blob: 788ce5e46470a4ad16666c20c67c5bd1e2f16722 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <math.h>
#include <stdio.h>
#include "evsel.h"
#include "stat.h"
#include "color.h"
#include "debug.h"
#include "pmu.h"
#include "rblist.h"
#include "evlist.h"
#include "expr.h"
#include "metricgroup.h"
#include "cgroup.h"
#include "units.h"
#include <linux/zalloc.h>
#include "iostat.h"
/*
* AGGR_GLOBAL: Use CPU 0
* AGGR_SOCKET: Use first CPU of socket
* AGGR_DIE: Use first CPU of die
* AGGR_CORE: Use first CPU of core
* AGGR_NONE: Use matching CPU
* AGGR_THREAD: Not supported?
*/
struct runtime_stat rt_stat;
struct stats walltime_nsecs_stats;
struct rusage_stats ru_stats;
struct saved_value {
struct rb_node rb_node;
struct evsel *evsel;
enum stat_type type;
int ctx;
int cpu_map_idx;
struct cgroup *cgrp;
struct runtime_stat *stat;
struct stats stats;
u64 metric_total;
int metric_other;
};
static int saved_value_cmp(struct rb_node *rb_node, const void *entry)
{
struct saved_value *a = container_of(rb_node,
struct saved_value,
rb_node);
const struct saved_value *b = entry;
if (a->cpu_map_idx != b->cpu_map_idx)
return a->cpu_map_idx - b->cpu_map_idx;
/*
* Previously the rbtree was used to link generic metrics.
* The keys were evsel/cpu. Now the rbtree is extended to support
* per-thread shadow stats. For shadow stats case, the keys
* are cpu/type/ctx/stat (evsel is NULL). For generic metrics
* case, the keys are still evsel/cpu (type/ctx/stat are 0 or NULL).
*/
if (a->type != b->type)
return a->type - b->type;
if (a->ctx != b->ctx)
return a->ctx - b->ctx;
if (a->cgrp != b->cgrp)
return (char *)a->cgrp < (char *)b->cgrp ? -1 : +1;
if (a->evsel == NULL && b->evsel == NULL) {
if (a->stat == b->stat)
return 0;
if ((char *)a->stat < (char *)b->stat)
return -1;
return 1;
}
if (a->evsel == b->evsel)
return 0;
if ((char *)a->evsel < (char *)b->evsel)
return -1;
return +1;
}
static struct rb_node *saved_value_new(struct rblist *rblist __maybe_unused,
const void *entry)
{
struct saved_value *nd = malloc(sizeof(struct saved_value));
if (!nd)
return NULL;
memcpy(nd, entry, sizeof(struct saved_value));
return &nd->rb_node;
}
static void saved_value_delete(struct rblist *rblist __maybe_unused,
struct rb_node *rb_node)
{
struct saved_value *v;
BUG_ON(!rb_node);
v = container_of(rb_node, struct saved_value, rb_node);
free(v);
}
static struct saved_value *saved_value_lookup(struct evsel *evsel,
int cpu_map_idx,
bool create,
enum stat_type type,
int ctx,
struct runtime_stat *st,
struct cgroup *cgrp)
{
struct rblist *rblist;
struct rb_node *nd;
struct saved_value dm = {
.cpu_map_idx = cpu_map_idx,
.evsel = evsel,
.type = type,
.ctx = ctx,
.stat = st,
.cgrp = cgrp,
};
rblist = &st->value_list;
/* don't use context info for clock events */
if (type == STAT_NSECS)
dm.ctx = 0;
nd = rblist__find(rblist, &dm);
if (nd)
return container_of(nd, struct saved_value, rb_node);
if (create) {
rblist__add_node(rblist, &dm);
nd = rblist__find(rblist, &dm);
if (nd)
return container_of(nd, struct saved_value, rb_node);
}
return NULL;
}
void runtime_stat__init(struct runtime_stat *st)
{
struct rblist *rblist = &st->value_list;
rblist__init(rblist);
rblist->node_cmp = saved_value_cmp;
rblist->node_new = saved_value_new;
rblist->node_delete = saved_value_delete;
}
void runtime_stat__exit(struct runtime_stat *st)
{
rblist__exit(&st->value_list);
}
void perf_stat__init_shadow_stats(void)
{
runtime_stat__init(&rt_stat);
}
static int evsel_context(struct evsel *evsel)
{
int ctx = 0;
if (evsel->core.attr.exclude_kernel)
ctx |= CTX_BIT_KERNEL;
if (evsel->core.attr.exclude_user)
ctx |= CTX_BIT_USER;
if (evsel->core.attr.exclude_hv)
ctx |= CTX_BIT_HV;
if (evsel->core.attr.exclude_host)
ctx |= CTX_BIT_HOST;
