by one from the parent to the generated
* elements.
* If they are not inherited (included in subie or in the non
* inheritance element), then we copy all occurrences the first time
* we see this element type.
*/
for_each_element(parent, ie, ielen) {
if (parent->id == WLAN_EID_FRAGMENT)
continue;
if (parent->id == WLAN_EID_EXTENSION) {
if (parent->datalen < 1)
continue;
id = WLAN_EID_EXTENSION;
ext_id = parent->data[0];
match_len = 1;
} else {
id = parent->id;
match_len = 0;
}
/* Find first occurrence in subie */
sub = cfg80211_find_elem_match(id, subie, subie_len,
&ext_id, match_len, 0);
/* Copy from parent if not in subie and inherited */
if (!sub &&
cfg80211_is_element_inherited(parent, non_inherit_elem)) {
if (!cfg80211_copy_elem_with_frags(parent,
ie, ielen,
&pos, new_ie,
new_ie_len))
return 0;
continue;
}
/* Already copied if an earlier element had the same type */
if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
&ext_id, match_len, 0))
continue;
/* Not inheriting, copy all similar elements from subie */
while (sub) {
if (!cfg80211_copy_elem_with_frags(sub,
subie, subie_len,
&pos, new_ie,
new_ie_len))
return 0;
sub = cfg80211_find_elem_match(id,
sub->data + sub->datalen,
subie_len + subie -
(sub->data +
sub->datalen),
&ext_id, match_len, 0);
}
}
/* The above misses elements that are included in subie but not in the
* parent, so do a pass over subie and append those.
* Skip the non-tx BSSID caps and non-inheritance element.
*/
for_each_element(sub, subie, subie_len) {
if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
continue;
if (sub->id == WLAN_EID_FRAGMENT)
continue;
if (sub->id == WLAN_EID_EXTENSION) {
if (sub->datalen < 1)
continue;
id = WLAN_EID_EXTENSION;
ext_id = sub->data[0];
match_len = 1;
if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
continue;
} else {
id = sub->id;
match_len = 0;
}
/* Processed if one was included in the parent */
if (cfg80211_find_elem_match(id, ie, ielen,
&ext_id, match_len, 0))
continue;
if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
&pos, new_ie, new_ie_len))
return 0;
}
return pos - new_ie;
}
EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_gen_new_ie);
static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
const u8 *ssid, size_t ssid_len)
{
const struct cfg80211_bss_ies *ies;
const struct element *ssid_elem;
if (bssid && !ether_addr_equal(a->bssid, bssid))
return false;
if (!ssid)
return true;
ies = rcu_access_pointer(a->ies);
if (!ies)
return false;
ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
if (!ssid_elem)
return false;
if (ssid_elem->datalen != ssid_len)
return false;
return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
}
static int
cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
struct cfg80211_bss *nontrans_bss)
{
const struct element *ssid_elem;
struct cfg80211_bss *bss = NULL;
rcu_read_lock();
ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
if (!ssid_elem) {
rcu_read_unlock();
return -EINVAL;
}
/* check if nontrans_bss is in the list */
list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
ssid_elem->datalen)) {
rcu_read_unlock();
return 0;
}
}
rcu_read_unlock();
/*
* This is a bit weird - it's not on the list, but already on another
* one! The only way that could happen is if there's some BSSID/SSID
* shared by multiple APs in their multi-BSSID profiles, potentially
* with hidden SSID mixed in ... ignore it.
*/
if (!list_empty(&nontrans_bss->nontrans_list))
return -EINVAL;
/* add to the list */
list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
return 0;
}
static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
unsigned long expire_time)
{
struct cfg80211_internal_bss *bss, *tmp;
bool expired = false;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!time_after(expire_time, bss->ts))
continue;
if (__cfg80211_unlink_bss(rdev, bss))
expired = true;
}
if (expired)
rdev->bss_generation++;
}
static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
{
struct cfg80211_internal_bss *bss, *oldest = NULL;
bool ret;
lockdep_assert_held(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (atomic_read(&bss->hold))
continue;
if (!list_empty(&bss->hidden_list) &&
!bss->pub.hidden_beacon_bss)
continue;
if (oldest && time_before(oldest->ts, bss->ts))
continue;
oldest = bss;
}
if (WARN_ON(!oldest))
return false;
/*
* The callers make sure to increase rdev->bss_generation if anything
* gets removed (and a new entry added), so there's no need to also do
* it here.
*/
ret = __cfg80211_unlink_bss(rdev, oldest);
WARN_ON(!ret);
return ret;
}
static u8 cfg80211_parse_bss_param(u8 data,
struct cfg80211_colocated_ap *coloc_ap)
{
coloc_ap->oct_recommended =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
coloc_ap->same_ssid =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
coloc_ap->multi_bss =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
coloc_ap->transmitted_bssid =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
coloc_ap->unsolicited_probe =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
coloc_ap->colocated_ess =
u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
}
static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
const struct element **elem, u32 *s_ssid)
{
*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
return 0;
}
VISIBLE_IF_CFG80211_KUNIT void
cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
{
struct cfg80211_colocated_ap *ap, *tmp_ap;
list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
list_del(&ap->list);
kfree(ap);
}
}
EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_free_coloc_ap_list);
static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
const u8 *pos, u8 length,
const struct element *ssid_elem,
u32 s_ssid_tmp)
{
u8 bss_params;
entry->psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
/* The length is already verified by the caller to contain bss_params */
if (length > sizeof(struct ieee80211_tbtt_info_7_8_9)) {
struct ieee80211_tbtt_info_ge_11 *tbtt_info = (void *)pos;
memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
entry->short_ssid = le32_to_cpu(tbtt_info->short_ssid);
entry->short_ssid_valid = true;
bss_params = tbtt_info->bss_params;
/* Ignore disabled links */
if (length >= offsetofend(typeof(*tbtt_info), mld_params)) {
if (le16_get_bits(tbtt_info->mld_params.params,
IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK))
return -EINVAL;
}
if (length >= offsetofend(struct ieee80211_tbtt_info_ge_11,
psd_20))
entry->psd_20 = tbtt_info->psd_20;
} else {
struct ieee80211_tbtt_info_7_8_9 *tbtt_info = (void *)pos;
memcpy(entry->bssid, tbtt_info->bssid, ETH_ALEN);
bss_params = tbtt_info->bss_params;
if (length == offsetofend(struct ieee80211_tbtt_info_7_8_9,
psd_20))
entry->psd_20 = tbtt_info->psd_20;
}
/* ignore entries with invalid BSSID */
if (!is_valid_ether_addr(entry->bssid))
return -EINVAL;
/* skip non colocated APs */
if (!cfg80211_parse_bss_param(bss_params, entry))
return -EINVAL;
/* no information about the short ssid. Consider the entry valid
* for now. It would later be dropped in case there are explicit
* SSIDs that need to be matched
*/
if (!entry->same_ssid && !entry->short_ssid_valid)
return 0;
if (entry->same_ssid) {
entry->short_ssid = s_ssid_tmp;
entry->short_ssid_valid = true;
/*
* This is safe because we validate datalen in
* cfg80211_parse_colocated_ap(), before calling this
* function.
*/
memcpy(&entry->ssid, &ssid_elem->data, ssid_elem->datalen);
entry->ssid_len = ssid_elem->datalen;
}
return 0;
}
bool cfg80211_iter_rnr(const u8 *elems, size_t elems_len,
enum cfg80211_rnr_iter_ret
(*iter)(void *data, u8 type,
const struct ieee80211_neighbor_ap_info *info,
const u8 *tbtt_info, u8 tbtt_info_len),
void *iter_data)
{
const struct element *rnr;
const u8 *pos, *end;
for_each_element_id(rnr, WLAN_EID_REDUCED_NEIGHBOR_REPORT,
elems, elems_len) {
const struct ieee80211_neighbor_ap_info *info;
pos = rnr->data;
end = rnr->data + rnr->datalen;
/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
while (sizeof(*info) <= end - pos) {
u8 length, i, count;
u8 type;
info = (void *)pos;
count = u8_get_bits(info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_COUNT) +
1;
length = info->tbtt_info_len;
pos += sizeof(*info);
if (count * length > end - pos)
return false;
type = u8_get_bits(info->tbtt_info_hdr,
IEEE80211_AP_INFO_TBTT_HDR_TYPE);
for (i = 0; i < count; i++) {
switch (iter(iter_data, type, info,
pos, length)) {
case RNR_ITER_CONTINUE:
break;
case RNR_ITER_BREAK:
return true;
case RNR_ITER_ERROR:
return false;
}
pos += length;
}
}
if (pos != end)
return false;
}
return true;
}
EXPORT_SYMBOL_GPL(cfg80211_iter_rnr);
struct colocated_ap_data {
const struct element *ssid_elem;
struct list_head ap_list;
u32 s_ssid_tmp;
int n_coloc;
};
static enum cfg80211_rnr_iter_ret
cfg80211_parse_colocated_ap_iter(void *_data, u8 type,
const struct ieee80211_neighbor_ap_info *info,
const u8 *tbtt_info, u8 tbtt_info_len)
{
struct colocated_ap_data *data = _data;
struct cfg80211_colocated_ap *entry;
enum nl80211_band band;
if (type != IEEE80211_TBTT_INFO_TYPE_TBTT)
return RNR_ITER_CONTINUE;
if (!ieee80211_operating_class_to_band(info->op_class, &band))
return RNR_ITER_CONTINUE;
/* TBTT info must include bss param + BSSID + (short SSID or
* same_ssid bit to be set). Ignore other options, and move to
* the next AP info
*/
if (band != NL80211_BAND_6GHZ ||
!(tbtt_info_len == offsetofend(struct ieee80211_tbtt_info_7_8_9,
bss_params) ||
tbtt_info_len == sizeof(struct ieee80211_tbtt_info_7_8_9) ||
tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
bss_params)))
return RNR_ITER_CONTINUE;
entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN, GFP_ATOMIC);
if (!entry)
return RNR_ITER_ERROR;
entry->center_freq =
ieee80211_channel_to_frequency(info->channel, band);
if (!cfg80211_parse_ap_info(entry, tbtt_info, tbtt_info_len,
data->ssid_elem, data->s_ssid_tmp)) {
data->n_coloc++;
list_add_tail(&entry->list, &data->ap_list);
} else {
kfree(entry);
}
return RNR_ITER_CONTINUE;
}
VISIBLE_IF_CFG80211_KUNIT int
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
struct list_head *list)
{
struct colocated_ap_data data = {};
int ret;
INIT_LIST_HEAD(&data.ap_list);
ret = cfg80211_calc_short_ssid(ies, &data.ssid_elem, &data.s_ssid_tmp);
if (ret)
return 0;
if (!cfg80211_iter_rnr(ies->data, ies->len,
cfg80211_parse_colocated_ap_iter, &data)) {
cfg80211_free_coloc_ap_list(&data.ap_list);
return 0;
}
list_splice_tail(&data.ap_list, list);
return data.n_coloc;
}
EXPORT_SYMBOL_IF_CFG80211_KUNIT(cfg80211_parse_colocated_ap);
static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
struct ieee80211_channel *chan,
bool add_to_6ghz)
{
int i;
u32 n_channels = request->n_channels;
struct cfg80211_scan_6ghz_params *params =
&request->scan_6ghz_params[request->n_6ghz_params];
for (i = 0; i < n_channels; i++) {
if (request->channels[i] == chan) {
if (add_to_6ghz)
params->channel_idx = i;
return;
}
}
request->channels[n_channels] = chan;
if (add_to_6ghz)
request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
n_channels;
request->n_channels++;
}
static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
struct cfg80211_scan_request *request)
{
int i;
u32 s_ssid;
for (i = 0; i < request->n_ssids; i++) {
/* wildcard ssid in the scan request */
if (!request->ssids[i].ssid_len) {
if (ap->multi_bss && !ap->transmitted_bssid)
continue;
return true;
}
if (ap->ssid_len &&
ap->ssid_len == request->ssids[i].ssid_len) {
if (!memcmp(request->ssids[i].ssid, ap->ssid,
ap->ssid_len))
return true;
} else if (ap->short_ssid_valid) {
s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
request->ssids[i].ssid_len);
if (ap->short_ssid == s_ssid)
return true;
}
}
return false;
}
static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
{
u8 i;
struct cfg80211_colocated_ap *ap;
int n_channels, count = 0, err;
struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
LIST_HEAD(coloc_ap_list);
bool need_scan_psc = true;
const struct ieee80211_sband_iftype_data *iftd;
size_t size, offs_ssids, offs_6ghz_params, offs_ies;
rdev_req->scan_6ghz = true;
if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
return -EOPNOTSUPP;
iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
rdev_req->wdev->iftype);
if (!iftd || !iftd->he_cap.has_he)
return -EOPNOTSUPP;
n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
struct cfg80211_internal_bss *intbss;
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(intbss, &rdev->bss_list, list) {
struct cfg80211_bss *res = &intbss->pub;
const struct cfg80211_bss_ies *ies;
const struct element *ssid_elem;
struct cfg80211_colocated_ap *entry;
u32 s_ssid_tmp;
int ret;
ies = rcu_access_pointer(res->ies);
count += cfg80211_parse_colocated_ap(ies,
&coloc_ap_list);
/* In case the scan request specified a specific BSSID
* and the BSS is found and operating on 6GHz band then
* add this AP to the collocated APs list.
