| // SPDX-License-Identifier: GPL-2.0 |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/ioctl.h> |
| |
| #include <linux/sizes.h> |
| |
| #include <kvm_util.h> |
| #include <processor.h> |
| |
| #include "ucall_common.h" |
| |
| struct kvm_coalesced_io { |
| struct kvm_coalesced_mmio_ring *ring; |
| uint32_t ring_size; |
| uint64_t mmio_gpa; |
| uint64_t *mmio; |
| |
| /* |
| * x86-only, but define pio_port for all architectures to minimize the |
| * amount of #ifdeffery and complexity, without having to sacrifice |
| * verbose error messages. |
| */ |
| uint8_t pio_port; |
| }; |
| |
| static struct kvm_coalesced_io kvm_builtin_io_ring; |
| |
| #ifdef __x86_64__ |
| static const int has_pio = 1; |
| #else |
| static const int has_pio = 0; |
| #endif |
| |
| static void guest_code(struct kvm_coalesced_io *io) |
| { |
| int i, j; |
| |
| for (;;) { |
| for (j = 0; j < 1 + has_pio; j++) { |
| /* |
| * KVM always leaves one free entry, i.e. exits to |
| * userspace before the last entry is filled. |
| */ |
| for (i = 0; i < io->ring_size - 1; i++) { |
| #ifdef __x86_64__ |
| if (i & 1) |
| outl(io->pio_port, io->pio_port + i); |
| else |
| #endif |
| WRITE_ONCE(*io->mmio, io->mmio_gpa + i); |
| } |
| #ifdef __x86_64__ |
| if (j & 1) |
| outl(io->pio_port, io->pio_port + i); |
| else |
| #endif |
| WRITE_ONCE(*io->mmio, io->mmio_gpa + i); |
| } |
| GUEST_SYNC(0); |
| |
| WRITE_ONCE(*io->mmio, io->mmio_gpa + i); |
| #ifdef __x86_64__ |
| outl(io->pio_port, io->pio_port + i); |
| #endif |
| } |
| } |
| |
| static void vcpu_run_and_verify_io_exit(struct kvm_vcpu *vcpu, |
| struct kvm_coalesced_io *io, |
| uint32_t ring_start, |
| uint32_t expected_exit) |
| { |
| const bool want_pio = expected_exit == KVM_EXIT_IO; |
| struct kvm_coalesced_mmio_ring *ring = io->ring; |
| struct kvm_run *run = vcpu->run; |
| uint32_t pio_value; |
| |
| WRITE_ONCE(ring->first, ring_start); |
| WRITE_ONCE(ring->last, ring_start); |
| |
| vcpu_run(vcpu); |
| |
| /* |
| * Annoyingly, reading PIO data is safe only for PIO exits, otherwise |
| * data_offset is garbage, e.g. an MMIO gpa. |
| */ |
| if (run->exit_reason == KVM_EXIT_IO) |
| pio_value = *(uint32_t *)((void *)run + run->io.data_offset); |
| else |
| pio_value = 0; |
| |
| TEST_ASSERT((!want_pio && (run->exit_reason == KVM_EXIT_MMIO && run->mmio.is_write && |
| run->mmio.phys_addr == io->mmio_gpa && run->mmio.len == 8 && |
| *(uint64_t *)run->mmio.data == io->mmio_gpa + io->ring_size - 1)) || |
| (want_pio && (run->exit_reason == KVM_EXIT_IO && run->io.port == io->pio_port && |
| run->io.direction == KVM_EXIT_IO_OUT && run->io.count == 1 && |
| pio_value == io->pio_port + io->ring_size - 1)), |
| "For start = %u, expected exit on %u-byte %s write 0x%llx = %lx, got exit_reason = %u (%s)\n " |
| "(MMIO addr = 0x%llx, write = %u, len = %u, data = %lx)\n " |
| "(PIO port = 0x%x, write = %u, len = %u, count = %u, data = %x", |
| ring_start, want_pio ? 4 : 8, want_pio ? "PIO" : "MMIO", |
| want_pio ? (unsigned long long)io->pio_port : io->mmio_gpa, |
| (want_pio ? io->pio_port : io->mmio_gpa) + io->ring_size - 1, run->exit_reason, |
| run->exit_reason == KVM_EXIT_MMIO ? "MMIO" : run->exit_reason == KVM_EXIT_IO ? "PIO" : "other", |
| run->mmio.phys_addr, run->mmio.is_write, run->mmio.len, *(uint64_t *)run->mmio.data, |
| run->io.port, run->io.direction, run->io.size, run->io.count, pio_value); |
| } |
| |
| static void vcpu_run_and_verify_coalesced_io(struct kvm_vcpu *vcpu, |
| struct kvm_coalesced_io *io, |
| uint32_t ring_start, |
| uint32_t expected_exit) |
| { |
| struct kvm_coalesced_mmio_ring *ring = io->ring; |
| int i; |
| |
| vcpu_run_and_verify_io_exit(vcpu, io, ring_start, expected_exit); |
| |
| TEST_ASSERT((ring->last + 1) % io->ring_size == ring->first, |
| "Expected ring to be full (minus 1), first = %u, last = %u, max = %u, start = %u", |