if (evsel->core.attr.exclude_idle)
ctx |= CTX_BIT_IDLE;
return ctx;
}
static void reset_stat(struct runtime_stat *st)
{
struct rblist *rblist;
struct rb_node *pos, *next;
rblist = &st->value_list;
next = rb_first_cached(&rblist->entries);
while (next) {
pos = next;
next = rb_next(pos);
memset(&container_of(pos, struct saved_value, rb_node)->stats,
0,
sizeof(struct stats));
}
}
void perf_stat__reset_shadow_stats(void)
{
reset_stat(&rt_stat);
memset(&walltime_nsecs_stats, 0, sizeof(walltime_nsecs_stats));
memset(&ru_stats, 0, sizeof(ru_stats));
}
void perf_stat__reset_shadow_per_stat(struct runtime_stat *st)
{
reset_stat(st);
}
struct runtime_stat_data {
int ctx;
struct cgroup *cgrp;
};
static void update_runtime_stat(struct runtime_stat *st,
enum stat_type type,
int cpu_map_idx, u64 count,
struct runtime_stat_data *rsd)
{
struct saved_value *v = saved_value_lookup(NULL, cpu_map_idx, true, type,
rsd->ctx, st, rsd->cgrp);
if (v)
update_stats(&v->stats, count);
}
/*
* Update various tracking values we maintain to print
* more semantic information such as miss/hit ratios,
* instruction rates, etc:
*/
void perf_stat__update_shadow_stats(struct evsel *counter, u64 count,
int cpu_map_idx, struct runtime_stat *st)
{
u64 count_ns = count;
struct saved_value *v;
struct runtime_stat_data rsd = {
.ctx = evsel_context(counter),
.cgrp = counter->cgrp,
};
count *= counter->scale;
if (evsel__is_clock(counter))
update_runtime_stat(st, STAT_NSECS, cpu_map_idx, count_ns, &rsd);
else if (evsel__match(counter, HARDWARE, HW_CPU_CYCLES))
update_runtime_stat(st, STAT_CYCLES, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, CYCLES_IN_TX))
update_runtime_stat(st, STAT_CYCLES_IN_TX, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TRANSACTION_START))
update_runtime_stat(st, STAT_TRANSACTION, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, ELISION_START))
update_runtime_stat(st, STAT_ELISION, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_TOTAL_SLOTS))
update_runtime_stat(st, STAT_TOPDOWN_TOTAL_SLOTS,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_ISSUED))
update_runtime_stat(st, STAT_TOPDOWN_SLOTS_ISSUED,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_SLOTS_RETIRED))
update_runtime_stat(st, STAT_TOPDOWN_SLOTS_RETIRED,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_BUBBLES))
update_runtime_stat(st, STAT_TOPDOWN_FETCH_BUBBLES,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_RECOVERY_BUBBLES))
update_runtime_stat(st, STAT_TOPDOWN_RECOVERY_BUBBLES,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_RETIRING))
update_runtime_stat(st, STAT_TOPDOWN_RETIRING,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BAD_SPEC))
update_runtime_stat(st, STAT_TOPDOWN_BAD_SPEC,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FE_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_FE_BOUND,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BE_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_BE_BOUND,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_HEAVY_OPS))
update_runtime_stat(st, STAT_TOPDOWN_HEAVY_OPS,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_BR_MISPREDICT))
update_runtime_stat(st, STAT_TOPDOWN_BR_MISPREDICT,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_FETCH_LAT))
update_runtime_stat(st, STAT_TOPDOWN_FETCH_LAT,
cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, TOPDOWN_MEM_BOUND))
update_runtime_stat(st, STAT_TOPDOWN_MEM_BOUND,
cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_FRONTEND))
update_runtime_stat(st, STAT_STALLED_CYCLES_FRONT,
cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_STALLED_CYCLES_BACKEND))
update_runtime_stat(st, STAT_STALLED_CYCLES_BACK,
cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_BRANCH_INSTRUCTIONS))