* This is relevant for ML probe requests when the lower
* band APs have not been discovered.
*/
if (is_broadcast_ether_addr(rdev_req->bssid) ||
!ether_addr_equal(rdev_req->bssid, res->bssid) ||
res->channel->band != NL80211_BAND_6GHZ)
continue;
ret = cfg80211_calc_short_ssid(ies, &ssid_elem,
&s_ssid_tmp);
if (ret)
continue;
entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
GFP_ATOMIC);
if (!entry)
continue;
memcpy(entry->bssid, res->bssid, ETH_ALEN);
entry->short_ssid = s_ssid_tmp;
memcpy(entry->ssid, ssid_elem->data,
ssid_elem->datalen);
entry->ssid_len = ssid_elem->datalen;
entry->short_ssid_valid = true;
entry->center_freq = res->channel->center_freq;
list_add_tail(&entry->list, &coloc_ap_list);
count++;
}
spin_unlock_bh(&rdev->bss_lock);
}
size = struct_size(request, channels, n_channels);
offs_ssids = size;
size += sizeof(*request->ssids) * rdev_req->n_ssids;
offs_6ghz_params = size;
size += sizeof(*request->scan_6ghz_params) * count;
offs_ies = size;
size += rdev_req->ie_len;
request = kzalloc(size, GFP_KERNEL);
if (!request) {
cfg80211_free_coloc_ap_list(&coloc_ap_list);
return -ENOMEM;
}
*request = *rdev_req;
request->n_channels = 0;
request->n_6ghz_params = 0;
if (rdev_req->n_ssids) {
/*
* Add the ssids from the parent scan request to the new
* scan request, so the driver would be able to use them
* in its probe requests to discover hidden APs on PSC
* channels.
*/
request->ssids = (void *)request + offs_ssids;
memcpy(request->ssids, rdev_req->ssids,
sizeof(*request->ssids) * request->n_ssids);
}
request->scan_6ghz_params = (void *)request + offs_6ghz_params;
if (rdev_req->ie_len) {
void *ie = (void *)request + offs_ies;
memcpy(ie, rdev_req->ie, rdev_req->ie_len);
request->ie = ie;
}
/*
* PSC channels should not be scanned in case of direct scan with 1 SSID
* and at least one of the reported co-located APs with same SSID
* indicating that all APs in the same ESS are co-located
*/
if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
list_for_each_entry(ap, &coloc_ap_list, list) {
if (ap->colocated_ess &&
cfg80211_find_ssid_match(ap, request)) {
need_scan_psc = false;
break;
}
}
}
/*
* add to the scan request the channels that need to be scanned
* regardless of the collocated APs (PSC channels or all channels
* in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
*/
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
((need_scan_psc &&
cfg80211_channel_is_psc(rdev_req->channels[i])) ||
!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
cfg80211_scan_req_add_chan(request,
rdev_req->channels[i],
false);
}
}
if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
goto skip;
list_for_each_entry(ap, &coloc_ap_list, list) {
bool found = false;
struct cfg80211_scan_6ghz_params *scan_6ghz_params =
&request->scan_6ghz_params[request->n_6ghz_params];
struct ieee80211_channel *chan =
ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
continue;
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i] == chan)
found = true;
}
if (!found)
continue;
if (request->n_ssids > 0 &&
!cfg80211_find_ssid_match(ap, request))
continue;
if (!is_broadcast_ether_addr(request->bssid) &&
!ether_addr_equal(request->bssid, ap->bssid))
continue;
if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
continue;
cfg80211_scan_req_add_chan(request, chan, true);
memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
scan_6ghz_params->short_ssid = ap->short_ssid;
scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
scan_6ghz_params->psd_20 = ap->psd_20;
/*
* If a PSC channel is added to the scan and 'need_scan_psc' is
* set to false, then all the APs that the scan logic is
* interested with on the channel are collocated and thus there
* is no need to perform the initial PSC channel listen.
*/
if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
scan_6ghz_params->psc_no_listen = true;
request->n_6ghz_params++;
}
skip:
cfg80211_free_coloc_ap_list(&coloc_ap_list);
if (request->n_channels) {
struct cfg80211_scan_request *old = rdev->int_scan_req;
rdev->int_scan_req = request;
/*
* If this scan follows a previous scan, save the scan start
* info from the first part of the scan
*/
if (old)
rdev->int_scan_req->info = old->info;
err = rdev_scan(rdev, request);
if (err) {
rdev->int_scan_req = old;
kfree(request);
} else {
kfree(old);
}
return err;
}
kfree(request);
return -EINVAL;
}
int cfg80211_scan(struct cfg80211_registered_device *rdev)
{
struct cfg80211_scan_request *request;
struct cfg80211_scan_request *rdev_req = rdev->scan_req;
u32 n_channels = 0, idx, i;
if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
return rdev_scan(rdev, rdev_req);
for (i = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
n_channels++;
}
if (!n_channels)
return cfg80211_scan_6ghz(rdev);
request = kzalloc(struct_size(request, channels, n_channels),
GFP_KERNEL);
if (!request)
return -ENOMEM;
*request = *rdev_req;
request->n_channels = n_channels;
for (i = idx = 0; i < rdev_req->n_channels; i++) {
if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
request->channels[idx++] = rdev_req->channels[i];
}
rdev_req->scan_6ghz = false;
rdev->int_scan_req = request;
return rdev_scan(rdev, request);
}
void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
bool send_message)
{
struct cfg80211_scan_request *request, *rdev_req;
struct wireless_dev *wdev;
struct sk_buff *msg;
#ifdef CONFIG_CFG80211_WEXT
union iwreq_data wrqu;
#endif
lockdep_assert_held(&rdev->wiphy.mtx);
if (rdev->scan_msg) {
nl80211_send_scan_msg(rdev, rdev->scan_msg);
rdev->scan_msg = NULL;
return;
}
rdev_req = rdev->scan_req;
if (!rdev_req)
return;
wdev = rdev_req->wdev;
request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
if (wdev_running(wdev) &&
(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
!rdev_req->scan_6ghz && !request->info.aborted &&
!cfg80211_scan_6ghz(rdev))
return;
/*
* This must be before sending the other events!
* Otherwise, wpa_supplicant gets completely confused with
* wext events.
*/
if (wdev->netdev)
cfg80211_sme_scan_done(wdev->netdev);
if (!request->info.aborted &&
request->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, request->scan_start);
spin_unlock_bh(&rdev->bss_lock);
}
msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
#ifdef CONFIG_CFG80211_WEXT
if (wdev->netdev && !request->info.aborted) {
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
}
#endif
dev_put(wdev->netdev);
kfree(rdev->int_scan_req);
rdev->int_scan_req = NULL;
kfree(rdev->scan_req);
rdev->scan_req = NULL;
if (!send_message)
rdev->scan_msg = msg;
else
nl80211_send_scan_msg(rdev, msg);
}
void __cfg80211_scan_done(struct wiphy *wiphy, struct wiphy_work *wk)
{
___cfg80211_scan_done(wiphy_to_rdev(wiphy), true);
}
void cfg80211_scan_done(struct cfg80211_scan_request *request,
struct cfg80211_scan_info *info)
{
struct cfg80211_scan_info old_info = request->info;
trace_cfg80211_scan_done(request, info);
WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
request != wiphy_to_rdev(request->wiphy)->int_scan_req);
request->info = *info;
/*
* In case the scan is split, the scan_start_tsf and tsf_bssid should
* be of the first part. In such a case old_info.scan_start_tsf should
* be non zero.
