| /* |
| * multiorder.c: Multi-order radix tree entry testing |
| * Copyright (c) 2016 Intel Corporation |
| * Author: Ross Zwisler <ross.zwisler@linux.intel.com> |
| * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| #include <linux/radix-tree.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <pthread.h> |
| |
| #include "test.h" |
| |
| void multiorder_iteration(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_iter iter; |
| void **slot; |
| int i, j, err; |
| |
| printv(1, "Multiorder iteration test\n"); |
| |
| #define NUM_ENTRIES 11 |
| int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128}; |
| int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7}; |
| |
| for (i = 0; i < NUM_ENTRIES; i++) { |
| err = item_insert_order(&tree, index[i], order[i]); |
| assert(!err); |
| } |
| |
| for (j = 0; j < 256; j++) { |
| for (i = 0; i < NUM_ENTRIES; i++) |
| if (j <= (index[i] | ((1 << order[i]) - 1))) |
| break; |
| |
| radix_tree_for_each_slot(slot, &tree, &iter, j) { |
| int height = order[i] / RADIX_TREE_MAP_SHIFT; |
| int shift = height * RADIX_TREE_MAP_SHIFT; |
| unsigned long mask = (1UL << order[i]) - 1; |
| struct item *item = *slot; |
| |
| assert((iter.index | mask) == (index[i] | mask)); |
| assert(iter.shift == shift); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (index[i] | mask)); |
| assert(item->order == order[i]); |
| i++; |
| } |
| } |
| |
| item_kill_tree(&tree); |
| } |
| |
| void multiorder_tagged_iteration(void) |
| { |
| RADIX_TREE(tree, GFP_KERNEL); |
| struct radix_tree_iter iter; |
| void **slot; |
| int i, j; |
| |
| printv(1, "Multiorder tagged iteration test\n"); |
| |
| #define MT_NUM_ENTRIES 9 |
| int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128}; |
| int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7}; |
| |
| #define TAG_ENTRIES 7 |
| int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128}; |
| |
| for (i = 0; i < MT_NUM_ENTRIES; i++) |
| assert(!item_insert_order(&tree, index[i], order[i])); |
| |
| assert(!radix_tree_tagged(&tree, 1)); |
| |
| for (i = 0; i < TAG_ENTRIES; i++) |
| assert(radix_tree_tag_set(&tree, tag_index[i], 1)); |
| |
| for (j = 0; j < 256; j++) { |
| int k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) { |
| unsigned long mask; |
| struct item *item = *slot; |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1UL << order[k]) - 1; |
| |
| assert((iter.index | mask) == (tag_index[i] | mask)); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(&tree, 0, ~0UL, TAG_ENTRIES, XA_MARK_1, |
| XA_MARK_2) == TAG_ENTRIES); |
| |
| for (j = 0; j < 256; j++) { |
| int mask, k; |
| |
| for (i = 0; i < TAG_ENTRIES; i++) { |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| if (j <= (index[k] | ((1 << order[k]) - 1))) |
| break; |
| } |
| |
| radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) { |
| struct item *item = *slot; |
| for (k = i; index[k] < tag_index[i]; k++) |
| ; |
| mask = (1 << order[k]) - 1; |
| |
| assert((iter.index | mask) == (tag_index[i] | mask)); |
| assert(!radix_tree_is_internal_node(item)); |
| assert((item->index | mask) == (tag_index[i] | mask)); |
| assert(item->order == order[k]); |
| i++; |
| } |
| } |
| |
| assert(tag_tagged_items(&tree, 1, ~0UL, MT_NUM_ENTRIES * 2, XA_MARK_1, |
| XA_MARK_0) == TAG_ENTRIES); |
| i = 0; |
| radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) { |
| assert(iter.index == tag_index[i]); |
| i++; |
| } |
| |
| item_kill_tree(&tree); |
| } |
| |
| bool stop_iteration = false; |
| |
| static void *creator_func(void *ptr) |
| { |
| /* 'order' is set up to ensure we have sibling entries */ |
| unsigned int order = RADIX_TREE_MAP_SHIFT - 1; |
| struct radix_tree_root *tree = ptr; |
| int i; |
| |
| for (i = 0; i < 10000; i++) { |
| item_insert_order(tree, 0, order); |
| item_delete_rcu(tree, 0); |
| } |
| |
| stop_iteration = true; |
| return NULL; |
| } |
| |
| static void *iterator_func(void *ptr) |
| { |
| struct radix_tree_root *tree = ptr; |
| struct radix_tree_iter iter; |
| struct item *item; |
| void **slot; |
| |
| while (!stop_iteration) { |
| rcu_read_lock(); |
| radix_tree_for_each_slot(slot, tree, &iter, 0) { |
| item = radix_tree_deref_slot(slot); |
| |
| if (!item) |
| continue; |
| if (radix_tree_deref_retry(item)) { |
| slot = radix_tree_iter_retry(&iter); |
| continue; |
| } |
| |
| item_sanity(item, iter.index); |
| } |
| rcu_read_unlock(); |
| } |
| return NULL; |
| } |
| |
| static void multiorder_iteration_race(void) |
| { |
| const int num_threads = sysconf(_SC_NPROCESSORS_ONLN); |
| pthread_t worker_thread[num_threads]; |
| RADIX_TREE(tree, GFP_KERNEL); |
| int i; |
| |
| pthread_create(&worker_thread[0], NULL, &creator_func, &tree); |
| for (i = 1; i < num_threads; i++) |
| pthread_create(&worker_thread[i], NULL, &iterator_func, &tree); |
| |
| for (i = 0; i < num_threads; i++) |
| pthread_join(worker_thread[i], NULL); |
| |
| item_kill_tree(&tree); |
| } |
| |
| void multiorder_checks(void) |
| { |
| multiorder_iteration(); |
| multiorder_tagged_iteration(); |
| multiorder_iteration_race(); |
| |
| radix_tree_cpu_dead(0); |
| } |
| |
| int __weak main(void) |
| { |
| radix_tree_init(); |
| multiorder_checks(); |
| return 0; |
| } |