blob: 163b6c69e65193a5ed75028f85a53d3a5a90c813 [file] [log] [blame]
/*
* Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/sort.h>
#include <soc/tegra/fuse.h>
#include "mc.h"
#define MC_INTSTATUS 0x000
#define MC_INTMASK 0x004
#define MC_ERR_STATUS 0x08
#define MC_ERR_STATUS_TYPE_SHIFT 28
#define MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE (6 << MC_ERR_STATUS_TYPE_SHIFT)
#define MC_ERR_STATUS_TYPE_MASK (0x7 << MC_ERR_STATUS_TYPE_SHIFT)
#define MC_ERR_STATUS_READABLE (1 << 27)
#define MC_ERR_STATUS_WRITABLE (1 << 26)
#define MC_ERR_STATUS_NONSECURE (1 << 25)
#define MC_ERR_STATUS_ADR_HI_SHIFT 20
#define MC_ERR_STATUS_ADR_HI_MASK 0x3
#define MC_ERR_STATUS_SECURITY (1 << 17)
#define MC_ERR_STATUS_RW (1 << 16)
#define MC_ERR_ADR 0x0c
#define MC_GART_ERROR_REQ 0x30
#define MC_DECERR_EMEM_OTHERS_STATUS 0x58
#define MC_SECURITY_VIOLATION_STATUS 0x74
#define MC_EMEM_ARB_CFG 0x90
#define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(x) (((x) & 0x1ff) << 0)
#define MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK 0x1ff
#define MC_EMEM_ARB_MISC0 0xd8
#define MC_EMEM_ADR_CFG 0x54
#define MC_EMEM_ADR_CFG_EMEM_NUMDEV BIT(0)
#define MC_TIMING_CONTROL 0xfc
#define MC_TIMING_UPDATE BIT(0)
static const struct of_device_id tegra_mc_of_match[] = {
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
{ .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_3x_SOC
{ .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_114_SOC
{ .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_124_SOC
{ .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_132_SOC
{ .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc },
#endif
#ifdef CONFIG_ARCH_TEGRA_210_SOC
{ .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc },
#endif
{ }
};
MODULE_DEVICE_TABLE(of, tegra_mc_of_match);
static int tegra_mc_block_dma_common(struct tegra_mc *mc,
const struct tegra_mc_reset *rst)
{
unsigned long flags;
u32 value;
spin_lock_irqsave(&mc->lock, flags);
value = mc_readl(mc, rst->control) | BIT(rst->bit);
mc_writel(mc, value, rst->control);
spin_unlock_irqrestore(&mc->lock, flags);
return 0;
}
static bool tegra_mc_dma_idling_common(struct tegra_mc *mc,
const struct tegra_mc_reset *rst)
{
return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0;
}
static int tegra_mc_unblock_dma_common(struct tegra_mc *mc,
const struct tegra_mc_reset *rst)
{
unsigned long flags;
u32 value;
spin_lock_irqsave(&mc->lock, flags);
value = mc_readl(mc, rst->control) & ~BIT(rst->bit);
mc_writel(mc, value, rst->control);
spin_unlock_irqrestore(&mc->lock, flags);
return 0;
}
static int tegra_mc_reset_status_common(struct tegra_mc *mc,
const struct tegra_mc_reset *rst)
{
return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0;
}
const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = {
.block_dma = tegra_mc_block_dma_common,
.dma_idling = tegra_mc_dma_idling_common,
.unblock_dma = tegra_mc_unblock_dma_common,
.reset_status = tegra_mc_reset_status_common,
};
static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev)
{
return container_of(rcdev, struct tegra_mc, reset);
}
static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc,
unsigned long id)
{
unsigned int i;
for (i = 0; i < mc->soc->num_resets; i++)
if (mc->soc->resets[i].id == id)
return &mc->soc->resets[i];
return NULL;
}
static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct tegra_mc *mc = reset_to_mc(rcdev);
const struct tegra_mc_reset_ops *rst_ops;
const struct tegra_mc_reset *rst;
int retries = 500;
int err;
rst = tegra_mc_reset_find(mc, id);
if (!rst)
return -ENODEV;
rst_ops = mc->soc->reset_ops;
if (!rst_ops)
return -ENODEV;
if (rst_ops->block_dma) {
/* block clients DMA requests */
err = rst_ops->block_dma(mc, rst);
if (err) {
dev_err(mc->dev, "failed to block %s DMA: %d\n",
rst->name, err);
return err;
}
}
if (rst_ops->dma_idling) {
/* wait for completion of the outstanding DMA requests */
while (!rst_ops->dma_idling(mc, rst)) {
if (!retries--) {
dev_err(mc->dev, "failed to flush %s DMA\n",