| ring->first, ring->last, io->ring_size, ring_start); |
| |
| for (i = 0; i < io->ring_size - 1; i++) { |
| uint32_t idx = (ring->first + i) % io->ring_size; |
| struct kvm_coalesced_mmio *entry = &ring->coalesced_mmio[idx]; |
| |
| #ifdef __x86_64__ |
| if (i & 1) |
| TEST_ASSERT(entry->phys_addr == io->pio_port && |
| entry->len == 4 && entry->pio && |
| *(uint32_t *)entry->data == io->pio_port + i, |
| "Wanted 4-byte port I/O 0x%x = 0x%x in entry %u, got %u-byte %s 0x%llx = 0x%x", |
| io->pio_port, io->pio_port + i, i, |
| entry->len, entry->pio ? "PIO" : "MMIO", |
| entry->phys_addr, *(uint32_t *)entry->data); |
| else |
| #endif |
| TEST_ASSERT(entry->phys_addr == io->mmio_gpa && |
| entry->len == 8 && !entry->pio, |
| "Wanted 8-byte MMIO to 0x%lx = %lx in entry %u, got %u-byte %s 0x%llx = 0x%lx", |
| io->mmio_gpa, io->mmio_gpa + i, i, |
| entry->len, entry->pio ? "PIO" : "MMIO", |
| entry->phys_addr, *(uint64_t *)entry->data); |
| } |
| } |
| |
| static void test_coalesced_io(struct kvm_vcpu *vcpu, |
| struct kvm_coalesced_io *io, uint32_t ring_start) |
| { |
| struct kvm_coalesced_mmio_ring *ring = io->ring; |
| |
| kvm_vm_register_coalesced_io(vcpu->vm, io->mmio_gpa, 8, false /* pio */); |
| #ifdef __x86_64__ |
| kvm_vm_register_coalesced_io(vcpu->vm, io->pio_port, 8, true /* pio */); |
| #endif |
| |
| vcpu_run_and_verify_coalesced_io(vcpu, io, ring_start, KVM_EXIT_MMIO); |
| #ifdef __x86_64__ |
| vcpu_run_and_verify_coalesced_io(vcpu, io, ring_start, KVM_EXIT_IO); |
| #endif |
| |
| /* |
| * Verify ucall, which may use non-coalesced MMIO or PIO, generates an |
| * immediate exit. |
| */ |
| WRITE_ONCE(ring->first, ring_start); |
| WRITE_ONCE(ring->last, ring_start); |
| vcpu_run(vcpu); |
| TEST_ASSERT_EQ(get_ucall(vcpu, NULL), UCALL_SYNC); |
| TEST_ASSERT_EQ(ring->first, ring_start); |
| TEST_ASSERT_EQ(ring->last, ring_start); |
| |
| /* Verify that non-coalesced MMIO/PIO generates an exit to userspace. */ |
| kvm_vm_unregister_coalesced_io(vcpu->vm, io->mmio_gpa, 8, false /* pio */); |
| vcpu_run_and_verify_io_exit(vcpu, io, ring_start, KVM_EXIT_MMIO); |
| |
| #ifdef __x86_64__ |
| kvm_vm_unregister_coalesced_io(vcpu->vm, io->pio_port, 8, true /* pio */); |
| vcpu_run_and_verify_io_exit(vcpu, io, ring_start, KVM_EXIT_IO); |
| #endif |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| struct kvm_vcpu *vcpu; |
| struct kvm_vm *vm; |
| int i; |
| |
| TEST_REQUIRE(kvm_has_cap(KVM_CAP_COALESCED_MMIO)); |
| |
| #ifdef __x86_64__ |
| TEST_REQUIRE(kvm_has_cap(KVM_CAP_COALESCED_PIO)); |
| #endif |
| |
| vm = vm_create_with_one_vcpu(&vcpu, guest_code); |
| |
| kvm_builtin_io_ring = (struct kvm_coalesced_io) { |
| /* |
| * The I/O ring is a kernel-allocated page whose address is |
| * relative to each vCPU's run page, with the page offset |
| * provided by KVM in the return of KVM_CAP_COALESCED_MMIO. |
| */ |
| .ring = (void *)vcpu->run + |
| (kvm_check_cap(KVM_CAP_COALESCED_MMIO) * getpagesize()), |
| |
| /* |
| * The size of the I/O ring is fixed, but KVM defines the sized |
| * based on the kernel's PAGE_SIZE. Thus, userspace must query |
| * the host's page size at runtime to compute the ring size. |
| */ |
| .ring_size = (getpagesize() - sizeof(struct kvm_coalesced_mmio_ring)) / |
| sizeof(struct kvm_coalesced_mmio), |
| |
| /* |
| * Arbitrary address+port (MMIO mustn't overlap memslots), with |
| * the MMIO GPA identity mapped in the guest. |
| */ |
| .mmio_gpa = 4ull * SZ_1G, |
| .mmio = (uint64_t *)(4ull * SZ_1G), |
| .pio_port = 0x80, |
| }; |
| |
| virt_map(vm, (uint64_t)kvm_builtin_io_ring.mmio, kvm_builtin_io_ring.mmio_gpa, 1); |
| |
| sync_global_to_guest(vm, kvm_builtin_io_ring); |
| vcpu_args_set(vcpu, 1, &kvm_builtin_io_ring); |
| |
| for (i = 0; i < kvm_builtin_io_ring.ring_size; i++) |
| test_coalesced_io(vcpu, &kvm_builtin_io_ring, i); |
| |
| kvm_vm_free(vm); |
| return 0; |
| } |