update_runtime_stat(st, STAT_BRANCHES, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HARDWARE, HW_CACHE_REFERENCES))
update_runtime_stat(st, STAT_CACHEREFS, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_L1D))
update_runtime_stat(st, STAT_L1_DCACHE, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_L1I))
update_runtime_stat(st, STAT_L1_ICACHE, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_LL))
update_runtime_stat(st, STAT_LL_CACHE, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_DTLB))
update_runtime_stat(st, STAT_DTLB_CACHE, cpu_map_idx, count, &rsd);
else if (evsel__match(counter, HW_CACHE, HW_CACHE_ITLB))
update_runtime_stat(st, STAT_ITLB_CACHE, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, SMI_NUM))
update_runtime_stat(st, STAT_SMI_NUM, cpu_map_idx, count, &rsd);
else if (perf_stat_evsel__is(counter, APERF))
update_runtime_stat(st, STAT_APERF, cpu_map_idx, count, &rsd);
if (counter->collect_stat) {
v = saved_value_lookup(counter, cpu_map_idx, true, STAT_NONE, 0, st,
rsd.cgrp);
update_stats(&v->stats, count);
if (counter->metric_leader)
v->metric_total += count;
} else if (counter->metric_leader) {
v = saved_value_lookup(counter->metric_leader,
cpu_map_idx, true, STAT_NONE, 0, st, rsd.cgrp);
v->metric_total += count;
v->metric_other++;
}
}
/* used for get_ratio_color() */
enum grc_type {
GRC_STALLED_CYCLES_FE,
GRC_STALLED_CYCLES_BE,
GRC_CACHE_MISSES,
GRC_MAX_NR
};
static const char *get_ratio_color(enum grc_type type, double ratio)
{
static const double grc_table[GRC_MAX_NR][3] = {
[GRC_STALLED_CYCLES_FE] = { 50.0, 30.0, 10.0 },
[GRC_STALLED_CYCLES_BE] = { 75.0, 50.0, 20.0 },
[GRC_CACHE_MISSES] = { 20.0, 10.0, 5.0 },
};
const char *color = PERF_COLOR_NORMAL;
if (ratio > grc_table[type][0])
color = PERF_COLOR_RED;
else if (ratio > grc_table[type][1])
color = PERF_COLOR_MAGENTA;
else if (ratio > grc_table[type][2])
color = PERF_COLOR_YELLOW;
return color;
}
static struct evsel *perf_stat__find_event(struct evlist *evsel_list,
const char *name)
{
struct evsel *c2;
evlist__for_each_entry (evsel_list, c2) {
if (!strcasecmp(c2->name, name) && !c2->collect_stat)
return c2;
}
return NULL;
}
/* Mark MetricExpr target events and link events using them to them. */
void perf_stat__collect_metric_expr(struct evlist *evsel_list)
{
struct evsel *counter, *leader, **metric_events, *oc;
bool found;
struct expr_parse_ctx *ctx;
struct hashmap_entry *cur;
size_t bkt;
int i;
ctx = expr__ctx_new();
if (!ctx) {
pr_debug("expr__ctx_new failed");
return;
}
evlist__for_each_entry(evsel_list, counter) {
bool invalid = false;
leader = evsel__leader(counter);
if (!counter->metric_expr)
continue;
expr__ctx_clear(ctx);
metric_events = counter->metric_events;
if (!metric_events) {
if (expr__find_ids(counter->metric_expr,
counter->name,
ctx) < 0)
continue;
metric_events = calloc(sizeof(struct evsel *),
hashmap__size(ctx->ids) + 1);
if (!metric_events) {
expr__ctx_free(ctx);
return;
}
counter->metric_events = metric_events;
}
i = 0;
hashmap__for_each_entry(ctx->ids, cur, bkt) {
const char *metric_name = (const char *)cur->key;
found = false;
if (leader) {
/* Search in group */
for_each_group_member (oc, leader) {
if (!strcasecmp(oc->name,
metric_name) &&
!oc->collect_stat) {
found = true;
break;
}
}
}
if (!found) {
/* Search ignoring groups */
oc = perf_stat__find_event(evsel_list,
metric_name);
}
if (!oc) {
/* Deduping one is good enough to handle duplicated PMUs. */
static char *printed;
/*
* Adding events automatically would be difficult, because
* it would risk creating groups that are not schedulable.
* perf stat doesn't understand all the scheduling constraints
* of events. So we ask the user instead to add the missing
* events.
