blob: 84d41be6d06ba4e79f49ae069f5f1d5ae20b00de [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Machine check handler.
*
* K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
* Rest from unknown author(s).
* 2004 Andi Kleen. Rewrote most of it.
* Copyright 2008 Intel Corporation
* Author: Andi Kleen
*/
#include <linux/thread_info.h>
#include <linux/capability.h>
#include <linux/miscdevice.h>
#include <linux/ratelimit.h>
#include <linux/rcupdate.h>
#include <linux/kobject.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/syscore_ops.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/poll.h>
#include <linux/nmi.h>
#include <linux/cpu.h>
#include <linux/ras.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/debugfs.h>
#include <linux/irq_work.h>
#include <linux/export.h>
#include <linux/set_memory.h>
#include <linux/sync_core.h>
#include <linux/task_work.h>
#include <linux/hardirq.h>
#include <linux/kexec.h>
#include <asm/fred.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/traps.h>
#include <asm/tlbflush.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/reboot.h>
#include <asm/tdx.h>
#include "internal.h"
/* sysfs synchronization */
static DEFINE_MUTEX(mce_sysfs_mutex);
#define CREATE_TRACE_POINTS
#include <trace/events/mce.h>
#define SPINUNIT 100 /* 100ns */
DEFINE_PER_CPU(unsigned, mce_exception_count);
DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
#define ATTR_LEN 16
/* One object for each MCE bank, shared by all CPUs */
struct mce_bank_dev {
struct device_attribute attr; /* device attribute */
char attrname[ATTR_LEN]; /* attribute name */
u8 bank; /* bank number */
};
static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
struct mce_vendor_flags mce_flags __read_mostly;
struct mca_config mca_cfg __read_mostly = {
.bootlog = -1,
.monarch_timeout = -1
};
static DEFINE_PER_CPU(struct mce, mces_seen);
static unsigned long mce_need_notify;
/*
* MCA banks polled by the period polling timer for corrected events.
* With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
*/
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
};
/*
* MCA banks controlled through firmware first for corrected errors.
* This is a global list of banks for which we won't enable CMCI and we
* won't poll. Firmware controls these banks and is responsible for
* reporting corrected errors through GHES. Uncorrected/recoverable
* errors are still notified through a machine check.
*/
mce_banks_t mce_banks_ce_disabled;
static struct work_struct mce_work;
static struct irq_work mce_irq_work;
/*
* CPU/chipset specific EDAC code can register a notifier call here to print
* MCE errors in a human-readable form.
*/
BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
/* Do initial initialization of a struct mce */
void mce_setup(struct mce *m)
{
memset(m, 0, sizeof(struct mce));
m->cpu = m->extcpu = smp_processor_id();
/* need the internal __ version to avoid deadlocks */
m->time = __ktime_get_real_seconds();
m->cpuvendor = boot_cpu_data.x86_vendor;
m->cpuid = cpuid_eax(1);
m->socketid = cpu_data(m->extcpu).topo.pkg_id;
m->apicid = cpu_data(m->extcpu).topo.initial_apicid;
m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
m->ppin = cpu_data(m->extcpu).ppin;
m->microcode = boot_cpu_data.microcode;
}
DEFINE_PER_CPU(struct mce, injectm);
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
void mce_log(struct mce *m)
{
if (!mce_gen_pool_add(m))
irq_work_queue(&mce_irq_work);
}
EXPORT_SYMBOL_GPL(mce_log);
void mce_register_decode_chain(struct notifier_block *nb)
{
if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
nb->priority > MCE_PRIO_HIGHEST))
return;
blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
}
EXPORT_SYMBOL_GPL(mce_register_decode_chain);
void mce_unregister_decode_chain(struct notifier_block *nb)
{
blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
}
EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
static void __print_mce(struct mce *m)
{
pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
m->extcpu,
(m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
m->mcgstatus, m->bank, m->status);
if (m->ip) {
pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
m->cs, m->ip);
if (m->cs == __KERNEL_CS)
pr_cont("{%pS}", (void *)(unsigned long)m->ip);
pr_cont("\n");
}
pr_emerg(HW_ERR "TSC %llx ", m->tsc);
if (m->addr)
pr_cont("ADDR %llx ", m->addr);
if (m->misc)
pr_cont("MISC %llx ", m->misc);
if (m->ppin)
pr_cont("PPIN %llx ", m->ppin);
if (mce_flags.smca) {
if (m->synd)
pr_cont("SYND %llx ", m->synd);
if (m->ipid)
pr_cont("IPID %llx ", m->ipid);
}
pr_cont("\n");
/*
* Note this output is parsed by external tools and old fields
* should not be changed.