rst->name);
return -EBUSY;
}
usleep_range(10, 100);
}
}
if (rst_ops->hotreset_assert) {
/* clear clients DMA requests sitting before arbitration */
err = rst_ops->hotreset_assert(mc, rst);
if (err) {
dev_err(mc->dev, "failed to hot reset %s: %d\n",
rst->name, err);
return err;
}
}
return 0;
}
static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct tegra_mc *mc = reset_to_mc(rcdev);
const struct tegra_mc_reset_ops *rst_ops;
const struct tegra_mc_reset *rst;
int err;
rst = tegra_mc_reset_find(mc, id);
if (!rst)
return -ENODEV;
rst_ops = mc->soc->reset_ops;
if (!rst_ops)
return -ENODEV;
if (rst_ops->hotreset_deassert) {
/* take out client from hot reset */
err = rst_ops->hotreset_deassert(mc, rst);
if (err) {
dev_err(mc->dev, "failed to deassert hot reset %s: %d\n",
rst->name, err);
return err;
}
}
if (rst_ops->unblock_dma) {
/* allow new DMA requests to proceed to arbitration */
err = rst_ops->unblock_dma(mc, rst);
if (err) {
dev_err(mc->dev, "failed to unblock %s DMA : %d\n",
rst->name, err);
return err;
}
}
return 0;
}
static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev,
unsigned long id)
{
struct tegra_mc *mc = reset_to_mc(rcdev);
const struct tegra_mc_reset_ops *rst_ops;
const struct tegra_mc_reset *rst;
rst = tegra_mc_reset_find(mc, id);
if (!rst)
return -ENODEV;
rst_ops = mc->soc->reset_ops;
if (!rst_ops)
return -ENODEV;
return rst_ops->reset_status(mc, rst);
}
static const struct reset_control_ops tegra_mc_reset_ops = {
.assert = tegra_mc_hotreset_assert,
.deassert = tegra_mc_hotreset_deassert,
.status = tegra_mc_hotreset_status,
};
static int tegra_mc_reset_setup(struct tegra_mc *mc)
{
int err;
mc->reset.ops = &tegra_mc_reset_ops;
mc->reset.owner = THIS_MODULE;
mc->reset.of_node = mc->dev->of_node;
mc->reset.of_reset_n_cells = 1;
mc->reset.nr_resets = mc->soc->num_resets;
err = reset_controller_register(&mc->reset);
if (err < 0)
return err;
return 0;
}
static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc)
{
unsigned long long tick;
unsigned int i;
u32 value;
/* compute the number of MC clock cycles per tick */
tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk);
do_div(tick, NSEC_PER_SEC);
value = mc_readl(mc, MC_EMEM_ARB_CFG);
value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK;
value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick);
mc_writel(mc, value, MC_EMEM_ARB_CFG);
/* write latency allowance defaults */
for (i = 0; i < mc->soc->num_clients; i++) {
const struct tegra_mc_la *la = &mc->soc->clients[i].la;
u32 value;
value = mc_readl(mc, la->reg);
value &= ~(la->mask << la->shift);
value |= (la->def & la->mask) << la->shift;
mc_writel(mc, value, la->reg);
}
/* latch new values */
mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL);
return 0;
}
void tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate)
{
unsigned int i;
struct tegra_mc_timing *timing = NULL;
for (i = 0; i < mc->num_timings; i++) {
if (mc->timings[i].rate == rate) {
timing = &mc->timings[i];
break;
}
}
if (!timing) {
dev_err(mc->dev, "no memory timing registered for rate %lu\n",
rate);
return;
}
for (i = 0; i < mc->soc->num_emem_regs; ++i)
mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]);
}
unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc)
{
u8 dram_count;
dram_count = mc_readl(mc, MC_EMEM_ADR_CFG);
dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV;
dram_count++;
return dram_count;
}
static int load_one_timing(struct tegra_mc *mc,
struct tegra_mc_timing *timing,
struct device_node *node)
{
int err;
u32 tmp;
err = of_property_read_u32(node, "clock-frequency", &tmp);
if (err) {
dev_err(mc->dev,
"timing %pOFn: failed to read rate\n", node);
return err;
}
timing->rate = tmp;
timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs,
sizeof(u32), GFP_KERNEL);
if (!timing->emem_data)
return -ENOMEM;
err = of_property_read_u32_array(node, "nvidia,emem-configuration",
timing->emem_data,
mc->soc->num_emem_regs);
if (err) {
dev_err(mc->dev,