*/
if (!printed ||
strcasecmp(printed, metric_name)) {
fprintf(stderr,
"Add %s event to groups to get metric expression for %s\n",
metric_name,
counter->name);
free(printed);
printed = strdup(metric_name);
}
invalid = true;
continue;
}
metric_events[i++] = oc;
oc->collect_stat = true;
}
metric_events[i] = NULL;
if (invalid) {
free(metric_events);
counter->metric_events = NULL;
counter->metric_expr = NULL;
}
}
expr__ctx_free(ctx);
}
static double runtime_stat_avg(struct runtime_stat *st,
enum stat_type type, int cpu_map_idx,
struct runtime_stat_data *rsd)
{
struct saved_value *v;
v = saved_value_lookup(NULL, cpu_map_idx, false, type, rsd->ctx, st, rsd->cgrp);
if (!v)
return 0.0;
return avg_stats(&v->stats);
}
static double runtime_stat_n(struct runtime_stat *st,
enum stat_type type, int cpu_map_idx,
struct runtime_stat_data *rsd)
{
struct saved_value *v;
v = saved_value_lookup(NULL, cpu_map_idx, false, type, rsd->ctx, st, rsd->cgrp);
if (!v)
return 0.0;
return v->stats.n;
}
static void print_stalled_cycles_frontend(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_FE, ratio);
if (ratio)
out->print_metric(config, out->ctx, color, "%7.2f%%", "frontend cycles idle",
ratio);
else
out->print_metric(config, out->ctx, NULL, NULL, "frontend cycles idle", 0);
}
static void print_stalled_cycles_backend(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_STALLED_CYCLES_BE, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "backend cycles idle", ratio);
}
static void print_branch_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_BRANCHES, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all branches", ratio);
}
static void print_l1_dcache_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_L1_DCACHE, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-dcache accesses", ratio);
}
static void print_l1_icache_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_L1_ICACHE, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all L1-icache accesses", ratio);
}
static void print_dtlb_cache_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_DTLB_CACHE, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all dTLB cache accesses", ratio);
}
static void print_itlb_cache_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_ITLB_CACHE, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all iTLB cache accesses", ratio);
}
static void print_ll_cache_misses(struct perf_stat_config *config,
int cpu_map_idx, double avg,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double total, ratio = 0.0;
const char *color;
total = runtime_stat_avg(st, STAT_LL_CACHE, cpu_map_idx, rsd);
if (total)
ratio = avg / total * 100.0;
color = get_ratio_color(GRC_CACHE_MISSES, ratio);
out->print_metric(config, out->ctx, color, "%7.2f%%", "of all LL-cache accesses", ratio);
}
/*
* High level "TopDown" CPU core pipe line bottleneck break down.
*
* Basic concept following
* Yasin, A Top Down Method for Performance analysis and Counter architecture
* ISPASS14
*
* The CPU pipeline is divided into 4 areas that can be bottlenecks:
*
* Frontend -> Backend -> Retiring
* BadSpeculation in addition means out of order execution that is thrown away
* (for example branch mispredictions)
* Frontend is instruction decoding.
* Backend is execution, like computation and accessing data in memory
* Retiring is good execution that is not directly bottlenecked
*
* The formulas are computed in slots.
* A slot is an entry in the pipeline each for the pipeline width
* (for example a 4-wide pipeline has 4 slots for each cycle)
*
* Formulas:
* BadSpeculation = ((SlotsIssued - SlotsRetired) + RecoveryBubbles) /
* TotalSlots
* Retiring = SlotsRetired / TotalSlots
* FrontendBound = FetchBubbles / TotalSlots
* BackendBound = 1.0 - BadSpeculation - Retiring - FrontendBound
*
* The kernel provides the mapping to the low level CPU events and any scaling
* needed for the CPU pipeline width, for example:
*
* TotalSlots = Cycles * 4
*
* The scaling factor is communicated in the sysfs unit.
*
* In some cases the CPU may not be able to measure all the formulas due to
* missing events. In this case multiple formulas are combined, as possible.
*
* Full TopDown supports more levels to sub-divide each area: for example
* BackendBound into computing bound and memory bound. For now we only
* support Level 1 TopDown.
*/
static double sanitize_val(double x)
{
if (x < 0 && x >= -0.02)
return 0.0;
return x;
}
static double td_total_slots(int cpu_map_idx, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
return runtime_stat_avg(st, STAT_TOPDOWN_TOTAL_SLOTS, cpu_map_idx, rsd);
}
static double td_bad_spec(int cpu_map_idx, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double bad_spec = 0;
double total_slots;
double total;
total = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_ISSUED, cpu_map_idx, rsd) -
runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED, cpu_map_idx, rsd) +
runtime_stat_avg(st, STAT_TOPDOWN_RECOVERY_BUBBLES, cpu_map_idx, rsd);
total_slots = td_total_slots(cpu_map_idx, st, rsd);
if (total_slots)
bad_spec = total / total_slots;
return sanitize_val(bad_spec);
}
static double td_retiring(int cpu_map_idx, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double retiring = 0;
double total_slots = td_total_slots(cpu_map_idx, st, rsd);
double ret_slots = runtime_stat_avg(st, STAT_TOPDOWN_SLOTS_RETIRED,
cpu_map_idx, rsd);
if (total_slots)
retiring = ret_slots / total_slots;
return retiring;
}
static double td_fe_bound(int cpu_map_idx, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double fe_bound = 0;
double total_slots = td_total_slots(cpu_map_idx, st, rsd);
double fetch_bub = runtime_stat_avg(st, STAT_TOPDOWN_FETCH_BUBBLES,
cpu_map_idx, rsd);
if (total_slots)
fe_bound = fetch_bub / total_slots;
return fe_bound;
}
static double td_be_bound(int cpu_map_idx, struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double sum = (td_fe_bound(cpu_map_idx, st, rsd) +
td_bad_spec(cpu_map_idx, st, rsd) +
td_retiring(cpu_map_idx, st, rsd));
if (sum == 0)
return 0;
return sanitize_val(1.0 - sum);
}
/*
* Kernel reports metrics multiplied with slots. To get back
* the ratios we need to recreate the sum.