*/
pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
m->microcode);
}
static void print_mce(struct mce *m)
{
__print_mce(m);
if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
}
#define PANIC_TIMEOUT 5 /* 5 seconds */
static atomic_t mce_panicked;
static int fake_panic;
static atomic_t mce_fake_panicked;
/* Panic in progress. Enable interrupts and wait for final IPI */
static void wait_for_panic(void)
{
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
preempt_disable();
local_irq_enable();
while (timeout-- > 0)
udelay(1);
if (panic_timeout == 0)
panic_timeout = mca_cfg.panic_timeout;
panic("Panicing machine check CPU died");
}
static const char *mce_dump_aux_info(struct mce *m)
{
if (boot_cpu_has_bug(X86_BUG_TDX_PW_MCE))
return tdx_dump_mce_info(m);
return NULL;
}
static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
{
struct llist_node *pending;
struct mce_evt_llist *l;
int apei_err = 0;
const char *memmsg;
/*
* Allow instrumentation around external facilities usage. Not that it
* matters a whole lot since the machine is going to panic anyway.
*/
instrumentation_begin();
if (!fake_panic) {
/*
* Make sure only one CPU runs in machine check panic
*/
if (atomic_inc_return(&mce_panicked) > 1)
wait_for_panic();
barrier();
bust_spinlocks(1);
console_verbose();
} else {
/* Don't log too much for fake panic */
if (atomic_inc_return(&mce_fake_panicked) > 1)
goto out;
}
pending = mce_gen_pool_prepare_records();
/* First print corrected ones that are still unlogged */
llist_for_each_entry(l, pending, llnode) {
struct mce *m = &l->mce;
if (!(m->status & MCI_STATUS_UC)) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
/* Now print uncorrected but with the final one last */
llist_for_each_entry(l, pending, llnode) {
struct mce *m = &l->mce;
if (!(m->status & MCI_STATUS_UC))
continue;
if (!final || mce_cmp(m, final)) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
if (final) {
print_mce(final);
if (!apei_err)
apei_err = apei_write_mce(final);
}
if (exp)
pr_emerg(HW_ERR "Machine check: %s\n", exp);
memmsg = mce_dump_aux_info(final);
if (memmsg)
pr_emerg(HW_ERR "Machine check: %s\n", memmsg);
if (!fake_panic) {
if (panic_timeout == 0)
panic_timeout = mca_cfg.panic_timeout;
/*
* Kdump skips the poisoned page in order to avoid
* touching the error bits again. Poison the page even
* if the error is fatal and the machine is about to
* panic.
*/
if (kexec_crash_loaded()) {
if (final && (final->status & MCI_STATUS_ADDRV)) {
struct page *p;
p = pfn_to_online_page(final->addr >> PAGE_SHIFT);
if (p)
SetPageHWPoison(p);
}
}
panic(msg);
} else
pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
out:
instrumentation_end();
}
/* Support code for software error injection */
static int msr_to_offset(u32 msr)
{
unsigned bank = __this_cpu_read(injectm.bank);
if (msr == mca_cfg.rip_msr)
return offsetof(struct mce, ip);
if (msr == mca_msr_reg(bank, MCA_STATUS))
return offsetof(struct mce, status);
if (msr == mca_msr_reg(bank, MCA_ADDR))
return offsetof(struct mce, addr);
if (msr == mca_msr_reg(bank, MCA_MISC))
return offsetof(struct mce, misc);
if (msr == MSR_IA32_MCG_STATUS)
return offsetof(struct mce, mcgstatus);
return -1;
}
void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
{
if (wrmsr) {
pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
regs->ip, (void *)regs->ip);
} else {
pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, regs->ip, (void *)regs->ip);
}
show_stack_regs(regs);
panic("MCA architectural violation!\n");
while (true)
cpu_relax();
}
/* MSR access wrappers used for error injection */
noinstr u64 mce_rdmsrl(u32 msr)
{
DECLARE_ARGS(val, low, high);
if (__this_cpu_read(injectm.finished)) {
int offset;
u64 ret;
instrumentation_begin();
offset = msr_to_offset(msr);
if (offset < 0)
ret = 0;
else
ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
instrumentation_end();
return ret;
}
/*
* RDMSR on MCA MSRs should not fault. If they do, this is very much an
* architectural violation and needs to be reported to hw vendor. Panic
* the box to not allow any further progress.