"timing %pOFn: failed to read EMEM configuration\n",
node);
return err;
}
return 0;
}
static int load_timings(struct tegra_mc *mc, struct device_node *node)
{
struct device_node *child;
struct tegra_mc_timing *timing;
int child_count = of_get_child_count(node);
int i = 0, err;
mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing),
GFP_KERNEL);
if (!mc->timings)
return -ENOMEM;
mc->num_timings = child_count;
for_each_child_of_node(node, child) {
timing = &mc->timings[i++];
err = load_one_timing(mc, timing, child);
if (err) {
of_node_put(child);
return err;
}
}
return 0;
}
static int tegra_mc_setup_timings(struct tegra_mc *mc)
{
struct device_node *node;
u32 ram_code, node_ram_code;
int err;
ram_code = tegra_read_ram_code();
mc->num_timings = 0;
for_each_child_of_node(mc->dev->of_node, node) {
err = of_property_read_u32(node, "nvidia,ram-code",
&node_ram_code);
if (err || (node_ram_code != ram_code))
continue;
err = load_timings(mc, node);
of_node_put(node);
if (err)
return err;
break;
}
if (mc->num_timings == 0)
dev_warn(mc->dev,
"no memory timings for RAM code %u registered\n",
ram_code);
return 0;
}
static const char *const status_names[32] = {
[ 1] = "External interrupt",
[ 6] = "EMEM address decode error",
[ 7] = "GART page fault",
[ 8] = "Security violation",
[ 9] = "EMEM arbitration error",
[10] = "Page fault",
[11] = "Invalid APB ASID update",
[12] = "VPR violation",
[13] = "Secure carveout violation",
[16] = "MTS carveout violation",
};
static const char *const error_names[8] = {
[2] = "EMEM decode error",
[3] = "TrustZone violation",
[4] = "Carveout violation",
[6] = "SMMU translation error",
};
static irqreturn_t tegra_mc_irq(int irq, void *data)
{
struct tegra_mc *mc = data;
unsigned long status;
unsigned int bit;
/* mask all interrupts to avoid flooding */
status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
if (!status)
return IRQ_NONE;
for_each_set_bit(bit, &status, 32) {
const char *error = status_names[bit] ?: "unknown";
const char *client = "unknown", *desc;
const char *direction, *secure;
phys_addr_t addr = 0;
unsigned int i;
char perm[7];
u8 id, type;
u32 value;
value = mc_readl(mc, MC_ERR_STATUS);
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (mc->soc->num_address_bits > 32) {
addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) &
MC_ERR_STATUS_ADR_HI_MASK);
addr <<= 32;
}
#endif
if (value & MC_ERR_STATUS_RW)
direction = "write";
else
direction = "read";
if (value & MC_ERR_STATUS_SECURITY)
secure = "secure ";
else
secure = "";
id = value & mc->soc->client_id_mask;
for (i = 0; i < mc->soc->num_clients; i++) {
if (mc->soc->clients[i].id == id) {
client = mc->soc->clients[i].name;
break;
}
}
type = (value & MC_ERR_STATUS_TYPE_MASK) >>
MC_ERR_STATUS_TYPE_SHIFT;
desc = error_names[type];
switch (value & MC_ERR_STATUS_TYPE_MASK) {
case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE:
perm[0] = ' ';
perm[1] = '[';
if (value & MC_ERR_STATUS_READABLE)
perm[2] = 'R';
else
perm[2] = '-';
if (value & MC_ERR_STATUS_WRITABLE)
perm[3] = 'W';
else
perm[3] = '-';
if (value & MC_ERR_STATUS_NONSECURE)
perm[4] = '-';
else
perm[4] = 'S';
perm[5] = ']';
perm[6] = '\0';
break;
default:
perm[0] = '\0';
break;
}
value = mc_readl(mc, MC_ERR_ADR);
addr |= value;
dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n",
client, secure, direction, &addr, error,
desc, perm);
}
/* clear interrupts */
mc_writel(mc, status, MC_INTSTATUS);
return IRQ_HANDLED;
}
static __maybe_unused irqreturn_t tegra20_mc_irq(int irq, void *data)
{
struct tegra_mc *mc = data;
unsigned long status;
unsigned int bit;
/* mask all interrupts to avoid flooding */
status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask;
if (!status)
return IRQ_NONE;
for_each_set_bit(bit, &status, 32) {
const char *direction = "read", *secure = "";
const char *error = status_names[bit];
const char *client, *desc;
phys_addr_t addr;
u32 value, reg;
u8 id, type;
switch (BIT(bit)) {
case MC_INT_DECERR_EMEM:
reg = MC_DECERR_EMEM_OTHERS_STATUS;
value = mc_readl(mc, reg);
