blob: a11006b6d8e87d5f64db77e777da08355a32ad8d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* arch-independent dma-mapping routines
*
* Copyright (c) 2006 SUSE Linux Products GmbH
* Copyright (c) 2006 Tejun Heo <teheo@suse.de>
*/
#include <linux/memblock.h> /* for max_pfn */
#include <linux/acpi.h>
#include <linux/dma-direct.h>
#include <linux/dma-noncoherent.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
/*
* Managed DMA API
*/
struct dma_devres {
size_t size;
void *vaddr;
dma_addr_t dma_handle;
unsigned long attrs;
};
static void dmam_release(struct device *dev, void *res)
{
struct dma_devres *this = res;
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
this->attrs);
}
static int dmam_match(struct device *dev, void *res, void *match_data)
{
struct dma_devres *this = res, *match = match_data;
if (this->vaddr == match->vaddr) {
WARN_ON(this->size != match->size ||
this->dma_handle != match->dma_handle);
return 1;
}
return 0;
}
/**
* dmam_free_coherent - Managed dma_free_coherent()
* @dev: Device to free coherent memory for
* @size: Size of allocation
* @vaddr: Virtual address of the memory to free
* @dma_handle: DMA handle of the memory to free
*
* Managed dma_free_coherent().
*/
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle)
{
struct dma_devres match_data = { size, vaddr, dma_handle };
dma_free_coherent(dev, size, vaddr, dma_handle);
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
}
EXPORT_SYMBOL(dmam_free_coherent);
/**
* dmam_alloc_attrs - Managed dma_alloc_attrs()
* @dev: Device to allocate non_coherent memory for
* @size: Size of allocation
* @dma_handle: Out argument for allocated DMA handle
* @gfp: Allocation flags
* @attrs: Flags in the DMA_ATTR_* namespace.
*
* Managed dma_alloc_attrs(). Memory allocated using this function will be
* automatically released on driver detach.
*
* RETURNS:
* Pointer to allocated memory on success, NULL on failure.
*/
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
struct dma_devres *dr;
void *vaddr;
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
if (!dr)
return NULL;
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
if (!vaddr) {
devres_free(dr);
return NULL;
}
dr->vaddr = vaddr;
dr->dma_handle = *dma_handle;
dr->size = size;
dr->attrs = attrs;
devres_add(dev, dr);
return vaddr;
}
EXPORT_SYMBOL(dmam_alloc_attrs);
/*
* Create scatter-list for the already allocated DMA buffer.
*/
int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
struct page *page;
int ret;
if (!dev_is_dma_coherent(dev)) {
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
return -ENXIO;
page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr,
dma_addr));
} else {
page = virt_to_page(cpu_addr);
}
ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
if (!ret)
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
return ret;
}
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!dma_is_direct(ops) && ops->get_sgtable)
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
attrs);
return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
attrs);
}
EXPORT_SYMBOL(dma_get_sgtable_attrs);
/*
* Create userspace mapping for the DMA-coherent memory.
*/
int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
#ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
unsigned long user_count = vma_pages(vma);
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long off = vma->vm_pgoff;
unsigned long pfn;
int ret = -ENXIO;
vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
return ret;
if (off >= count || user_count > count - off)
return -ENXIO;
if (!dev_is_dma_coherent(dev)) {
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
return -ENXIO;
pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
} else {
pfn = page_to_pfn(virt_to_page(cpu_addr));
}
return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
user_count << PAGE_SHIFT, vma->vm_page_prot);
#else
return -ENXIO;
#endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
}
/**
* dma_mmap_attrs - map a coherent DMA allocation into user space
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
* @vma: vm_area_struct describing requested user mapping
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
* @dma_addr: device-view address returned from dma_alloc_attrs
* @size: size of memory originally requested in dma_alloc_attrs
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
*
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
* space. The coherent DMA buffer must not be freed by the driver until the
* user space mapping has been released.
*/
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
void *cpu_addr, dma_addr_t dma_addr, size_t size,
unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (!dma_is_direct(ops) && ops->mmap)
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
}
EXPORT_SYMBOL(dma_mmap_attrs);
#ifndef ARCH_HAS_DMA_GET_REQUIRED_MASK
static u64 dma_default_get_required_mask(struct device *dev)
{
u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
u64 mask;
if (!high_totalram) {
/* convert to mask just covering totalram */
low_totalram = (1 << (fls(low_totalram) - 1));
low_totalram += low_totalram - 1;
mask = low_totalram;
} else {
high_totalram = (1 << (fls(high_totalram) - 1));
high_totalram += high_totalram - 1;
mask = (((u64)high_totalram) << 32) + 0xffffffff;
}
return mask;
}
u64 dma_get_required_mask(struct device *dev)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_is_direct(ops))
return dma_direct_get_required_mask(dev);
if (ops->get_required_mask)
return ops->get_required_mask(dev);
return dma_default_get_required_mask(dev);
}
EXPORT_SYMBOL_GPL(dma_get_required_mask);
#endif
#ifndef arch_dma_alloc_attrs
#define arch_dma_alloc_attrs(dev) (true)
#endif
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t flag, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
void *cpu_addr;
WARN_ON_ONCE(dev && !dev->coherent_dma_mask);
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
return cpu_addr;
/* let the implementation decide on the zone to allocate from: */
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
if (!arch_dma_alloc_attrs(&dev))
return NULL;
if (dma_is_direct(ops))
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
else if (ops->alloc)
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
else
return NULL;
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
return cpu_addr;
}
EXPORT_SYMBOL(dma_alloc_attrs);
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle, unsigned long attrs)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
return;
/*
* On non-coherent platforms which implement DMA-coherent buffers via
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
* sleep on some machines, and b) an indication that the driver is
* probably misusing the coherent API anyway.
*/
WARN_ON(irqs_disabled());
if (!cpu_addr)
return;
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
if (dma_is_direct(ops))
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
else if (ops->free)
ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
EXPORT_SYMBOL(dma_free_attrs);
static inline void dma_check_mask(struct device *dev, u64 mask)
{
if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
}
int dma_supported(struct device *dev, u64 mask)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
if (dma_is_direct(ops))
return dma_direct_supported(dev, mask);
if (!ops->dma_supported)
return 1;
return ops->dma_supported(dev, mask);
}
EXPORT_SYMBOL(dma_supported);
#ifndef HAVE_ARCH_DMA_SET_MASK
int dma_set_mask(struct device *dev, u64 mask)
{
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
dma_check_mask(dev, mask);
*dev->dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_mask);
#endif
#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
if (!dma_supported(dev, mask))
return -EIO;
dma_check_mask(dev, mask);
dev->coherent_dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir)
{
const struct dma_map_ops *ops = get_dma_ops(dev);
BUG_ON(!valid_dma_direction(dir));
if (dma_is_direct(ops))
arch_dma_cache_sync(dev, vaddr, size, dir);
else if (ops->cache_sync)
ops->cache_sync(dev, vaddr, size, dir);
}
EXPORT_SYMBOL(dma_cache_sync);