*/
asm volatile("1: rdmsr\n"
"2:\n"
_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
: EAX_EDX_RET(val, low, high) : "c" (msr));
return EAX_EDX_VAL(val, low, high);
}
static noinstr void mce_wrmsrl(u32 msr, u64 v)
{
u32 low, high;
if (__this_cpu_read(injectm.finished)) {
int offset;
instrumentation_begin();
offset = msr_to_offset(msr);
if (offset >= 0)
*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
instrumentation_end();
return;
}
low = (u32)v;
high = (u32)(v >> 32);
/* See comment in mce_rdmsrl() */
asm volatile("1: wrmsr\n"
"2:\n"
_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
: : "c" (msr), "a"(low), "d" (high) : "memory");
}
/*
* Collect all global (w.r.t. this processor) status about this machine
* check into our "mce" struct so that we can use it later to assess
* the severity of the problem as we read per-bank specific details.
*/
static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
{
/*
* Enable instrumentation around mce_setup() which calls external
* facilities.
*/
instrumentation_begin();
mce_setup(m);
instrumentation_end();
m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
if (regs) {
/*
* Get the address of the instruction at the time of
* the machine check error.
*/
if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
m->ip = regs->ip;
m->cs = regs->cs;
/*
* When in VM86 mode make the cs look like ring 3
* always. This is a lie, but it's better than passing
* the additional vm86 bit around everywhere.
*/
if (v8086_mode(regs))
m->cs |= 3;
}
/* Use accurate RIP reporting if available. */
if (mca_cfg.rip_msr)
m->ip = mce_rdmsrl(mca_cfg.rip_msr);
}
}
int mce_available(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return 0;
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
}
static void mce_schedule_work(void)
{
if (!mce_gen_pool_empty())
schedule_work(&mce_work);
}
static void mce_irq_work_cb(struct irq_work *entry)
{
mce_schedule_work();
}
bool mce_usable_address(struct mce *m)
{
if (!(m->status & MCI_STATUS_ADDRV))
return false;
switch (m->cpuvendor) {
case X86_VENDOR_AMD:
return amd_mce_usable_address(m);
case X86_VENDOR_INTEL:
case X86_VENDOR_ZHAOXIN:
return intel_mce_usable_address(m);
default:
return true;
}
}
EXPORT_SYMBOL_GPL(mce_usable_address);
bool mce_is_memory_error(struct mce *m)
{
switch (m->cpuvendor) {
case X86_VENDOR_AMD:
case X86_VENDOR_HYGON:
return amd_mce_is_memory_error(m);
case X86_VENDOR_INTEL:
case X86_VENDOR_ZHAOXIN:
/*
* Intel SDM Volume 3B - 15.9.2 Compound Error Codes
*
* Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
* indicating a memory error. Bit 8 is used for indicating a
* cache hierarchy error. The combination of bit 2 and bit 3
* is used for indicating a `generic' cache hierarchy error
* But we can't just blindly check the above bits, because if
* bit 11 is set, then it is a bus/interconnect error - and
* either way the above bits just gives more detail on what
* bus/interconnect error happened. Note that bit 12 can be
* ignored, as it's the "filter" bit.