*/
static double td_metric_ratio(int cpu_map_idx, enum stat_type type,
struct runtime_stat *stat,
struct runtime_stat_data *rsd)
{
double sum = runtime_stat_avg(stat, STAT_TOPDOWN_RETIRING, cpu_map_idx, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_FE_BOUND, cpu_map_idx, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_BE_BOUND, cpu_map_idx, rsd) +
runtime_stat_avg(stat, STAT_TOPDOWN_BAD_SPEC, cpu_map_idx, rsd);
double d = runtime_stat_avg(stat, type, cpu_map_idx, rsd);
if (sum)
return d / sum;
return 0;
}
/*
* ... but only if most of the values are actually available.
* We allow two missing.
*/
static bool full_td(int cpu_map_idx, struct runtime_stat *stat,
struct runtime_stat_data *rsd)
{
int c = 0;
if (runtime_stat_avg(stat, STAT_TOPDOWN_RETIRING, cpu_map_idx, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_BE_BOUND, cpu_map_idx, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_FE_BOUND, cpu_map_idx, rsd) > 0)
c++;
if (runtime_stat_avg(stat, STAT_TOPDOWN_BAD_SPEC, cpu_map_idx, rsd) > 0)
c++;
return c >= 2;
}
static void print_smi_cost(struct perf_stat_config *config, int cpu_map_idx,
struct perf_stat_output_ctx *out,
struct runtime_stat *st,
struct runtime_stat_data *rsd)
{
double smi_num, aperf, cycles, cost = 0.0;
const char *color = NULL;
smi_num = runtime_stat_avg(st, STAT_SMI_NUM, cpu_map_idx, rsd);
aperf = runtime_stat_avg(st, STAT_APERF, cpu_map_idx, rsd);
cycles = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, rsd);
if ((cycles == 0) || (aperf == 0))
return;
if (smi_num)
cost = (aperf - cycles) / aperf * 100.00;
if (cost > 10)
color = PERF_COLOR_RED;
out->print_metric(config, out->ctx, color, "%8.1f%%", "SMI cycles%", cost);
out->print_metric(config, out->ctx, NULL, "%4.0f", "SMI#", smi_num);
}
static int prepare_metric(struct evsel **metric_events,
struct metric_ref *metric_refs,
struct expr_parse_ctx *pctx,
int cpu_map_idx,
struct runtime_stat *st)
{
double scale;
char *n;
int i, j, ret;
for (i = 0; metric_events[i]; i++) {
struct saved_value *v;
struct stats *stats;
u64 metric_total = 0;
int source_count;
if (evsel__is_tool(metric_events[i])) {
source_count = 1;
switch (metric_events[i]->tool_event) {
case PERF_TOOL_DURATION_TIME:
stats = &walltime_nsecs_stats;
scale = 1e-9;
break;
case PERF_TOOL_USER_TIME:
stats = &ru_stats.ru_utime_usec_stat;
scale = 1e-6;
break;
case PERF_TOOL_SYSTEM_TIME:
stats = &ru_stats.ru_stime_usec_stat;
scale = 1e-6;
break;
case PERF_TOOL_NONE:
pr_err("Invalid tool event 'none'");
abort();
case PERF_TOOL_MAX:
pr_err("Invalid tool event 'max'");
abort();
default:
pr_err("Unknown tool event '%s'", evsel__name(metric_events[i]));
abort();
}
} else {
v = saved_value_lookup(metric_events[i], cpu_map_idx, false,
STAT_NONE, 0, st,
metric_events[i]->cgrp);
if (!v)
break;
stats = &v->stats;
scale = 1.0;
source_count = evsel__source_count(metric_events[i]);
if (v->metric_other)
metric_total = v->metric_total;
}
n = strdup(evsel__metric_id(metric_events[i]));
if (!n)
return -ENOMEM;
expr__add_id_val_source_count(pctx, n,
metric_total ? : avg_stats(stats) * scale,
source_count);
}
for (j = 0; metric_refs && metric_refs[j].metric_name; j++) {
ret = expr__add_ref(pctx, &metric_refs[j]);
if (ret)
return ret;
}
return i;
}
static void generic_metric(struct perf_stat_config *config,
const char *metric_expr,
struct evsel **metric_events,
struct metric_ref *metric_refs,
char *name,
const char *metric_name,
const char *metric_unit,
int runtime,
int cpu_map_idx,
struct perf_stat_output_ctx *out,
struct runtime_stat *st)
{
print_metric_t print_metric = out->print_metric;
struct expr_parse_ctx *pctx;
double ratio, scale;
int i;
void *ctxp = out->ctx;
pctx = expr__ctx_new();
if (!pctx)
return;
pctx->runtime = runtime;
i = prepare_metric(metric_events, metric_refs, pctx, cpu_map_idx, st);
if (i < 0) {
expr__ctx_free(pctx);
return;
}
if (!metric_events[i]) {
if (expr__parse(&ratio, pctx, metric_expr) == 0) {
char *unit;
char metric_bf[64];
if (metric_unit && metric_name) {
if (perf_pmu__convert_scale(metric_unit,
&unit, &scale) >= 0) {
ratio *= scale;
}
if (strstr(metric_expr, "?"))