*/
if (request->scan_6ghz && old_info.scan_start_tsf) {
request->info.scan_start_tsf = old_info.scan_start_tsf;
memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
sizeof(request->info.tsf_bssid));
}
request->notified = true;
wiphy_work_queue(request->wiphy,
&wiphy_to_rdev(request->wiphy)->scan_done_wk);
}
EXPORT_SYMBOL(cfg80211_scan_done);
void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
lockdep_assert_held(&rdev->wiphy.mtx);
list_add_rcu(&req->list, &rdev->sched_scan_req_list);
}
static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req)
{
lockdep_assert_held(&rdev->wiphy.mtx);
list_del_rcu(&req->list);
kfree_rcu(req, rcu_head);
}
static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
{
struct cfg80211_sched_scan_request *pos;
list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
lockdep_is_held(&rdev->wiphy.mtx)) {
if (pos->reqid == reqid)
return pos;
}
return NULL;
}
/*
* Determines if a scheduled scan request can be handled. When a legacy
* scheduled scan is running no other scheduled scan is allowed regardless
* whether the request is for legacy or multi-support scan. When a multi-support
* scheduled scan is running a request for legacy scan is not allowed. In this
* case a request for multi-support scan can be handled if resources are
* available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
*/
int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
bool want_multi)
{
struct cfg80211_sched_scan_request *pos;
int i = 0;
list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
/* request id zero means legacy in progress */
if (!i && !pos->reqid)
return -EINPROGRESS;
i++;
}
if (i) {
/* no legacy allowed when multi request(s) are active */
if (!want_multi)
return -EINPROGRESS;
/* resource limit reached */
if (i == rdev->wiphy.max_sched_scan_reqs)
return -ENOSPC;
}
return 0;
}
void cfg80211_sched_scan_results_wk(struct work_struct *work)
{
struct cfg80211_registered_device *rdev;
struct cfg80211_sched_scan_request *req, *tmp;
rdev = container_of(work, struct cfg80211_registered_device,
sched_scan_res_wk);
wiphy_lock(&rdev->wiphy);
list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
if (req->report_results) {
req->report_results = false;
if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
/* flush entries from previous scans */
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, req->scan_start);
spin_unlock_bh(&rdev->bss_lock);
req->scan_start = jiffies;
}
nl80211_send_sched_scan(req,
NL80211_CMD_SCHED_SCAN_RESULTS);
}
}
wiphy_unlock(&rdev->wiphy);
}
void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_sched_scan_request *request;
trace_cfg80211_sched_scan_results(wiphy, reqid);
/* ignore if we're not scanning */
rcu_read_lock();
request = cfg80211_find_sched_scan_req(rdev, reqid);
if (request) {
request->report_results = true;
queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
}
rcu_read_unlock();
}
EXPORT_SYMBOL(cfg80211_sched_scan_results);
void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
lockdep_assert_held(&wiphy->mtx);
trace_cfg80211_sched_scan_stopped(wiphy, reqid);
__cfg80211_stop_sched_scan(rdev, reqid, true);
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
{
wiphy_lock(wiphy);
cfg80211_sched_scan_stopped_locked(wiphy, reqid);
wiphy_unlock(wiphy);
}
EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
struct cfg80211_sched_scan_request *req,
bool driver_initiated)
{
lockdep_assert_held(&rdev->wiphy.mtx);
if (!driver_initiated) {
int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
if (err)
return err;
}
nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
cfg80211_del_sched_scan_req(rdev, req);
return 0;
}
int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
u64 reqid, bool driver_initiated)
{
struct cfg80211_sched_scan_request *sched_scan_req;
lockdep_assert_held(&rdev->wiphy.mtx);
sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
if (!sched_scan_req)
return -ENOENT;
return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
driver_initiated);
}
void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
unsigned long age_secs)
{
struct cfg80211_internal_bss *bss;
unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list)
bss->ts -= age_jiffies;
spin_unlock_bh(&rdev->bss_lock);
}
void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
{
__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
}
void cfg80211_bss_flush(struct wiphy *wiphy)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
spin_lock_bh(&rdev->bss_lock);
__cfg80211_bss_expire(rdev, jiffies);
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_bss_flush);
const struct element *
cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
const u8 *match, unsigned int match_len,
unsigned int match_offset)
{
const struct element *elem;
for_each_element_id(elem, eid, ies, len) {
if (elem->datalen >= match_offset + match_len &&
!memcmp(elem->data + match_offset, match, match_len))
return elem;
}
return NULL;
}
EXPORT_SYMBOL(cfg80211_find_elem_match);
const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
const u8 *ies,
unsigned int len)
{
const struct element *elem;
u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
int match_len = (oui_type < 0) ? 3 : sizeof(match);
if (WARN_ON(oui_type > 0xff))
return NULL;
elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
match, match_len, 0);
if (!elem || elem->datalen < 4)
return NULL;
return elem;
}
EXPORT_SYMBOL(cfg80211_find_vendor_elem);
/**
* enum bss_compare_mode - BSS compare mode
* @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
* @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
* @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
*/
enum bss_compare_mode {
BSS_CMP_REGULAR,
BSS_CMP_HIDE_ZLEN,
BSS_CMP_HIDE_NUL,
};
static int cmp_bss(struct cfg80211_bss *a,
struct cfg80211_bss *b,
enum bss_compare_mode mode)
{
const struct cfg80211_bss_ies *a_ies, *b_ies;
const u8 *ie1 = NULL;
const u8 *ie2 = NULL;
int i, r;
if (a->channel != b->channel)
return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
(a->channel->center_freq * 1000 + a->channel->freq_offset);
a_ies = rcu_access_pointer(a->ies);
if (!a_ies)
return -1;
b_ies = rcu_access_pointer(b->ies);
if (!b_ies)
return 1;
if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
a_ies->data, a_ies->len);
if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
int mesh_id_cmp;
if (ie1[1] == ie2[1])
mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
else
mesh_id_cmp = ie2[1] - ie1[1];
ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
b_ies->data, b_ies->len);
if (ie1 && ie2) {
if (mesh_id_cmp)
return mesh_id_cmp;
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
}
}
r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
if (r)
return r;
ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
if (!ie1 && !ie2)
return 0;
/*
* Note that with "hide_ssid", the function returns a match if
* the already-present BSS ("b") is a hidden SSID beacon for
* the new BSS ("a").
*/
/* sort missing IE before (left of) present IE */
if (!ie1)
return -1;
if (!ie2)
return 1;
switch (mode) {
case BSS_CMP_HIDE_ZLEN:
/*
* In ZLEN mode we assume the BSS entry we're
* looking for has a zero-length SSID. So if
* the one we're looking at right now has that,
* return 0. Otherwise, return the difference
* in length, but since we're looking for the
* 0-length it's really equivalent to returning
* the length of the one we're looking at.
*
* No content comparison is needed as we assume
* the content length is zero.
*/
return ie2[1];
case BSS_CMP_REGULAR:
default:
/* sort by length first, then by contents */
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
case BSS_CMP_HIDE_NUL:
if (ie1[1] != ie2[1])
return ie2[1] - ie1[1];
/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
for (i = 0; i < ie2[1]; i++)
if (ie2[i + 2])
return -1;
return 0;
}
}
static bool cfg80211_bss_type_match(u16 capability,
enum nl80211_band band,
enum ieee80211_bss_type bss_type)
{
bool ret = true;
u16 mask, val;
if (bss_type == IEEE80211_BSS_TYPE_ANY)
return ret;
if (band == NL80211_BAND_60GHZ) {
mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_DMG_TYPE_AP;
break;
case IEEE80211_BSS_TYPE_PBSS:
val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
break;
default:
return false;
}
} else {
mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
switch (bss_type) {
case IEEE80211_BSS_TYPE_ESS:
val = WLAN_CAPABILITY_ESS;
break;
case IEEE80211_BSS_TYPE_IBSS:
val = WLAN_CAPABILITY_IBSS;
break;
case IEEE80211_BSS_TYPE_MBSS:
val = 0;
break;
default:
return false;
}
}
ret = ((capability & mask) == val);
return ret;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
struct cfg80211_bss *__cfg80211_get_bss(struct wiphy *wiphy,
struct ieee80211_channel *channel,
const u8 *bssid,
const u8 *ssid, size_t ssid_len,
enum ieee80211_bss_type bss_type,
enum ieee80211_privacy privacy,
u32 use_for)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *res = NULL;
unsigned long now = jiffies;
int bss_privacy;
trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
privacy);
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band, bss_type))
continue;
bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
(privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
continue;
if (channel && bss->pub.channel != channel)
continue;
if (!is_valid_ether_addr(bss->pub.bssid))
continue;
if ((bss->pub.use_for & use_for) != use_for)
continue;
/* Don't get expired BSS structs */
if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
!atomic_read(&bss->hold))
continue;
if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
res = bss;
bss_ref_get(rdev, res);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (!res)
return NULL;
trace_cfg80211_return_bss(&res->pub);
return &res->pub;
}
EXPORT_SYMBOL(__cfg80211_get_bss);
static bool rb_insert_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
struct rb_node **p = &rdev->bss_tree.rb_node;
struct rb_node *parent = NULL;
struct cfg80211_internal_bss *tbss;
int cmp;
while (*p) {
parent = *p;
tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
if (WARN_ON(!cmp)) {
/* will sort of leak this BSS */
return false;
}
if (cmp < 0)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&bss->rbn, parent, p);
rb_insert_color(&bss->rbn, &rdev->bss_tree);
return true;
}
static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *res,
enum bss_compare_mode mode)
{
struct rb_node *n = rdev->bss_tree.rb_node;
struct cfg80211_internal_bss *bss;
int r;
while (n) {
bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
r = cmp_bss(&res->pub, &bss->pub, mode);
if (r == 0)
return bss;
else if (r < 0)
n = n->rb_left;
else
n = n->rb_right;
}
return NULL;
}
static void cfg80211_insert_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
if (!rb_insert_bss(rdev, bss))
return;
list_add_tail(&bss->list, &rdev->bss_list);
rdev->bss_entries++;
}
static void cfg80211_rehash_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *bss)
{
lockdep_assert_held(&rdev->bss_lock);
rb_erase(&bss->rbn, &rdev->bss_tree);
if (!rb_insert_bss(rdev, bss)) {
list_del(&bss->list);
if (!list_empty(&bss->hidden_list))
list_del_init(&bss->hidden_list);
if (!list_empty(&bss->pub.nontrans_list))
list_del_init(&bss->pub.nontrans_list);
rdev->bss_entries--;
}
rdev->bss_generation++;
}
static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *new)
{
const struct cfg80211_bss_ies *ies;
struct cfg80211_internal_bss *bss;
const u8 *ie;
int i, ssidlen;
u8 fold = 0;
u32 n_entries = 0;
ies = rcu_access_pointer(new->pub.beacon_ies);
if (WARN_ON(!ies))
return false;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie) {
/* nothing to do */
return true;
}
ssidlen = ie[1];
for (i = 0; i < ssidlen; i++)
fold |= ie[2 + i];
if (fold) {
/* not a hidden SSID */
return true;
}
/* This is the bad part ... */
list_for_each_entry(bss, &rdev->bss_list, list) {
/*
* we're iterating all the entries anyway, so take the
* opportunity to validate the list length accounting
*/
n_entries++;
if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
continue;
if (bss->pub.channel != new->pub.channel)
continue;
if (rcu_access_pointer(bss->pub.beacon_ies))
continue;
ies = rcu_access_pointer(bss->pub.ies);
if (!ies)
continue;
ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
if (!ie)
continue;
if (ssidlen && ie[1] != ssidlen)
continue;
if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
continue;
if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
list_del(&bss->hidden_list);
/* combine them */
list_add(&bss->hidden_list, &new->hidden_list);
bss->pub.hidden_beacon_bss = &new->pub;
new->refcount += bss->refcount;
rcu_assign_pointer(bss->pub.beacon_ies,
new->pub.beacon_ies);
}
WARN_ONCE(n_entries != rdev->bss_entries,
"rdev bss entries[%d]/list[len:%d] corruption\n",
rdev->bss_entries, n_entries);
return true;
}
static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
const struct cfg80211_bss_ies *new_ies,
const struct cfg80211_bss_ies *old_ies)
{
struct cfg80211_internal_bss *bss;
/* Assign beacon IEs to all sub entries */
list_for_each_entry(bss, &known->hidden_list, hidden_list) {
const struct cfg80211_bss_ies *ies;
ies = rcu_access_pointer(bss->pub.beacon_ies);
WARN_ON(ies != old_ies);
rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
}
}
static void cfg80211_check_stuck_ecsa(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *known,
const struct cfg80211_bss_ies *old)
{
const struct ieee80211_ext_chansw_ie *ecsa;
const struct element *elem_new, *elem_old;
const struct cfg80211_bss_ies *new, *bcn;
if (known->pub.proberesp_ecsa_stuck)
return;
new = rcu_dereference_protected(known->pub.proberesp_ies,
lockdep_is_held(&rdev->bss_lock));
if (WARN_ON(!new))
return;
if (new->tsf - old->tsf < USEC_PER_SEC)
return;
elem_old = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
old->data, old->len);
if (!elem_old)
return;
elem_new = cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
new->data, new->len);
if (!elem_new)
return;
bcn = rcu_dereference_protected(known->pub.beacon_ies,
lockdep_is_held(&rdev->bss_lock));
if (bcn &&
cfg80211_find_elem(WLAN_EID_EXT_CHANSWITCH_ANN,
bcn->data, bcn->len))
return;
if (elem_new->datalen != elem_old->datalen)
return;
if (elem_new->datalen < sizeof(struct ieee80211_ext_chansw_ie))
return;
if (memcmp(elem_new->data, elem_old->data, elem_new->datalen))
return;
ecsa = (void *)elem_new->data;
if (!ecsa->mode)
return;
if (ecsa->new_ch_num !=
ieee80211_frequency_to_channel(known->pub.channel->center_freq))
return;
known->pub.proberesp_ecsa_stuck = 1;
}
static bool
cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *known,
struct cfg80211_internal_bss *new,
bool signal_valid)
{
lockdep_assert_held(&rdev->bss_lock);
/* Update IEs */
if (rcu_access_pointer(new->pub.proberesp_ies)) {
const struct cfg80211_bss_ies *old;
old = rcu_access_pointer(known->pub.proberesp_ies);
rcu_assign_pointer(known->pub.proberesp_ies,
new->pub.proberesp_ies);
/* Override possible earlier Beacon frame IEs */
rcu_assign_pointer(known->pub.ies,
new->pub.proberesp_ies);
if (old) {
cfg80211_check_stuck_ecsa(rdev, known, old);
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
}
if (rcu_access_pointer(new->pub.beacon_ies)) {
const struct cfg80211_bss_ies *old;
if (known->pub.hidden_beacon_bss &&
!list_empty(&known->hidden_list)) {
const struct cfg80211_bss_ies *f;
/* The known BSS struct is one of the probe
* response members of a group, but we're
* receiving a beacon (beacon_ies in the new
* bss is used). This can only mean that the
* AP changed its beacon from not having an
* SSID to showing it, which is confusing so
* drop this information.