*/
return (m->status & 0xef80) == BIT(7) ||
(m->status & 0xef00) == BIT(8) ||
(m->status & 0xeffc) == 0xc;
default:
return false;
}
}
EXPORT_SYMBOL_GPL(mce_is_memory_error);
static bool whole_page(struct mce *m)
{
if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
return true;
return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
}
bool mce_is_correctable(struct mce *m)
{
if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
return false;
if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
return false;
if (m->status & MCI_STATUS_UC)
return false;
return true;
}
EXPORT_SYMBOL_GPL(mce_is_correctable);
static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *m = (struct mce *)data;
if (!m)
return NOTIFY_DONE;
/* Emit the trace record: */
trace_mce_record(m);
set_bit(0, &mce_need_notify);
mce_notify_irq();
return NOTIFY_DONE;
}
static struct notifier_block early_nb = {
.notifier_call = mce_early_notifier,
.priority = MCE_PRIO_EARLY,
};
static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
unsigned long pfn;
if (!mce || !mce_usable_address(mce))
return NOTIFY_DONE;
if (mce->severity != MCE_AO_SEVERITY &&
mce->severity != MCE_DEFERRED_SEVERITY)
return NOTIFY_DONE;
pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
if (!memory_failure(pfn, 0)) {
set_mce_nospec(pfn);
mce->kflags |= MCE_HANDLED_UC;
}
return NOTIFY_OK;
}
static struct notifier_block mce_uc_nb = {
.notifier_call = uc_decode_notifier,
.priority = MCE_PRIO_UC,
};
static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *m = (struct mce *)data;
if (!m)
return NOTIFY_DONE;
if (mca_cfg.print_all || !m->kflags)
__print_mce(m);
return NOTIFY_DONE;
}
static struct notifier_block mce_default_nb = {
.notifier_call = mce_default_notifier,
/* lowest prio, we want it to run last. */
.priority = MCE_PRIO_LOWEST,
};
/*
* Read ADDR and MISC registers.
*/
static noinstr void mce_read_aux(struct mce *m, int i)
{
if (m->status & MCI_STATUS_MISCV)
m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
if (m->status & MCI_STATUS_ADDRV) {
m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
/*
* Mask the reported address by the reported granularity.
*/
if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
u8 shift = MCI_MISC_ADDR_LSB(m->misc);
m->addr >>= shift;
m->addr <<= shift;
}
smca_extract_err_addr(m);
}
if (mce_flags.smca) {
m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
if (m->status & MCI_STATUS_SYNDV)
m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
}
}
DEFINE_PER_CPU(unsigned, mce_poll_count);
/*
* Poll for corrected events or events that happened before reset.
* Those are just logged through /dev/mcelog.
*
* This is executed in standard interrupt context.
*
* Note: spec recommends to panic for fatal unsignalled
* errors here. However this would be quite problematic --
* we would need to reimplement the Monarch handling and
* it would mess up the exclusion between exception handler
* and poll handler -- * so we skip this for now.
* These cases should not happen anyways, or only when the CPU
* is already totally * confused. In this case it's likely it will
* not fully execute the machine check handler either.
*/
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
bool error_seen = false;
struct mce m;
int i;
this_cpu_inc(mce_poll_count);
mce_gather_info(&m, NULL);
if (flags & MCP_TIMESTAMP)
m.tsc = rdtsc();
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
if (!mce_banks[i].ctl || !test_bit(i, *b))
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
barrier();
m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
/*
* Update storm tracking here, before checking for the
* MCI_STATUS_VAL bit. Valid corrected errors count
* towards declaring, or maintaining, storm status. No
* error in a bank counts towards avoiding, or ending,
* storm status.
*/
if (!mca_cfg.cmci_disabled)
mce_track_storm(&m);
/* If this entry is not valid, ignore it */
if (!(m.status & MCI_STATUS_VAL))
continue;
/*
* If we are logging everything (at CPU online) or this
* is a corrected error, then we must log it.
*/
if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
goto log_it;
/*
* Newer Intel systems that support software error
* recovery need to make additional checks. Other
* CPUs should skip over uncorrected errors, but log
* everything else.
*/
if (!mca_cfg.ser) {
if (m.status & MCI_STATUS_UC)
continue;
goto log_it;
}
/* Log "not enabled" (speculative) errors */
if (!(m.status & MCI_STATUS_EN))
goto log_it;
/*
* Log UCNA (SDM: 15.6.3 "UCR Error Classification")
* UC == 1 && PCC == 0 && S == 0
*/
if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
goto log_it;
/*
* Skip anything else. Presumption is that our read of this
* bank is racing with a machine check. Leave the log alone
* for do_machine_check() to deal with it.
*/
continue;
log_it:
error_seen = true;
if (flags & MCP_DONTLOG)
goto clear_it;
mce_read_aux(&m, i);
m.severity = mce_severity(&m, NULL, NULL, false);
/*
* Don't get the IP here because it's unlikely to
* have anything to do with the actual error location.
*/
if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
goto clear_it;
if (flags & MCP_QUEUE_LOG)
mce_gen_pool_add(&m);
else
mce_log(&m);
clear_it:
/*
* Clear state for this bank.
*/
mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
/*
* Don't clear MCG_STATUS here because it's only defined for
* exceptions.