scnprintf(metric_bf, sizeof(metric_bf),
"%s %s_%d", unit, metric_name, runtime);
else
scnprintf(metric_bf, sizeof(metric_bf),
"%s %s", unit, metric_name);
print_metric(config, ctxp, NULL, "%8.1f",
metric_bf, ratio);
} else {
print_metric(config, ctxp, NULL, "%8.2f",
metric_name ?
metric_name :
out->force_header ? name : "",
ratio);
}
} else {
print_metric(config, ctxp, NULL, NULL,
out->force_header ?
(metric_name ? metric_name : name) : "", 0);
}
} else {
print_metric(config, ctxp, NULL, NULL,
out->force_header ?
(metric_name ? metric_name : name) : "", 0);
}
expr__ctx_free(pctx);
}
double test_generic_metric(struct metric_expr *mexp, int cpu_map_idx, struct runtime_stat *st)
{
struct expr_parse_ctx *pctx;
double ratio = 0.0;
pctx = expr__ctx_new();
if (!pctx)
return NAN;
if (prepare_metric(mexp->metric_events, mexp->metric_refs, pctx, cpu_map_idx, st) < 0)
goto out;
if (expr__parse(&ratio, pctx, mexp->metric_expr))
ratio = 0.0;
out:
expr__ctx_free(pctx);
return ratio;
}
void perf_stat__print_shadow_stats(struct perf_stat_config *config,
struct evsel *evsel,
double avg, int cpu_map_idx,
struct perf_stat_output_ctx *out,
struct rblist *metric_events,
struct runtime_stat *st)
{
void *ctxp = out->ctx;
print_metric_t print_metric = out->print_metric;
double total, ratio = 0.0, total2;
const char *color = NULL;
struct runtime_stat_data rsd = {
.ctx = evsel_context(evsel),
.cgrp = evsel->cgrp,
};
struct metric_event *me;
int num = 1;
if (config->iostat_run) {
iostat_print_metric(config, evsel, out);
} else if (evsel__match(evsel, HARDWARE, HW_INSTRUCTIONS)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, &rsd);
if (total) {
ratio = avg / total;
print_metric(config, ctxp, NULL, "%7.2f ",
"insn per cycle", ratio);
} else {
print_metric(config, ctxp, NULL, NULL, "insn per cycle", 0);
}
total = runtime_stat_avg(st, STAT_STALLED_CYCLES_FRONT, cpu_map_idx, &rsd);
total = max(total, runtime_stat_avg(st,
STAT_STALLED_CYCLES_BACK,
cpu_map_idx, &rsd));
if (total && avg) {
out->new_line(config, ctxp);
ratio = total / avg;
print_metric(config, ctxp, NULL, "%7.2f ",
"stalled cycles per insn",
ratio);
}
} else if (evsel__match(evsel, HARDWARE, HW_BRANCH_MISSES)) {
if (runtime_stat_n(st, STAT_BRANCHES, cpu_map_idx, &rsd) != 0)
print_branch_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all branches", 0);
} else if (
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_L1D |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_L1_DCACHE, cpu_map_idx, &rsd) != 0)
print_l1_dcache_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all L1-dcache accesses", 0);
} else if (
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_L1I |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_L1_ICACHE, cpu_map_idx, &rsd) != 0)
print_l1_icache_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all L1-icache accesses", 0);
} else if (
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_DTLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_DTLB_CACHE, cpu_map_idx, &rsd) != 0)
print_dtlb_cache_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all dTLB cache accesses", 0);
} else if (
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_ITLB |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_ITLB_CACHE, cpu_map_idx, &rsd) != 0)
print_itlb_cache_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all iTLB cache accesses", 0);
} else if (
evsel->core.attr.type == PERF_TYPE_HW_CACHE &&
evsel->core.attr.config == ( PERF_COUNT_HW_CACHE_LL |
((PERF_COUNT_HW_CACHE_OP_READ) << 8) |
((PERF_COUNT_HW_CACHE_RESULT_MISS) << 16))) {
if (runtime_stat_n(st, STAT_LL_CACHE, cpu_map_idx, &rsd) != 0)
print_ll_cache_misses(config, cpu_map_idx, avg, out, st, &rsd);
else
print_metric(config, ctxp, NULL, NULL, "of all LL-cache accesses", 0);
} else if (evsel__match(evsel, HARDWARE, HW_CACHE_MISSES)) {
total = runtime_stat_avg(st, STAT_CACHEREFS, cpu_map_idx, &rsd);
if (total)
ratio = avg * 100 / total;
if (runtime_stat_n(st, STAT_CACHEREFS, cpu_map_idx, &rsd) != 0)
print_metric(config, ctxp, NULL, "%8.3f %%",
"of all cache refs", ratio);