*/
f = rcu_access_pointer(new->pub.beacon_ies);
kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
return false;
}
old = rcu_access_pointer(known->pub.beacon_ies);
rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
/* Override IEs if they were from a beacon before */
if (old == rcu_access_pointer(known->pub.ies))
rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
cfg80211_update_hidden_bsses(known,
rcu_access_pointer(new->pub.beacon_ies),
old);
if (old)
kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
}
known->pub.beacon_interval = new->pub.beacon_interval;
/* don't update the signal if beacon was heard on
* adjacent channel.
*/
if (signal_valid)
known->pub.signal = new->pub.signal;
known->pub.capability = new->pub.capability;
known->ts = new->ts;
known->ts_boottime = new->ts_boottime;
known->parent_tsf = new->parent_tsf;
known->pub.chains = new->pub.chains;
memcpy(known->pub.chain_signal, new->pub.chain_signal,
IEEE80211_MAX_CHAINS);
ether_addr_copy(known->parent_bssid, new->parent_bssid);
known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
known->pub.bssid_index = new->pub.bssid_index;
known->pub.use_for &= new->pub.use_for;
known->pub.cannot_use_reasons = new->pub.cannot_use_reasons;
known->bss_source = new->bss_source;
return true;
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
static struct cfg80211_internal_bss *
__cfg80211_bss_update(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *tmp,
bool signal_valid, unsigned long ts)
{
struct cfg80211_internal_bss *found = NULL;
struct cfg80211_bss_ies *ies;
if (WARN_ON(!tmp->pub.channel))
goto free_ies;
tmp->ts = ts;
if (WARN_ON(!rcu_access_pointer(tmp->pub.ies)))
goto free_ies;
found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
if (found) {
if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
return NULL;
} else {
struct cfg80211_internal_bss *new;
struct cfg80211_internal_bss *hidden;
/*
* create a copy -- the "res" variable that is passed in
* is allocated on the stack since it's not needed in the
* more common case of an update
*/
new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
GFP_ATOMIC);
if (!new)
goto free_ies;
memcpy(new, tmp, sizeof(*new));
new->refcount = 1;
INIT_LIST_HEAD(&new->hidden_list);
INIT_LIST_HEAD(&new->pub.nontrans_list);
/* we'll set this later if it was non-NULL */
new->pub.transmitted_bss = NULL;
if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
if (!hidden)
hidden = rb_find_bss(rdev, tmp,
BSS_CMP_HIDE_NUL);
if (hidden) {
new->pub.hidden_beacon_bss = &hidden->pub;
list_add(&new->hidden_list,
&hidden->hidden_list);
hidden->refcount++;
ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
rcu_assign_pointer(new->pub.beacon_ies,
hidden->pub.beacon_ies);
if (ies)
kfree_rcu(ies, rcu_head);
}
} else {
/*
* Ok so we found a beacon, and don't have an entry. If
* it's a beacon with hidden SSID, we might be in for an
* expensive search for any probe responses that should
* be grouped with this beacon for updates ...
*/
if (!cfg80211_combine_bsses(rdev, new)) {
bss_ref_put(rdev, new);
return NULL;
}
}
if (rdev->bss_entries >= bss_entries_limit &&
!cfg80211_bss_expire_oldest(rdev)) {
bss_ref_put(rdev, new);
return NULL;
}
/* This must be before the call to bss_ref_get */
if (tmp->pub.transmitted_bss) {
new->pub.transmitted_bss = tmp->pub.transmitted_bss;
bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
}
cfg80211_insert_bss(rdev, new);
found = new;
}
rdev->bss_generation++;
bss_ref_get(rdev, found);
return found;
free_ies:
ies = (void *)rcu_access_pointer(tmp->pub.beacon_ies);
if (ies)
kfree_rcu(ies, rcu_head);
ies = (void *)rcu_access_pointer(tmp->pub.proberesp_ies);
if (ies)
kfree_rcu(ies, rcu_head);
return NULL;
}
struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device *rdev,
struct cfg80211_internal_bss *tmp,
bool signal_valid, unsigned long ts)
{
struct cfg80211_internal_bss *res;
spin_lock_bh(&rdev->bss_lock);
res = __cfg80211_bss_update(rdev, tmp, signal_valid, ts);
spin_unlock_bh(&rdev->bss_lock);
return res;
}
int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
enum nl80211_band band)
{
const struct element *tmp;
if (band == NL80211_BAND_6GHZ) {
struct ieee80211_he_operation *he_oper;
tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
ielen);
if (tmp && tmp->datalen >= sizeof(*he_oper) &&
tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
he_oper = (void *)&tmp->data[1];
he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
if (!he_6ghz_oper)
return -1;
return he_6ghz_oper->primary;
}
} else if (band == NL80211_BAND_S1GHZ) {
tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
return s1gop->oper_ch;
}
} else {
tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
if (tmp && tmp->datalen == 1)
return tmp->data[0];
tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
if (tmp &&
tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
struct ieee80211_ht_operation *htop = (void *)tmp->data;
return htop->primary_chan;
}
}
return -1;
}
EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
/*
* Update RX channel information based on the available frame payload
* information. This is mainly for the 2.4 GHz band where frames can be received
* from neighboring channels and the Beacon frames use the DSSS Parameter Set
* element to indicate the current (transmitting) channel, but this might also
* be needed on other bands if RX frequency does not match with the actual
* operating channel of a BSS, or if the AP reports a different primary channel.
*/
static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
struct ieee80211_channel *channel)
{
u32 freq;
int channel_number;
struct ieee80211_channel *alt_channel;
channel_number = cfg80211_get_ies_channel_number(ie, ielen,
channel->band);
if (channel_number < 0) {
/* No channel information in frame payload */
return channel;
}
freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
/*
* Frame info (beacon/prob res) is the same as received channel,
* no need for further processing.
*/
if (freq == ieee80211_channel_to_khz(channel))
return channel;
alt_channel = ieee80211_get_channel_khz(wiphy, freq);
if (!alt_channel) {
if (channel->band == NL80211_BAND_2GHZ ||
channel->band == NL80211_BAND_6GHZ) {
/*
* Better not allow unexpected channels when that could
* be going beyond the 1-11 range (e.g., discovering
* BSS on channel 12 when radio is configured for
* channel 11) or beyond the 6 GHz channel range.
*/
return NULL;
}
/* No match for the payload channel number - ignore it */
return channel;
}
/*
* Use the channel determined through the payload channel number
* instead of the RX channel reported by the driver.