*/
sync_core();
return error_seen;
}
EXPORT_SYMBOL_GPL(machine_check_poll);
/*
* During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
* EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
* Vol 3B Table 15-20). But this confuses both the code that determines
* whether the machine check occurred in kernel or user mode, and also
* the severity assessment code. Pretend that EIPV was set, and take the
* ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
*/
static __always_inline void
quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
{
if (bank != 0)
return;
if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
return;
if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
MCACOD)) !=
(MCI_STATUS_UC|MCI_STATUS_EN|
MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
MCI_STATUS_AR|MCACOD_INSTR))
return;
m->mcgstatus |= MCG_STATUS_EIPV;
m->ip = regs->ip;
m->cs = regs->cs;
}
/*
* Disable fast string copy and return from the MCE handler upon the first SRAR
* MCE on bank 1 due to a CPU erratum on Intel Skylake/Cascade Lake/Cooper Lake
* CPUs.
* The fast string copy instructions ("REP; MOVS*") could consume an
* uncorrectable memory error in the cache line _right after_ the desired region
* to copy and raise an MCE with RIP pointing to the instruction _after_ the
* "REP; MOVS*".
* This mitigation addresses the issue completely with the caveat of performance
* degradation on the CPU affected. This is still better than the OS crashing on
* MCEs raised on an irrelevant process due to "REP; MOVS*" accesses from a
* kernel context (e.g., copy_page).
*
* Returns true when fast string copy on CPU has been disabled.
*/
static noinstr bool quirk_skylake_repmov(void)
{
u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
u64 mc1_status;
/*
* Apply the quirk only to local machine checks, i.e., no broadcast
* sync is needed.
*/
if (!(mcgstatus & MCG_STATUS_LMCES) ||
!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
return false;
mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
/* Check for a software-recoverable data fetch error. */
if ((mc1_status &
(MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
MCI_STATUS_AR | MCI_STATUS_S)) ==
(MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
MCI_STATUS_AR | MCI_STATUS_S)) {
misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
instrumentation_begin();
pr_err_once("Erratum detected, disable fast string copy instructions.\n");
instrumentation_end();
return true;
}
return false;
}
/*
* Some Zen-based Instruction Fetch Units set EIPV=RIPV=0 on poison consumption
* errors. This means mce_gather_info() will not save the "ip" and "cs" registers.
*
* However, the context is still valid, so save the "cs" register for later use.
*
* The "ip" register is truly unknown, so don't save it or fixup EIPV/RIPV.
*
* The Instruction Fetch Unit is at MCA bank 1 for all affected systems.
*/
static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
{
if (bank != 1)
return;
if (!(m->status & MCI_STATUS_POISON))
return;
m->cs = regs->cs;
}
/*
* Do a quick check if any of the events requires a panic.
* This decides if we keep the events around or clear them.
*/
static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
struct pt_regs *regs)
{
char *tmp = *msg;
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
if (!(m->status & MCI_STATUS_VAL))
continue;
arch___set_bit(i, validp);
if (mce_flags.snb_ifu_quirk)
quirk_sandybridge_ifu(i, m, regs);
if (mce_flags.zen_ifu_quirk)
quirk_zen_ifu(i, m, regs);
m->bank = i;
if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
mce_read_aux(m, i);
*msg = tmp;
return 1;
}
}
return 0;
}
/*
* Variable to establish order between CPUs while scanning.
* Each CPU spins initially until executing is equal its number.
*/
static atomic_t mce_executing;
/*
* Defines order of CPUs on entry. First CPU becomes Monarch.
*/
static atomic_t mce_callin;
/*
* Track which CPUs entered the MCA broadcast synchronization and which not in
* order to print holdouts.
*/
static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
/*
* Check if a timeout waiting for other CPUs happened.
*/
static noinstr int mce_timed_out(u64 *t, const char *msg)
{
int ret = 0;
/* Enable instrumentation around calls to external facilities */
instrumentation_begin();
/*
* The others already did panic for some reason.
* Bail out like in a timeout.
* rmb() to tell the compiler that system_state
* might have been modified by someone else.
*/
rmb();
if (atomic_read(&mce_panicked))
wait_for_panic();
if (!mca_cfg.monarch_timeout)
goto out;
if ((s64)*t < SPINUNIT) {
if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
cpumask_pr_args(&mce_missing_cpus));
mce_panic(msg, NULL, NULL);
ret = 1;
goto out;
}
*t -= SPINUNIT;
out:
touch_nmi_watchdog();
instrumentation_end();
return ret;
}
/*
* The Monarch's reign. The Monarch is the CPU who entered
* the machine check handler first. It waits for the others to
* raise the exception too and then grades them. When any
* error is fatal panic. Only then let the others continue.