else
print_metric(config, ctxp, NULL, NULL, "of all cache refs", 0);
} else if (evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_FRONTEND)) {
print_stalled_cycles_frontend(config, cpu_map_idx, avg, out, st, &rsd);
} else if (evsel__match(evsel, HARDWARE, HW_STALLED_CYCLES_BACKEND)) {
print_stalled_cycles_backend(config, cpu_map_idx, avg, out, st, &rsd);
} else if (evsel__match(evsel, HARDWARE, HW_CPU_CYCLES)) {
total = runtime_stat_avg(st, STAT_NSECS, cpu_map_idx, &rsd);
if (total) {
ratio = avg / total;
print_metric(config, ctxp, NULL, "%8.3f", "GHz", ratio);
} else {
print_metric(config, ctxp, NULL, NULL, "Ghz", 0);
}
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, &rsd);
if (total)
print_metric(config, ctxp, NULL,
"%7.2f%%", "transactional cycles",
100.0 * (avg / total));
else
print_metric(config, ctxp, NULL, NULL, "transactional cycles",
0);
} else if (perf_stat_evsel__is(evsel, CYCLES_IN_TX_CP)) {
total = runtime_stat_avg(st, STAT_CYCLES, cpu_map_idx, &rsd);
total2 = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu_map_idx, &rsd);
if (total2 < avg)
total2 = avg;
if (total)
print_metric(config, ctxp, NULL, "%7.2f%%", "aborted cycles",
100.0 * ((total2-avg) / total));
else
print_metric(config, ctxp, NULL, NULL, "aborted cycles", 0);
} else if (perf_stat_evsel__is(evsel, TRANSACTION_START)) {
total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu_map_idx, &rsd);
if (avg)
ratio = total / avg;
if (runtime_stat_n(st, STAT_CYCLES_IN_TX, cpu_map_idx, &rsd) != 0)
print_metric(config, ctxp, NULL, "%8.0f",
"cycles / transaction", ratio);
else
print_metric(config, ctxp, NULL, NULL, "cycles / transaction",
0);
} else if (perf_stat_evsel__is(evsel, ELISION_START)) {
total = runtime_stat_avg(st, STAT_CYCLES_IN_TX, cpu_map_idx, &rsd);
if (avg)
ratio = total / avg;
print_metric(config, ctxp, NULL, "%8.0f", "cycles / elision", ratio);
} else if (evsel__is_clock(evsel)) {
if ((ratio = avg_stats(&walltime_nsecs_stats)) != 0)
print_metric(config, ctxp, NULL, "%8.3f", "CPUs utilized",
avg / (ratio * evsel->scale));
else
print_metric(config, ctxp, NULL, NULL, "CPUs utilized", 0);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_BUBBLES)) {
double fe_bound = td_fe_bound(cpu_map_idx, st, &rsd);
if (fe_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "frontend bound",
fe_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_RETIRED)) {
double retiring = td_retiring(cpu_map_idx, st, &rsd);
if (retiring > 0.7)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "retiring",
retiring * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_RECOVERY_BUBBLES)) {
double bad_spec = td_bad_spec(cpu_map_idx, st, &rsd);
if (bad_spec > 0.1)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "bad speculation",
bad_spec * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_SLOTS_ISSUED)) {
double be_bound = td_be_bound(cpu_map_idx, st, &rsd);
const char *name = "backend bound";
static int have_recovery_bubbles = -1;
/* In case the CPU does not support topdown-recovery-bubbles */
if (have_recovery_bubbles < 0)
have_recovery_bubbles = pmu_have_event("cpu",
"topdown-recovery-bubbles");
if (!have_recovery_bubbles)
name = "backend bound/bad spec";
if (be_bound > 0.2)
color = PERF_COLOR_RED;
if (td_total_slots(cpu_map_idx, st, &rsd) > 0)
print_metric(config, ctxp, color, "%8.1f%%", name,
be_bound * 100.);
else
print_metric(config, ctxp, NULL, NULL, name, 0);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_RETIRING) &&
full_td(cpu_map_idx, st, &rsd)) {
double retiring = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_RETIRING, st,
&rsd);
if (retiring > 0.7)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "Retiring",
retiring * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FE_BOUND) &&
full_td(cpu_map_idx, st, &rsd)) {
double fe_bound = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_FE_BOUND, st,
&rsd);
if (fe_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Frontend Bound",
fe_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BE_BOUND) &&
full_td(cpu_map_idx, st, &rsd)) {