*/
if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
return NULL;
return alt_channel;
}
struct cfg80211_inform_single_bss_data {
struct cfg80211_inform_bss *drv_data;
enum cfg80211_bss_frame_type ftype;
struct ieee80211_channel *channel;
u8 bssid[ETH_ALEN];
u64 tsf;
u16 capability;
u16 beacon_interval;
const u8 *ie;
size_t ielen;
enum bss_source_type bss_source;
/* Set if reporting bss_source != BSS_SOURCE_DIRECT */
struct cfg80211_bss *source_bss;
u8 max_bssid_indicator;
u8 bssid_index;
u8 use_for;
u64 cannot_use_reasons;
};
enum ieee80211_ap_reg_power
cfg80211_get_6ghz_power_type(const u8 *elems, size_t elems_len)
{
const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
struct ieee80211_he_operation *he_oper;
const struct element *tmp;
tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION,
elems, elems_len);
if (!tmp || tmp->datalen < sizeof(*he_oper) + 1 ||
tmp->datalen < ieee80211_he_oper_size(tmp->data + 1))
return IEEE80211_REG_UNSET_AP;
he_oper = (void *)&tmp->data[1];
he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
if (!he_6ghz_oper)
return IEEE80211_REG_UNSET_AP;
switch (u8_get_bits(he_6ghz_oper->control,
IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
case IEEE80211_6GHZ_CTRL_REG_INDOOR_LPI_AP:
return IEEE80211_REG_LPI_AP;
case IEEE80211_6GHZ_CTRL_REG_SP_AP:
case IEEE80211_6GHZ_CTRL_REG_INDOOR_SP_AP:
return IEEE80211_REG_SP_AP;
case IEEE80211_6GHZ_CTRL_REG_VLP_AP:
return IEEE80211_REG_VLP_AP;
default:
return IEEE80211_REG_UNSET_AP;
}
}
static bool cfg80211_6ghz_power_type_valid(const u8 *elems, size_t elems_len,
const u32 flags)
{
switch (cfg80211_get_6ghz_power_type(elems, elems_len)) {
case IEEE80211_REG_LPI_AP:
return true;
case IEEE80211_REG_SP_AP:
return !(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT);
case IEEE80211_REG_VLP_AP:
return !(flags & IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT);
default:
return false;
}
}
/* Returned bss is reference counted and must be cleaned up appropriately. */
static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *data,
gfp_t gfp)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_inform_bss *drv_data = data->drv_data;
struct cfg80211_bss_ies *ies;
struct ieee80211_channel *channel;
struct cfg80211_internal_bss tmp = {}, *res;
int bss_type;
bool signal_valid;
unsigned long ts;
if (WARN_ON(!wiphy))
return NULL;
if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
(drv_data->signal < 0 || drv_data->signal > 100)))
return NULL;
if (WARN_ON(data->bss_source != BSS_SOURCE_DIRECT && !data->source_bss))
return NULL;
channel = data->channel;
if (!channel)
channel = cfg80211_get_bss_channel(wiphy, data->ie, data->ielen,
drv_data->chan);
if (!channel)
return NULL;
if (channel->band == NL80211_BAND_6GHZ &&
!cfg80211_6ghz_power_type_valid(data->ie, data->ielen,
channel->flags)) {
data->use_for = 0;
data->cannot_use_reasons =
NL80211_BSS_CANNOT_USE_6GHZ_PWR_MISMATCH;
}
memcpy(tmp.pub.bssid, data->bssid, ETH_ALEN);
tmp.pub.channel = channel;
if (data->bss_source != BSS_SOURCE_STA_PROFILE)
tmp.pub.signal = drv_data->signal;
else
tmp.pub.signal = 0;
tmp.pub.beacon_interval = data->beacon_interval;
tmp.pub.capability = data->capability;
tmp.ts_boottime = drv_data->boottime_ns;
tmp.parent_tsf = drv_data->parent_tsf;
ether_addr_copy(tmp.parent_bssid, drv_data->parent_bssid);
tmp.pub.chains = drv_data->chains;
memcpy(tmp.pub.chain_signal, drv_data->chain_signal,
IEEE80211_MAX_CHAINS);
tmp.pub.use_for = data->use_for;
tmp.pub.cannot_use_reasons = data->cannot_use_reasons;
tmp.bss_source = data->bss_source;
switch (data->bss_source) {
case BSS_SOURCE_MBSSID:
tmp.pub.transmitted_bss = data->source_bss;
fallthrough;
case BSS_SOURCE_STA_PROFILE:
ts = bss_from_pub(data->source_bss)->ts;
tmp.pub.bssid_index = data->bssid_index;
tmp.pub.max_bssid_indicator = data->max_bssid_indicator;
break;
case BSS_SOURCE_DIRECT:
ts = jiffies;
if (channel->band == NL80211_BAND_60GHZ) {
bss_type = data->capability &
WLAN_CAPABILITY_DMG_TYPE_MASK;
if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
regulatory_hint_found_beacon(wiphy, channel,
gfp);
} else {
if (data->capability & WLAN_CAPABILITY_ESS)
regulatory_hint_found_beacon(wiphy, channel,
gfp);
}
break;
}
/*
* If we do not know here whether the IEs are from a Beacon or Probe
* Response frame, we need to pick one of the options and only use it
* with the driver that does not provide the full Beacon/Probe Response
* frame. Use Beacon frame pointer to avoid indicating that this should
* override the IEs pointer should we have received an earlier
* indication of Probe Response data.
*/
ies = kzalloc(sizeof(*ies) + data->ielen, gfp);
if (!ies)
return NULL;
ies->len = data->ielen;
ies->tsf = data->tsf;
ies->from_beacon = false;
memcpy(ies->data, data->ie, data->ielen);
switch (data->ftype) {
case CFG80211_BSS_FTYPE_BEACON:
case CFG80211_BSS_FTYPE_S1G_BEACON:
ies->from_beacon = true;
fallthrough;
case CFG80211_BSS_FTYPE_UNKNOWN:
rcu_assign_pointer(tmp.pub.beacon_ies, ies);
break;
case CFG80211_BSS_FTYPE_PRESP:
rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
break;
}
rcu_assign_pointer(tmp.pub.ies, ies);
signal_valid = drv_data->chan == channel;
spin_lock_bh(&rdev->bss_lock);
res = __cfg80211_bss_update(rdev, &tmp, signal_valid, ts);
if (!res)
goto drop;
rdev_inform_bss(rdev, &res->pub, ies, drv_data->drv_data);
if (data->bss_source == BSS_SOURCE_MBSSID) {
/* this is a nontransmitting bss, we need to add it to
* transmitting bss' list if it is not there
*/
if (cfg80211_add_nontrans_list(data->source_bss, &res->pub)) {
if (__cfg80211_unlink_bss(rdev, res)) {
rdev->bss_generation++;
res = NULL;
}
}
if (!res)
goto drop;
}
spin_unlock_bh(&rdev->bss_lock);
trace_cfg80211_return_bss(&res->pub);
/* __cfg80211_bss_update gives us a referenced result */
return &res->pub;
drop:
spin_unlock_bh(&rdev->bss_lock);
return NULL;
}
static const struct element
*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem)
{
const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
const struct element *next_mbssid;
const struct element *next_sub;
next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
mbssid_end,
ielen - (mbssid_end - ie));
/*
* If it is not the last subelement in current MBSSID IE or there isn't
* a next MBSSID IE - profile is complete.
*/
if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
!next_mbssid)
return NULL;
/* For any length error, just return NULL */
if (next_mbssid->datalen < 4)
return NULL;
next_sub = (void *)&next_mbssid->data[1];
if (next_mbssid->data + next_mbssid->datalen <
next_sub->data + next_sub->datalen)
return NULL;
if (next_sub->id != 0 || next_sub->datalen < 2)
return NULL;
/*
* Check if the first element in the next sub element is a start
* of a new profile
*/
return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
NULL : next_mbssid;
}
size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
const struct element *mbssid_elem,
const struct element *sub_elem,
u8 *merged_ie, size_t max_copy_len)
{
size_t copied_len = sub_elem->datalen;
const struct element *next_mbssid;
if (sub_elem->datalen > max_copy_len)
return 0;
memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
mbssid_elem,
sub_elem))) {
const struct element *next_sub = (void *)&next_mbssid->data[1];
if (copied_len + next_sub->datalen > max_copy_len)
break;
memcpy(merged_ie + copied_len, next_sub->data,
next_sub->datalen);
copied_len += next_sub->datalen;
}
return copied_len;
}
EXPORT_SYMBOL(cfg80211_merge_profile);
static void
cfg80211_parse_mbssid_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data data = {
.drv_data = tx_data->drv_data,
.ftype = tx_data->ftype,
.tsf = tx_data->tsf,
.beacon_interval = tx_data->beacon_interval,
.source_bss = source_bss,
.bss_source = BSS_SOURCE_MBSSID,
.use_for = tx_data->use_for,
.cannot_use_reasons = tx_data->cannot_use_reasons,
};
const u8 *mbssid_index_ie;
const struct element *elem, *sub;
u8 *new_ie, *profile;
u64 seen_indices = 0;
struct cfg80211_bss *bss;
if (!source_bss)
return;
if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
tx_data->ie, tx_data->ielen))
return;
if (!wiphy->support_mbssid)
return;
if (wiphy->support_only_he_mbssid &&
!cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY,
tx_data->ie, tx_data->ielen))
return;
new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
if (!new_ie)
return;
profile = kmalloc(tx_data->ielen, gfp);
if (!profile)
goto out;
for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID,
tx_data->ie, tx_data->ielen) {
if (elem->datalen < 4)
continue;
if (elem->data[0] < 1 || (int)elem->data[0] > 8)
continue;
for_each_element(sub, elem->data + 1, elem->datalen - 1) {
u8 profile_len;
if (sub->id != 0 || sub->datalen < 4) {
/* not a valid BSS profile */
continue;
}
if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
sub->data[1] != 2) {
/* The first element within the Nontransmitted
* BSSID Profile is not the Nontransmitted
* BSSID Capability element.