*
* The other CPUs entering the MCE handler will be controlled by the
* Monarch. They are called Subjects.
*
* This way we prevent any potential data corruption in a unrecoverable case
* and also makes sure always all CPU's errors are examined.
*
* Also this detects the case of a machine check event coming from outer
* space (not detected by any CPUs) In this case some external agent wants
* us to shut down, so panic too.
*
* The other CPUs might still decide to panic if the handler happens
* in a unrecoverable place, but in this case the system is in a semi-stable
* state and won't corrupt anything by itself. It's ok to let the others
* continue for a bit first.
*
* All the spin loops have timeouts; when a timeout happens a CPU
* typically elects itself to be Monarch.
*/
static void mce_reign(void)
{
int cpu;
struct mce *m = NULL;
int global_worst = 0;
char *msg = NULL;
/*
* This CPU is the Monarch and the other CPUs have run
* through their handlers.
* Grade the severity of the errors of all the CPUs.
*/
for_each_possible_cpu(cpu) {
struct mce *mtmp = &per_cpu(mces_seen, cpu);
if (mtmp->severity > global_worst) {
global_worst = mtmp->severity;
m = &per_cpu(mces_seen, cpu);
}
}
/*
* Cannot recover? Panic here then.
* This dumps all the mces in the log buffer and stops the
* other CPUs.
*/
if (m && global_worst >= MCE_PANIC_SEVERITY) {
/* call mce_severity() to get "msg" for panic */
mce_severity(m, NULL, &msg, true);
mce_panic("Fatal machine check", m, msg);
}
/*
* For UC somewhere we let the CPU who detects it handle it.
* Also must let continue the others, otherwise the handling
* CPU could deadlock on a lock.
*/
/*
* No machine check event found. Must be some external
* source or one CPU is hung. Panic.
*/
if (global_worst <= MCE_KEEP_SEVERITY)
mce_panic("Fatal machine check from unknown source", NULL, NULL);
/*
* Now clear all the mces_seen so that they don't reappear on
* the next mce.
*/
for_each_possible_cpu(cpu)
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
}
static atomic_t global_nwo;
/*
* Start of Monarch synchronization. This waits until all CPUs have
* entered the exception handler and then determines if any of them
* saw a fatal event that requires panic. Then it executes them
* in the entry order.
* TBD double check parallel CPU hotunplug
*/
static noinstr int mce_start(int *no_way_out)
{
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
int order, ret = -1;
if (!timeout)
return ret;
raw_atomic_add(*no_way_out, &global_nwo);
/*
* Rely on the implied barrier below, such that global_nwo
* is updated before mce_callin.
*/
order = raw_atomic_inc_return(&mce_callin);
arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
/* Enable instrumentation around calls to external facilities */
instrumentation_begin();
/*
* Wait for everyone.
*/
while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
if (mce_timed_out(&timeout,
"Timeout: Not all CPUs entered broadcast exception handler")) {
raw_atomic_set(&global_nwo, 0);
goto out;
}
ndelay(SPINUNIT);
}
/*
* mce_callin should be read before global_nwo
*/
smp_rmb();
if (order == 1) {
/*
* Monarch: Starts executing now, the others wait.
*/
raw_atomic_set(&mce_executing, 1);
} else {
/*
* Subject: Now start the scanning loop one by one in
* the original callin order.
* This way when there are any shared banks it will be
* only seen by one CPU before cleared, avoiding duplicates.
*/
while (raw_atomic_read(&mce_executing) < order) {
if (mce_timed_out(&timeout,
"Timeout: Subject CPUs unable to finish machine check processing")) {
raw_atomic_set(&global_nwo, 0);
goto out;
}
ndelay(SPINUNIT);
}
}
/*
* Cache the global no_way_out state.
*/
*no_way_out = raw_atomic_read(&global_nwo);
ret = order;
out:
instrumentation_end();
return ret;
}
/*
* Synchronize between CPUs after main scanning loop.
* This invokes the bulk of the Monarch processing.