double be_bound = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_BE_BOUND, st,
&rsd);
if (be_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Backend Bound",
be_bound * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BAD_SPEC) &&
full_td(cpu_map_idx, st, &rsd)) {
double bad_spec = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_BAD_SPEC, st,
&rsd);
if (bad_spec > 0.1)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Bad Speculation",
bad_spec * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_HEAVY_OPS) &&
full_td(cpu_map_idx, st, &rsd) && (config->topdown_level > 1)) {
double retiring = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_RETIRING, st,
&rsd);
double heavy_ops = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_HEAVY_OPS, st,
&rsd);
double light_ops = retiring - heavy_ops;
if (retiring > 0.7 && heavy_ops > 0.1)
color = PERF_COLOR_GREEN;
print_metric(config, ctxp, color, "%8.1f%%", "Heavy Operations",
heavy_ops * 100.);
if (retiring > 0.7 && light_ops > 0.6)
color = PERF_COLOR_GREEN;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "Light Operations",
light_ops * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_BR_MISPREDICT) &&
full_td(cpu_map_idx, st, &rsd) && (config->topdown_level > 1)) {
double bad_spec = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_BAD_SPEC, st,
&rsd);
double br_mis = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_BR_MISPREDICT, st,
&rsd);
double m_clears = bad_spec - br_mis;
if (bad_spec > 0.1 && br_mis > 0.05)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Branch Mispredict",
br_mis * 100.);
if (bad_spec > 0.1 && m_clears > 0.05)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "Machine Clears",
m_clears * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_FETCH_LAT) &&
full_td(cpu_map_idx, st, &rsd) && (config->topdown_level > 1)) {
double fe_bound = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_FE_BOUND, st,
&rsd);
double fetch_lat = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_FETCH_LAT, st,
&rsd);
double fetch_bw = fe_bound - fetch_lat;
if (fe_bound > 0.2 && fetch_lat > 0.15)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Fetch Latency",
fetch_lat * 100.);
if (fe_bound > 0.2 && fetch_bw > 0.1)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "Fetch Bandwidth",
fetch_bw * 100.);
} else if (perf_stat_evsel__is(evsel, TOPDOWN_MEM_BOUND) &&
full_td(cpu_map_idx, st, &rsd) && (config->topdown_level > 1)) {
double be_bound = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_BE_BOUND, st,
&rsd);
double mem_bound = td_metric_ratio(cpu_map_idx,
STAT_TOPDOWN_MEM_BOUND, st,
&rsd);
double core_bound = be_bound - mem_bound;
if (be_bound > 0.2 && mem_bound > 0.2)
color = PERF_COLOR_RED;
print_metric(config, ctxp, color, "%8.1f%%", "Memory Bound",
mem_bound * 100.);
if (be_bound > 0.2 && core_bound > 0.1)
color = PERF_COLOR_RED;
else
color = NULL;
print_metric(config, ctxp, color, "%8.1f%%", "Core Bound",
core_bound * 100.);
} else if (evsel->metric_expr) {
generic_metric(config, evsel->metric_expr, evsel->metric_events, NULL,
evsel->name, evsel->metric_name, NULL, 1, cpu_map_idx, out, st);
} else if (runtime_stat_n(st, STAT_NSECS, cpu_map_idx, &rsd) != 0) {
char unit = ' ';
char unit_buf[10] = "/sec";
total = runtime_stat_avg(st, STAT_NSECS, cpu_map_idx, &rsd);
if (total)
ratio = convert_unit_double(1000000000.0 * avg / total, &unit);
if (unit != ' ')
snprintf(unit_buf, sizeof(unit_buf), "%c/sec", unit);
print_metric(config, ctxp, NULL, "%8.3f", unit_buf, ratio);
} else if (perf_stat_evsel__is(evsel, SMI_NUM)) {
print_smi_cost(config, cpu_map_idx, out, st, &rsd);
} else {
num = 0;
}
if ((me = metricgroup__lookup(metric_events, evsel, false)) != NULL) {
struct metric_expr *mexp;
list_for_each_entry (mexp, &me->head, nd) {
if (num++ > 0)
out->new_line(config, ctxp);
generic_metric(config, mexp->metric_expr, mexp->metric_events,
mexp->metric_refs, evsel->name, mexp->metric_name,
mexp->metric_unit, mexp->runtime, cpu_map_idx, out, st);
}
}
if (num == 0)
print_metric(config, ctxp, NULL, NULL, NULL, 0);
}