*/
continue;
}
memset(profile, 0, tx_data->ielen);
profile_len = cfg80211_merge_profile(tx_data->ie,
tx_data->ielen,
elem,
sub,
profile,
tx_data->ielen);
/* found a Nontransmitted BSSID Profile */
mbssid_index_ie = cfg80211_find_ie
(WLAN_EID_MULTI_BSSID_IDX,
profile, profile_len);
if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
mbssid_index_ie[2] == 0 ||
mbssid_index_ie[2] > 46 ||
mbssid_index_ie[2] >= (1 << elem->data[0])) {
/* No valid Multiple BSSID-Index element */
continue;
}
if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
/* We don't support legacy split of a profile */
net_dbg_ratelimited("Partial info for BSSID index %d\n",
mbssid_index_ie[2]);
seen_indices |= BIT_ULL(mbssid_index_ie[2]);
data.bssid_index = mbssid_index_ie[2];
data.max_bssid_indicator = elem->data[0];
cfg80211_gen_new_bssid(tx_data->bssid,
data.max_bssid_indicator,
data.bssid_index,
data.bssid);
memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
data.ie = new_ie;
data.ielen = cfg80211_gen_new_ie(tx_data->ie,
tx_data->ielen,
profile,
profile_len,
new_ie,
IEEE80211_MAX_DATA_LEN);
if (!data.ielen)
continue;
data.capability = get_unaligned_le16(profile + 2);
bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
if (!bss)
break;
cfg80211_put_bss(wiphy, bss);
}
}
out:
kfree(new_ie);
kfree(profile);
}
ssize_t cfg80211_defragment_element(const struct element *elem, const u8 *ies,
size_t ieslen, u8 *data, size_t data_len,
u8 frag_id)
{
const struct element *next;
ssize_t copied;
u8 elem_datalen;
if (!elem)
return -EINVAL;
/* elem might be invalid after the memmove */
next = (void *)(elem->data + elem->datalen);
elem_datalen = elem->datalen;
if (elem->id == WLAN_EID_EXTENSION) {
copied = elem->datalen - 1;
if (data) {
if (copied > data_len)
return -ENOSPC;
memmove(data, elem->data + 1, copied);
}
} else {
copied = elem->datalen;
if (data) {
if (copied > data_len)
return -ENOSPC;
memmove(data, elem->data, copied);
}
}
/* Fragmented elements must have 255 bytes */
if (elem_datalen < 255)
return copied;
for (elem = next;
elem->data < ies + ieslen &&
elem->data + elem->datalen <= ies + ieslen;
elem = next) {
/* elem might be invalid after the memmove */
next = (void *)(elem->data + elem->datalen);
if (elem->id != frag_id)
break;
elem_datalen = elem->datalen;
if (data) {
if (copied + elem_datalen > data_len)
return -ENOSPC;
memmove(data + copied, elem->data, elem_datalen);
}
copied += elem_datalen;
/* Only the last fragment may be short */
if (elem_datalen != 255)
break;
}
return copied;
}
EXPORT_SYMBOL(cfg80211_defragment_element);
struct cfg80211_mle {
struct ieee80211_multi_link_elem *mle;
struct ieee80211_mle_per_sta_profile
*sta_prof[IEEE80211_MLD_MAX_NUM_LINKS];
ssize_t sta_prof_len[IEEE80211_MLD_MAX_NUM_LINKS];
u8 data[];
};
static struct cfg80211_mle *
cfg80211_defrag_mle(const struct element *mle, const u8 *ie, size_t ielen,
gfp_t gfp)
{
const struct element *elem;
struct cfg80211_mle *res;
size_t buf_len;
ssize_t mle_len;
u8 common_size, idx;
if (!mle || !ieee80211_mle_size_ok(mle->data + 1, mle->datalen - 1))
return NULL;
/* Required length for first defragmentation */
buf_len = mle->datalen - 1;
for_each_element(elem, mle->data + mle->datalen,
ielen - sizeof(*mle) + mle->datalen) {
if (elem->id != WLAN_EID_FRAGMENT)
break;
buf_len += elem->datalen;
}
res = kzalloc(struct_size(res, data, buf_len), gfp);
if (!res)
return NULL;
mle_len = cfg80211_defragment_element(mle, ie, ielen,
res->data, buf_len,
WLAN_EID_FRAGMENT);
if (mle_len < 0)
goto error;
res->mle = (void *)res->data;
/* Find the sub-element area in the buffer */
common_size = ieee80211_mle_common_size((u8 *)res->mle);
ie = res->data + common_size;
ielen = mle_len - common_size;
idx = 0;
for_each_element_id(elem, IEEE80211_MLE_SUBELEM_PER_STA_PROFILE,
ie, ielen) {
res->sta_prof[idx] = (void *)elem->data;
res->sta_prof_len[idx] = elem->datalen;
idx++;
if (idx >= IEEE80211_MLD_MAX_NUM_LINKS)
break;
}
if (!for_each_element_completed(elem, ie, ielen))
goto error;
/* Defragment sta_info in-place */
for (idx = 0; idx < IEEE80211_MLD_MAX_NUM_LINKS && res->sta_prof[idx];
idx++) {
if (res->sta_prof_len[idx] < 255)
continue;
elem = (void *)res->sta_prof[idx] - 2;
if (idx + 1 < ARRAY_SIZE(res->sta_prof) &&
res->sta_prof[idx + 1])
buf_len = (u8 *)res->sta_prof[idx + 1] -
(u8 *)res->sta_prof[idx];
else
buf_len = ielen + ie - (u8 *)elem;
res->sta_prof_len[idx] =
cfg80211_defragment_element(elem,
(u8 *)elem, buf_len,
(u8 *)res->sta_prof[idx],
buf_len,
IEEE80211_MLE_SUBELEM_FRAGMENT);
if (res->sta_prof_len[idx] < 0)
goto error;
}
return res;
error:
kfree(res);
return NULL;
}
struct tbtt_info_iter_data {
const struct ieee80211_neighbor_ap_info *ap_info;
u8 param_ch_count;
u32 use_for;
u8 mld_id, link_id;
bool non_tx;
};
static enum cfg80211_rnr_iter_ret
cfg802121_mld_ap_rnr_iter(void *_data, u8 type,
const struct ieee80211_neighbor_ap_info *info,
const u8 *tbtt_info, u8 tbtt_info_len)
{
const struct ieee80211_rnr_mld_params *mld_params;
struct tbtt_info_iter_data *data = _data;
u8 link_id;
bool non_tx = false;
if (type == IEEE80211_TBTT_INFO_TYPE_TBTT &&
tbtt_info_len >= offsetofend(struct ieee80211_tbtt_info_ge_11,
mld_params)) {
const struct ieee80211_tbtt_info_ge_11 *tbtt_info_ge_11 =
(void *)tbtt_info;
non_tx = (tbtt_info_ge_11->bss_params &
(IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID |
IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID)) ==
IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
mld_params = &tbtt_info_ge_11->mld_params;
} else if (type == IEEE80211_TBTT_INFO_TYPE_MLD &&
tbtt_info_len >= sizeof(struct ieee80211_rnr_mld_params))
mld_params = (void *)tbtt_info;
else
return RNR_ITER_CONTINUE;
link_id = le16_get_bits(mld_params->params,
IEEE80211_RNR_MLD_PARAMS_LINK_ID);
if (data->mld_id != mld_params->mld_id)
return RNR_ITER_CONTINUE;
if (data->link_id != link_id)
return RNR_ITER_CONTINUE;
data->ap_info = info;
data->param_ch_count =
le16_get_bits(mld_params->params,
IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
data->non_tx = non_tx;
if (type == IEEE80211_TBTT_INFO_TYPE_TBTT)
data->use_for = NL80211_BSS_USE_FOR_ALL;
else
data->use_for = NL80211_BSS_USE_FOR_MLD_LINK;
return RNR_ITER_BREAK;
}
static u8
cfg80211_rnr_info_for_mld_ap(const u8 *ie, size_t ielen, u8 mld_id, u8 link_id,
const struct ieee80211_neighbor_ap_info **ap_info,
u8 *param_ch_count, bool *non_tx)
{
struct tbtt_info_iter_data data = {
.mld_id = mld_id,
.link_id = link_id,
};
cfg80211_iter_rnr(ie, ielen, cfg802121_mld_ap_rnr_iter, &data);
*ap_info = data.ap_info;
*param_ch_count = data.param_ch_count;
*non_tx = data.non_tx;
return data.use_for;
}
static struct element *
cfg80211_gen_reporter_rnr(struct cfg80211_bss *source_bss, bool is_mbssid,
bool same_mld, u8 link_id, u8 bss_change_count,
gfp_t gfp)
{
const struct cfg80211_bss_ies *ies;
struct ieee80211_neighbor_ap_info ap_info;
struct ieee80211_tbtt_info_ge_11 tbtt_info;
u32 short_ssid;
const struct element *elem;
struct element *res;
/*
* We only generate the RNR to permit ML lookups. For that we do not
* need an entry for the corresponding transmitting BSS, lets just skip
* it even though it would be easy to add.
*/
if (!same_mld)
return NULL;
/* We could use tx_data->ies if we change cfg80211_calc_short_ssid */
rcu_read_lock();
ies = rcu_dereference(source_bss->ies);
ap_info.tbtt_info_len = offsetofend(typeof(tbtt_info), mld_params);
ap_info.tbtt_info_hdr =
u8_encode_bits(IEEE80211_TBTT_INFO_TYPE_TBTT,
IEEE80211_AP_INFO_TBTT_HDR_TYPE) |
u8_encode_bits(0, IEEE80211_AP_INFO_TBTT_HDR_COUNT);
ap_info.channel = ieee80211_frequency_to_channel(source_bss->channel->center_freq);
/* operating class */
elem = cfg80211_find_elem(WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
ies->data, ies->len);
if (elem && elem->datalen >= 1) {
ap_info.op_class = elem->data[0];
} else {
struct cfg80211_chan_def chandef;
/* The AP is not providing us with anything to work with. So
* make up a somewhat reasonable operating class, but don't
* bother with it too much as no one will ever use the
* information.
*/
cfg80211_chandef_create(&chandef, source_bss->channel,
NL80211_CHAN_NO_HT);
if (!ieee80211_chandef_to_operating_class(&chandef,
&ap_info.op_class))
goto out_unlock;
}
/* Just set TBTT offset and PSD 20 to invalid/unknown */
tbtt_info.tbtt_offset = 255;
tbtt_info.psd_20 = IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED;
memcpy(tbtt_info.bssid, source_bss->bssid, ETH_ALEN);
if (cfg80211_calc_short_ssid(ies, &elem, &short_ssid))
goto out_unlock;
rcu_read_unlock();
tbtt_info.short_ssid = cpu_to_le32(short_ssid);
tbtt_info.bss_params = IEEE80211_RNR_TBTT_PARAMS_SAME_SSID;
if (is_mbssid) {
tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID;
tbtt_info.bss_params |= IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID;
}
tbtt_info.mld_params.mld_id = 0;
tbtt_info.mld_params.params =
le16_encode_bits(link_id, IEEE80211_RNR_MLD_PARAMS_LINK_ID) |
le16_encode_bits(bss_change_count,
IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT);
res = kzalloc(struct_size(res, data,
sizeof(ap_info) + ap_info.tbtt_info_len),
gfp);
if (!res)
return NULL;
/* Copy the data */
res->id = WLAN_EID_REDUCED_NEIGHBOR_REPORT;
res->datalen = sizeof(ap_info) + ap_info.tbtt_info_len;
memcpy(res->data, &ap_info, sizeof(ap_info));
memcpy(res->data + sizeof(ap_info), &tbtt_info, ap_info.tbtt_info_len);
return res;
out_unlock:
rcu_read_unlock();
return NULL;
}
static void
cfg80211_parse_ml_elem_sta_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
const struct element *elem,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data data = {
.drv_data = tx_data->drv_data,
.ftype = tx_data->ftype,
.source_bss = source_bss,
.bss_source = BSS_SOURCE_STA_PROFILE,
};
struct element *reporter_rnr = NULL;
struct ieee80211_multi_link_elem *ml_elem;
struct cfg80211_mle *mle;
const struct element *ssid_elem;
const u8 *ssid = NULL;
size_t ssid_len = 0;
u16 control;
u8 ml_common_len;
u8 *new_ie = NULL;
struct cfg80211_bss *bss;
u8 mld_id, reporter_link_id, bss_change_count;
u16 seen_links = 0;
u8 i;
if (!ieee80211_mle_type_ok(elem->data + 1,
IEEE80211_ML_CONTROL_TYPE_BASIC,
elem->datalen - 1))
return;
ml_elem = (void *)(elem->data + 1);
control = le16_to_cpu(ml_elem->control);
ml_common_len = ml_elem->variable[0];
/* Must be present when transmitted by an AP (in a probe response) */
if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) ||
!(control & IEEE80211_MLC_BASIC_PRES_LINK_ID) ||
!(control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP))
return;
reporter_link_id = ieee80211_mle_get_link_id(elem->data + 1);
bss_change_count = ieee80211_mle_get_bss_param_ch_cnt(elem->data + 1);
/*
* The MLD ID of the reporting AP is always zero. It is set if the AP
* is part of an MBSSID set and will be non-zero for ML Elements
* relating to a nontransmitted BSS (matching the Multi-BSSID Index,
* Draft P802.11be_D3.2, 35.3.4.2)
*/
mld_id = ieee80211_mle_get_mld_id(elem->data + 1);
/* Fully defrag the ML element for sta information/profile iteration */
mle = cfg80211_defrag_mle(elem, tx_data->ie, tx_data->ielen, gfp);
if (!mle)
return;
/* No point in doing anything if there is no per-STA profile */
if (!mle->sta_prof[0])
goto out;
new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
if (!new_ie)
goto out;
reporter_rnr = cfg80211_gen_reporter_rnr(source_bss,
u16_get_bits(control,
IEEE80211_MLC_BASIC_PRES_MLD_ID),
mld_id == 0, reporter_link_id,
bss_change_count,
gfp);
ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, tx_data->ie,
tx_data->ielen);
if (ssid_elem) {
ssid = ssid_elem->data;
ssid_len = ssid_elem->datalen;
}
for (i = 0; i < ARRAY_SIZE(mle->sta_prof) && mle->sta_prof[i]; i++) {
const struct ieee80211_neighbor_ap_info *ap_info;
enum nl80211_band band;
u32 freq;
const u8 *profile;
ssize_t profile_len;
u8 param_ch_count;
u8 link_id, use_for;
bool non_tx;
if (!ieee80211_mle_basic_sta_prof_size_ok((u8 *)mle->sta_prof[i],
mle->sta_prof_len[i]))
continue;
control = le16_to_cpu(mle->sta_prof[i]->control);
if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
continue;
link_id = u16_get_bits(control,
IEEE80211_MLE_STA_CONTROL_LINK_ID);
if (seen_links & BIT(link_id))
break;
seen_links |= BIT(link_id);
if (!(control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) ||
!(control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) ||
!(control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT))
continue;
memcpy(data.bssid, mle->sta_prof[i]->variable, ETH_ALEN);
data.beacon_interval =
get_unaligned_le16(mle->sta_prof[i]->variable + 6);
data.tsf = tx_data->tsf +
get_unaligned_le64(mle->sta_prof[i]->variable + 8);
/* sta_info_len counts itself */
profile = mle->sta_prof[i]->variable +
mle->sta_prof[i]->sta_info_len - 1;
profile_len = (u8 *)mle->sta_prof[i] + mle->sta_prof_len[i] -
profile;
if (profile_len < 2)
continue;
data.capability = get_unaligned_le16(profile);
profile += 2;
profile_len -= 2;
/* Find in RNR to look up channel information */
use_for = cfg80211_rnr_info_for_mld_ap(tx_data->ie,
tx_data->ielen,
mld_id, link_id,
&ap_info,
&param_ch_count,
&non_tx);
if (!use_for)
continue;
/*
* As of 802.11be_D5.0, the specification does not give us any
* way of discovering both the MaxBSSID and the Multiple-BSSID
* Index. It does seem like the Multiple-BSSID Index element
* may be provided, but section 9.4.2.45 explicitly forbids
* including a Multiple-BSSID Element (in this case without any
* subelements).