*/
static noinstr int mce_end(int order)
{
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
int ret = -1;
/* Allow instrumentation around external facilities. */
instrumentation_begin();
if (!timeout)
goto reset;
if (order < 0)
goto reset;
/*
* Allow others to run.
*/
atomic_inc(&mce_executing);
if (order == 1) {
/*
* Monarch: Wait for everyone to go through their scanning
* loops.
*/
while (atomic_read(&mce_executing) <= num_online_cpus()) {
if (mce_timed_out(&timeout,
"Timeout: Monarch CPU unable to finish machine check processing"))
goto reset;
ndelay(SPINUNIT);
}
mce_reign();
barrier();
ret = 0;
} else {
/*
* Subject: Wait for Monarch to finish.
*/
while (atomic_read(&mce_executing) != 0) {
if (mce_timed_out(&timeout,
"Timeout: Monarch CPU did not finish machine check processing"))
goto reset;
ndelay(SPINUNIT);
}
/*
* Don't reset anything. That's done by the Monarch.
*/
ret = 0;
goto out;
}
/*
* Reset all global state.
*/
reset:
atomic_set(&global_nwo, 0);
atomic_set(&mce_callin, 0);
cpumask_setall(&mce_missing_cpus);
barrier();
/*
* Let others run again.
*/
atomic_set(&mce_executing, 0);
out:
instrumentation_end();
return ret;
}
static __always_inline void mce_clear_state(unsigned long *toclear)
{
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
if (arch_test_bit(i, toclear))
mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
}
/*
* Cases where we avoid rendezvous handler timeout:
* 1) If this CPU is offline.
*
* 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
* skip those CPUs which remain looping in the 1st kernel - see
* crash_nmi_callback().
*
* Note: there still is a small window between kexec-ing and the new,
* kdump kernel establishing a new #MC handler where a broadcasted MCE
* might not get handled properly.
*/
static noinstr bool mce_check_crashing_cpu(void)
{
unsigned int cpu = smp_processor_id();
if (arch_cpu_is_offline(cpu) ||
(crashing_cpu != -1 && crashing_cpu != cpu)) {
u64 mcgstatus;
mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
if (mcgstatus & MCG_STATUS_LMCES)
return false;
}
if (mcgstatus & MCG_STATUS_RIPV) {
__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
return true;
}
}
return false;
}
static __always_inline int
__mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
int *worst)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
struct mca_config *cfg = &mca_cfg;
int severity, i, taint = 0;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
arch___clear_bit(i, toclear);
if (!arch_test_bit(i, valid_banks))
continue;
if (!mce_banks[i].ctl)
continue;
m->misc = 0;
m->addr = 0;
m->bank = i;
m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
if (!(m->status & MCI_STATUS_VAL))
continue;
/*
* Corrected or non-signaled errors are handled by
* machine_check_poll(). Leave them alone, unless this panics.
*/
if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
!no_way_out)
continue;
/* Set taint even when machine check was not enabled. */
taint++;
severity = mce_severity(m, regs, NULL, true);
/*
* When machine check was for corrected/deferred handler don't
* touch, unless we're panicking.
*/
if ((severity == MCE_KEEP_SEVERITY ||
severity == MCE_UCNA_SEVERITY) && !no_way_out)
continue;
arch___set_bit(i, toclear);
/* Machine check event was not enabled. Clear, but ignore. */
if (severity == MCE_NO_SEVERITY)
continue;
mce_read_aux(m, i);
/* assuming valid severity level != 0 */
m->severity = severity;
/*
* Enable instrumentation around the mce_log() call which is
* done in #MC context, where instrumentation is disabled.
*/
instrumentation_begin();
mce_log(m);
instrumentation_end();
if (severity > *worst) {
*final = *m;
*worst = severity;
}
}
/* mce_clear_state will clear *final, save locally for use later */
*m = *final;
return taint;
}
static void kill_me_now(struct callback_head *ch)
{
struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
p->mce_count = 0;
force_sig(SIGBUS);
}
static void kill_me_maybe(struct callback_head *cb)
{
struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
int flags = MF_ACTION_REQUIRED;
unsigned long pfn;
int ret;
p->mce_count = 0;
pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
if (!p->mce_ripv)
flags |= MF_MUST_KILL;
pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
ret = memory_failure(pfn, flags);
if (!ret) {
set_mce_nospec(pfn);
sync_core();
return;
}
/*
* -EHWPOISON from memory_failure() means that it already sent SIGBUS
* to the current process with the proper error info,
* -EOPNOTSUPP means hwpoison_filter() filtered the error event,
*
* In both cases, no further processing is required.