id = value & mc->soc->client_id_mask;
desc = error_names[2];
if (value & BIT(31))
direction = "write";
break;
case MC_INT_INVALID_GART_PAGE:
reg = MC_GART_ERROR_REQ;
value = mc_readl(mc, reg);
id = (value >> 1) & mc->soc->client_id_mask;
desc = error_names[2];
if (value & BIT(0))
direction = "write";
break;
case MC_INT_SECURITY_VIOLATION:
reg = MC_SECURITY_VIOLATION_STATUS;
value = mc_readl(mc, reg);
id = value & mc->soc->client_id_mask;
type = (value & BIT(30)) ? 4 : 3;
desc = error_names[type];
secure = "secure ";
if (value & BIT(31))
direction = "write";
break;
default:
continue;
}
client = mc->soc->clients[id].name;
addr = mc_readl(mc, reg + sizeof(u32));
dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s)\n",
client, secure, direction, &addr, error,
desc);
}
/* clear interrupts */
mc_writel(mc, status, MC_INTSTATUS);
return IRQ_HANDLED;
}
static int tegra_mc_probe(struct platform_device *pdev)
{
struct resource *res;
struct tegra_mc *mc;
void *isr;
int err;
mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL);
if (!mc)
return -ENOMEM;
platform_set_drvdata(pdev, mc);
spin_lock_init(&mc->lock);
mc->soc = of_device_get_match_data(&pdev->dev);
mc->dev = &pdev->dev;
/* length of MC tick in nanoseconds */
mc->tick = 30;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mc->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mc->regs))
return PTR_ERR(mc->regs);
mc->clk = devm_clk_get(&pdev->dev, "mc");
if (IS_ERR(mc->clk)) {
dev_err(&pdev->dev, "failed to get MC clock: %ld\n",
PTR_ERR(mc->clk));
return PTR_ERR(mc->clk);
}
#ifdef CONFIG_ARCH_TEGRA_2x_SOC
if (mc->soc == &tegra20_mc_soc) {
isr = tegra20_mc_irq;
} else
#endif
{
err = tegra_mc_setup_latency_allowance(mc);
if (err < 0) {
dev_err(&pdev->dev,
"failed to setup latency allowance: %d\n",
err);
return err;
}
isr = tegra_mc_irq;
err = tegra_mc_setup_timings(mc);
if (err < 0) {
dev_err(&pdev->dev, "failed to setup timings: %d\n",
err);
return err;
}
}
mc->irq = platform_get_irq(pdev, 0);
if (mc->irq < 0) {
dev_err(&pdev->dev, "interrupt not specified\n");
return mc->irq;
}
WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n");
mc_writel(mc, mc->soc->intmask, MC_INTMASK);
err = devm_request_irq(&pdev->dev, mc->irq, isr, 0,
dev_name(&pdev->dev), mc);
if (err < 0) {
dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq,
err);
return err;
}
err = tegra_mc_reset_setup(mc);
if (err < 0)
dev_err(&pdev->dev, "failed to register reset controller: %d\n",
err);
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) {
mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc);
if (IS_ERR(mc->smmu)) {
dev_err(&pdev->dev, "failed to probe SMMU: %ld\n",
PTR_ERR(mc->smmu));
mc->smmu = NULL;
}
}
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && !mc->soc->smmu) {
mc->gart = tegra_gart_probe(&pdev->dev, mc);
if (IS_ERR(mc->gart)) {
dev_err(&pdev->dev, "failed to probe GART: %ld\n",
PTR_ERR(mc->gart));
mc->gart = NULL;
}
}
return 0;
}
static int tegra_mc_suspend(struct device *dev)
{
struct tegra_mc *mc = dev_get_drvdata(dev);
int err;
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
err = tegra_gart_suspend(mc->gart);
if (err)
return err;
}
return 0;
}
static int tegra_mc_resume(struct device *dev)
{
struct tegra_mc *mc = dev_get_drvdata(dev);
int err;
if (IS_ENABLED(CONFIG_TEGRA_IOMMU_GART) && mc->gart) {
err = tegra_gart_resume(mc->gart);
if (err)
return err;
}
return 0;
}
static const struct dev_pm_ops tegra_mc_pm_ops = {
.suspend = tegra_mc_suspend,
.resume = tegra_mc_resume,
};
static struct platform_driver tegra_mc_driver = {
.driver = {
.name = "tegra-mc",
.of_match_table = tegra_mc_of_match,
.pm = &tegra_mc_pm_ops,
.suppress_bind_attrs = true,
},
.prevent_deferred_probe = true,
.probe = tegra_mc_probe,
};
static int tegra_mc_init(void)
{
return platform_driver_register(&tegra_mc_driver);
}
arch_initcall(tegra_mc_init);
MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>");
MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
MODULE_LICENSE("GPL v2");