* Without both pieces of information we cannot calculate the
* reference BSSID, so simply ignore the BSS.
*/
if (non_tx)
continue;
/* We could sanity check the BSSID is included */
if (!ieee80211_operating_class_to_band(ap_info->op_class,
&band))
continue;
freq = ieee80211_channel_to_freq_khz(ap_info->channel, band);
data.channel = ieee80211_get_channel_khz(wiphy, freq);
/* Skip if RNR element specifies an unsupported channel */
if (!data.channel)
continue;
/* Skip if BSS entry generated from MBSSID or DIRECT source
* frame data available already.
*/
bss = cfg80211_get_bss(wiphy, data.channel, data.bssid, ssid,
ssid_len, IEEE80211_BSS_TYPE_ANY,
IEEE80211_PRIVACY_ANY);
if (bss) {
struct cfg80211_internal_bss *ibss = bss_from_pub(bss);
if (data.capability == bss->capability &&
ibss->bss_source != BSS_SOURCE_STA_PROFILE) {
cfg80211_put_bss(wiphy, bss);
continue;
}
cfg80211_put_bss(wiphy, bss);
}
if (use_for == NL80211_BSS_USE_FOR_MLD_LINK &&
!(wiphy->flags & WIPHY_FLAG_SUPPORTS_NSTR_NONPRIMARY)) {
use_for = 0;
data.cannot_use_reasons =
NL80211_BSS_CANNOT_USE_NSTR_NONPRIMARY;
}
data.use_for = use_for;
/* Generate new elements */
memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
data.ie = new_ie;
data.ielen = cfg80211_gen_new_ie(tx_data->ie, tx_data->ielen,
profile, profile_len,
new_ie,
IEEE80211_MAX_DATA_LEN);
if (!data.ielen)
continue;
/* The generated elements do not contain:
* - Basic ML element
* - A TBTT entry in the RNR for the transmitting AP
*
* This information is needed both internally and in userspace
* as such, we should append it here.
*/
if (data.ielen + 3 + sizeof(*ml_elem) + ml_common_len >
IEEE80211_MAX_DATA_LEN)
continue;
/* Copy the Basic Multi-Link element including the common
* information, and then fix up the link ID and BSS param
* change count.
* Note that the ML element length has been verified and we
* also checked that it contains the link ID.
*/
new_ie[data.ielen++] = WLAN_EID_EXTENSION;
new_ie[data.ielen++] = 1 + sizeof(*ml_elem) + ml_common_len;
new_ie[data.ielen++] = WLAN_EID_EXT_EHT_MULTI_LINK;
memcpy(new_ie + data.ielen, ml_elem,
sizeof(*ml_elem) + ml_common_len);
new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN] = link_id;
new_ie[data.ielen + sizeof(*ml_elem) + 1 + ETH_ALEN + 1] =
param_ch_count;
data.ielen += sizeof(*ml_elem) + ml_common_len;
if (reporter_rnr && (use_for & NL80211_BSS_USE_FOR_NORMAL)) {
if (data.ielen + sizeof(struct element) +
reporter_rnr->datalen > IEEE80211_MAX_DATA_LEN)
continue;
memcpy(new_ie + data.ielen, reporter_rnr,
sizeof(struct element) + reporter_rnr->datalen);
data.ielen += sizeof(struct element) +
reporter_rnr->datalen;
}
bss = cfg80211_inform_single_bss_data(wiphy, &data, gfp);
if (!bss)
break;
cfg80211_put_bss(wiphy, bss);
}
out:
kfree(reporter_rnr);
kfree(new_ie);
kfree(mle);
}
static void cfg80211_parse_ml_sta_data(struct wiphy *wiphy,
struct cfg80211_inform_single_bss_data *tx_data,
struct cfg80211_bss *source_bss,
gfp_t gfp)
{
const struct element *elem;
if (!source_bss)
return;
if (tx_data->ftype != CFG80211_BSS_FTYPE_PRESP)
return;
for_each_element_extid(elem, WLAN_EID_EXT_EHT_MULTI_LINK,
tx_data->ie, tx_data->ielen)
cfg80211_parse_ml_elem_sta_data(wiphy, tx_data, source_bss,
elem, gfp);
}
struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
enum cfg80211_bss_frame_type ftype,
const u8 *bssid, u64 tsf, u16 capability,
u16 beacon_interval, const u8 *ie, size_t ielen,
gfp_t gfp)
{
struct cfg80211_inform_single_bss_data inform_data = {
.drv_data = data,
.ftype = ftype,
.tsf = tsf,
.capability = capability,
.beacon_interval = beacon_interval,
.ie = ie,
.ielen = ielen,
.use_for = data->restrict_use ?
data->use_for :
NL80211_BSS_USE_FOR_ALL,
.cannot_use_reasons = data->cannot_use_reasons,
};
struct cfg80211_bss *res;
memcpy(inform_data.bssid, bssid, ETH_ALEN);
res = cfg80211_inform_single_bss_data(wiphy, &inform_data, gfp);
if (!res)
return NULL;
/* don't do any further MBSSID/ML handling for S1G */
if (ftype == CFG80211_BSS_FTYPE_S1G_BEACON)
return res;
cfg80211_parse_mbssid_data(wiphy, &inform_data, res, gfp);
cfg80211_parse_ml_sta_data(wiphy, &inform_data, res, gfp);
return res;
}
EXPORT_SYMBOL(cfg80211_inform_bss_data);
struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
struct cfg80211_inform_bss *data,
struct ieee80211_mgmt *mgmt, size_t len,
gfp_t gfp)
{
size_t min_hdr_len;
struct ieee80211_ext *ext = NULL;
enum cfg80211_bss_frame_type ftype;
u16 beacon_interval;
const u8 *bssid;
u16 capability;
const u8 *ie;
size_t ielen;
u64 tsf;
if (WARN_ON(!mgmt))
return NULL;
if (WARN_ON(!wiphy))
return NULL;
BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
offsetof(struct ieee80211_mgmt, u.beacon.variable));
trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
ext = (void *) mgmt;
if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
min_hdr_len = offsetof(struct ieee80211_ext,
u.s1g_short_beacon.variable);
else
min_hdr_len = offsetof(struct ieee80211_ext,
u.s1g_beacon.variable);
} else {
/* same for beacons */
min_hdr_len = offsetof(struct ieee80211_mgmt,
u.probe_resp.variable);
}
if (WARN_ON(len < min_hdr_len))
return NULL;
ielen = len - min_hdr_len;
ie = mgmt->u.probe_resp.variable;
if (ext) {
const struct ieee80211_s1g_bcn_compat_ie *compat;
const struct element *elem;
if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
ie = ext->u.s1g_short_beacon.variable;
else
ie = ext->u.s1g_beacon.variable;
elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT, ie, ielen);
if (!elem)
return NULL;
if (elem->datalen < sizeof(*compat))
return NULL;
compat = (void *)elem->data;
bssid = ext->u.s1g_beacon.sa;
capability = le16_to_cpu(compat->compat_info);
beacon_interval = le16_to_cpu(compat->beacon_int);
} else {
bssid = mgmt->bssid;
beacon_interval = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
}
tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
if (ieee80211_is_probe_resp(mgmt->frame_control))
ftype = CFG80211_BSS_FTYPE_PRESP;
else if (ext)
ftype = CFG80211_BSS_FTYPE_S1G_BEACON;
else
ftype = CFG80211_BSS_FTYPE_BEACON;
return cfg80211_inform_bss_data(wiphy, data, ftype,
bssid, tsf, capability,
beacon_interval, ie, ielen,
gfp);
}
EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
if (!pub)
return;
spin_lock_bh(&rdev->bss_lock);
bss_ref_get(rdev, bss_from_pub(pub));
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_ref_bss);
void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
if (!pub)
return;
spin_lock_bh(&rdev->bss_lock);
bss_ref_put(rdev, bss_from_pub(pub));
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_put_bss);
void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss, *tmp1;
struct cfg80211_bss *nontrans_bss, *tmp;
if (WARN_ON(!pub))
return;
bss = bss_from_pub(pub);
spin_lock_bh(&rdev->bss_lock);
if (list_empty(&bss->list))
goto out;
list_for_each_entry_safe(nontrans_bss, tmp,
&pub->nontrans_list,
nontrans_list) {
tmp1 = bss_from_pub(nontrans_bss);
if (__cfg80211_unlink_bss(rdev, tmp1))
rdev->bss_generation++;
}
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
out:
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_unlink_bss);
void cfg80211_bss_iter(struct wiphy *wiphy,
struct cfg80211_chan_def *chandef,
void (*iter)(struct wiphy *wiphy,
struct cfg80211_bss *bss,
void *data),
void *iter_data)
{
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *bss;
spin_lock_bh(&rdev->bss_lock);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
false))
iter(wiphy, &bss->pub, iter_data);
}
spin_unlock_bh(&rdev->bss_lock);
}
EXPORT_SYMBOL(cfg80211_bss_iter);
void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
unsigned int link_id,
struct ieee80211_channel *chan)
{
struct wiphy *wiphy = wdev->wiphy;
struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
struct cfg80211_internal_bss *new = NULL;
struct cfg80211_internal_bss *bss;
struct cfg80211_bss *nontrans_bss;
struct cfg80211_bss *tmp;
spin_lock_bh(&rdev->bss_lock);
/*
* Some APs use CSA also for bandwidth changes, i.e., without actually
* changing the control channel, so no need to update in such a case.
*/
if (cbss->pub.channel == chan)
goto done;
/* use transmitting bss */
if (cbss->pub.transmitted_bss)
cbss = bss_from_pub(cbss->pub.transmitted_bss);
cbss->pub.channel = chan;
list_for_each_entry(bss, &rdev->bss_list, list) {
if (!cfg80211_bss_type_match(bss->pub.capability,
bss->pub.channel->band,
wdev->conn_bss_type))
continue;
if (bss == cbss)
continue;
if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
new = bss;
break;
}
}
if (new) {
/* to save time, update IEs for transmitting bss only */
cfg80211_update_known_bss(rdev, cbss, new, false);
new->pub.proberesp_ies = NULL;
new->pub.beacon_ies = NULL;
list_for_each_entry_safe(nontrans_bss, tmp,
&new->pub.nontrans_list,
nontrans_list) {
bss = bss_from_pub(nontrans_bss);
if (__cfg80211_unlink_bss(rdev, bss))
rdev->bss_generation++;
}
WARN_ON(atomic_read(&new->hold));
if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
rdev->bss_generation++;
}
cfg80211_rehash_bss(rdev, cbss);
list_for_each_entry_safe(nontrans_bss, tmp,
&cbss->pub.nontrans_list,
nontrans_list) {
bss = bss_from_pub(nontrans_bss);
bss->pub.channel = chan;
cfg80211_rehash_bss(rdev, bss);
}
done:
spin_unlock_bh(&rdev->bss_lock);
}
#ifdef CONFIG_CFG80211_WEXT
static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
{
struct cfg80211_registered_device *rdev;
struct net_device *dev;
ASSERT_RTNL();
dev = dev_get_by_index(net, ifindex);
if (!dev)
return ERR_PTR(-ENODEV);
if (dev->ieee80211_ptr)
rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
else
rdev = ERR_PTR(-ENODEV);
dev_put(dev);
return rdev;
}
int cfg80211_wext_siwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct cfg80211_registered_device *rdev;
struct wiphy *wiphy;
struct iw_scan_req *wreq = NULL;
struct cfg80211_scan_request *creq;
int i, err, n_channels = 0;
enum nl80211_band band;
if (!netif_running(dev))
return -ENETDOWN;
if (wrqu->data.length == sizeof(struct iw_scan_req))
wreq = (struct iw_scan_req *)extra;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg)
return -EBUSY;
wiphy = &rdev->wiphy;
/* Determine number of channels, needed to allocate creq */
if (wreq && wreq->num_channels) {
/* Passed from userspace so should be checked */
if (unlikely(wreq->num_channels > IW_MAX_FREQUENCIES))
return -EINVAL;
n_channels = wreq->num_channels;
} else {
n_channels = ieee80211_get_num_supported_channels(wiphy);
}
creq = kzalloc(struct_size(creq, channels, n_channels) +
sizeof(struct cfg80211_ssid),
GFP_ATOMIC);
if (!creq)
return -ENOMEM;
creq->wiphy = wiphy;
creq->wdev = dev->ieee80211_ptr;
/* SSIDs come after channels */
creq->ssids = (void *)creq + struct_size(creq, channels, n_channels);
creq->n_channels = n_channels;
creq->n_ssids = 1;
creq->scan_start = jiffies;
/* translate "Scan on frequencies" request */
i = 0;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
int j;
if (!wiphy->bands[band])
continue;
for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
/* ignore disabled channels */
if (wiphy->bands[band]->channels[j].flags &
IEEE80211_CHAN_DISABLED)
continue;
/* If we have a wireless request structure and the
* wireless request specifies frequencies, then search
* for the matching hardware channel.
*/
if (wreq && wreq->num_channels) {
int k;
int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
for (k = 0; k < wreq->num_channels; k++) {
struct iw_freq *freq =
&wreq->channel_list[k];
int wext_freq =
cfg80211_wext_freq(freq);
if (wext_freq == wiphy_freq)
goto wext_freq_found;
}
goto wext_freq_not_found;
}
wext_freq_found:
creq->channels[i] = &wiphy->bands[band]->channels[j];
i++;
wext_freq_not_found: ;
}
}
/* No channels found? */
if (!i) {
err = -EINVAL;
goto out;
}
/* Set real number of channels specified in creq->channels[] */
creq->n_channels = i;
/* translate "Scan for SSID" request */
if (wreq) {
if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
err = -EINVAL;
goto out;
}
memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
creq->ssids[0].ssid_len = wreq->essid_len;
}
if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE) {
creq->ssids = NULL;
creq->n_ssids = 0;
}
}
for (i = 0; i < NUM_NL80211_BANDS; i++)
if (wiphy->bands[i])
creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
eth_broadcast_addr(creq->bssid);
wiphy_lock(&rdev->wiphy);
rdev->scan_req = creq;
err = rdev_scan(rdev, creq);
if (err) {
rdev->scan_req = NULL;
/* creq will be freed below */
} else {
nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
/* creq now owned by driver */
creq = NULL;
dev_hold(dev);
}
wiphy_unlock(&rdev->wiphy);
out:
kfree(creq);
return err;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
static char *ieee80211_scan_add_ies(struct iw_request_info *info,
const struct cfg80211_bss_ies *ies,
char *current_ev, char *end_buf)
{
const u8 *pos, *end, *next;
struct iw_event iwe;
if (!ies)
return current_ev;
/*
* If needed, fragment the IEs buffer (at IE boundaries) into short
* enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
*/
pos = ies->data;
end = pos + ies->len;
while (end - pos > IW_GENERIC_IE_MAX) {
next = pos + 2 + pos[1];
while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
next = next + 2 + next[1];
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = next - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
pos = next;
}
if (end > pos) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = end - pos;
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe,
(void *)pos);
if (IS_ERR(current_ev))
return current_ev;
}
return current_ev;
}
static char *
ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
struct cfg80211_internal_bss *bss, char *current_ev,
char *end_buf)
{
const struct cfg80211_bss_ies *ies;
struct iw_event iwe;
const u8 *ie;
u8 buf[50];
u8 *cfg, *p, *tmp;
int rem, i, sig;
bool ismesh = false;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->pub.channel->center_freq;
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
if (IS_ERR(current_ev))
return current_ev;
if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
IW_QUAL_NOISE_INVALID |
IW_QUAL_QUAL_UPDATED;
switch (wiphy->signal_type) {
case CFG80211_SIGNAL_TYPE_MBM:
sig = bss->pub.signal / 100;
iwe.u.qual.level = sig;
iwe.u.qual.updated |= IW_QUAL_DBM;
if (sig < -110) /* rather bad */
sig = -110;
else if (sig > -40) /* perfect */
sig = -40;
/* will give a range of 0 .. 70 */
iwe.u.qual.qual = sig + 110;
break;
case CFG80211_SIGNAL_TYPE_UNSPEC:
iwe.u.qual.level = bss->pub.signal;
/* will give range 0 .. 100 */
iwe.u.qual.qual = bss->pub.signal;
break;
default:
/* not reached */
break;
}
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_QUAL_LEN);
if (IS_ERR(current_ev))
return current_ev;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, "");
if (IS_ERR(current_ev))
return current_ev;
rcu_read_lock();
ies = rcu_dereference(bss->pub.ies);
rem = ies->len;
ie = ies->data;
while (rem >= 2) {
/* invalid data */
if (ie[1] > rem - 2)
break;
switch (ie[0]) {
case WLAN_EID_SSID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_ID:
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = ie[1];
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf, &iwe,
(u8 *)ie + 2);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_MESH_CONFIG:
ismesh = true;
if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
break;
cfg = (u8 *)ie + 2;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf,
"Mesh Network Path Selection Protocol ID: 0x%02X",
cfg[0]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Path Selection Metric ID: 0x%02X",
cfg[1]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Congestion Control Mode ID: 0x%02X",
cfg[2]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Synchronization ID: 0x%02X",
cfg[3]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Authentication ID: 0x%02X",
cfg[4]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Formation Info: 0x%02X",
cfg[5]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
iwe.u.data.length = sprintf(buf,
"Capabilities: 0x%02X",
cfg[6]);
current_ev = iwe_stream_add_point_check(info,
current_ev,
end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
break;
case WLAN_EID_SUPP_RATES:
case WLAN_EID_EXT_SUPP_RATES:
/* display all supported rates in readable format */
p = current_ev + iwe_stream_lcp_len(info);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < ie[1]; i++) {
iwe.u.bitrate.value =
((ie[i + 2] & 0x7f) * 500000);
tmp = p;
p = iwe_stream_add_value(info, current_ev, p,
end_buf, &iwe,
IW_EV_PARAM_LEN);
if (p == tmp) {
current_ev = ERR_PTR(-E2BIG);
goto unlock;
}
}
current_ev = p;
break;
}
rem -= ie[1] + 2;
ie += ie[1] + 2;
}
if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
ismesh) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (ismesh)
iwe.u.mode = IW_MODE_MESH;
else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event_check(info, current_ev,
end_buf, &iwe,
IW_EV_UINT_LEN);
if (IS_ERR(current_ev))
goto unlock;
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf, "tsf=%016llx",
(unsigned long long)(ies->tsf));
current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
&iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = sprintf(buf, " Last beacon: %ums ago",
elapsed_jiffies_msecs(bss->ts));
current_ev = iwe_stream_add_point_check(info, current_ev,
end_buf, &iwe, buf);
if (IS_ERR(current_ev))
goto unlock;
current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
unlock:
rcu_read_unlock();
return current_ev;
}
static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
struct iw_request_info *info,
char *buf, size_t len)
{
char *current_ev = buf;
char *end_buf = buf + len;
struct cfg80211_internal_bss *bss;
int err = 0;
spin_lock_bh(&rdev->bss_lock);
cfg80211_bss_expire(rdev);
list_for_each_entry(bss, &rdev->bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
err = -E2BIG;
break;
}
current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
current_ev, end_buf);
if (IS_ERR(current_ev)) {
err = PTR_ERR(current_ev);
break;
}
}
spin_unlock_bh(&rdev->bss_lock);
if (err)
return err;
return current_ev - buf;
}
int cfg80211_wext_giwscan(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrqu, char *extra)
{
struct iw_point *data = &wrqu->data;
struct cfg80211_registered_device *rdev;
int res;
if (!netif_running(dev))
return -ENETDOWN;
rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
if (IS_ERR(rdev))
return PTR_ERR(rdev);
if (rdev->scan_req || rdev->scan_msg)
return -EAGAIN;
res = ieee80211_scan_results(rdev, info, extra, data->length);
data->length = 0;
if (res >= 0) {
data->length = res;
res = 0;
}
return res;
}
EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
#endif