*/
if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
return;
pr_err("Memory error not recovered");
kill_me_now(cb);
}
static void kill_me_never(struct callback_head *cb)
{
struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
unsigned long pfn;
p->mce_count = 0;
pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
if (!memory_failure(pfn, 0))
set_mce_nospec(pfn);
}
static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
{
int count = ++current->mce_count;
/* First call, save all the details */
if (count == 1) {
current->mce_addr = m->addr;
current->mce_kflags = m->kflags;
current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
current->mce_whole_page = whole_page(m);
current->mce_kill_me.func = func;
}
/* Ten is likely overkill. Don't expect more than two faults before task_work() */
if (count > 10)
mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
/* Second or later call, make sure page address matches the one from first call */
if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
mce_panic("Consecutive machine checks to different user pages", m, msg);
/* Do not call task_work_add() more than once */
if (count > 1)
return;
task_work_add(current, &current->mce_kill_me, TWA_RESUME);
}
/* Handle unconfigured int18 (should never happen) */
static noinstr void unexpected_machine_check(struct pt_regs *regs)
{
instrumentation_begin();
pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
smp_processor_id());
instrumentation_end();
}
/*
* The actual machine check handler. This only handles real exceptions when
* something got corrupted coming in through int 18.
*
* This is executed in #MC context not subject to normal locking rules.
* This implies that most kernel services cannot be safely used. Don't even
* think about putting a printk in there!
*
* On Intel systems this is entered on all CPUs in parallel through
* MCE broadcast. However some CPUs might be broken beyond repair,
* so be always careful when synchronizing with others.
*
* Tracing and kprobes are disabled: if we interrupted a kernel context
* with IF=1, we need to minimize stack usage. There are also recursion
* issues: if the machine check was due to a failure of the memory
* backing the user stack, tracing that reads the user stack will cause
* potentially infinite recursion.
*
* Currently, the #MC handler calls out to a number of external facilities
* and, therefore, allows instrumentation around them. The optimal thing to
* have would be to do the absolutely minimal work required in #MC context
* and have instrumentation disabled only around that. Further processing can
* then happen in process context where instrumentation is allowed. Achieving
* that requires careful auditing and modifications. Until then, the code
* allows instrumentation temporarily, where required. *
*/
noinstr void do_machine_check(struct pt_regs *regs)
{
int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
struct mce m, *final;
char *msg = NULL;
if (unlikely(mce_flags.p5))
return pentium_machine_check(regs);
else if (unlikely(mce_flags.winchip))
return winchip_machine_check(regs);
else if (unlikely(!mca_cfg.initialized))
return unexpected_machine_check(regs);
if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
goto clear;
/*
* Establish sequential order between the CPUs entering the machine
* check handler.
*/
order = -1;
/*
* If no_way_out gets set, there is no safe way to recover from this
* MCE.
*/
no_way_out = 0;
/*
* If kill_current_task is not set, there might be a way to recover from this
* error.
*/
kill_current_task = 0;
/*
* MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
* on Intel.
*/
lmce = 1;
this_cpu_inc(mce_exception_count);
mce_gather_info(&m, regs);
m.tsc = rdtsc();
final = this_cpu_ptr(&mces_seen);
*final = m;
no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
barrier();
/*
* When no restart IP might need to kill or panic.
* Assume the worst for now, but if we find the
* severity is MCE_AR_SEVERITY we have other options.
*/
if (!(m.mcgstatus & MCG_STATUS_RIPV))
kill_current_task = 1;
/*
* Check if this MCE is signaled to only this logical processor,
* on Intel, Zhaoxin only.
*/
if (m.cpuvendor == X86_VENDOR_INTEL ||
m.cpuvendor == X86_VENDOR_ZHAOXIN)
lmce = m.mcgstatus & MCG_STATUS_LMCES;
/*
* Local machine check may already know that we have to panic.
* Broadcast machine check begins rendezvous in mce_start()
* Go through all banks in exclusion of the other CPUs. This way we
* don't report duplicated events on shared banks because the first one
* to see it will clear it.
*/
if (lmce) {
if (no_way_out)
mce_panic("Fatal local machine check", &m, msg);
} else {
order = mce_start(&no_way_out);
}
taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
if (!no_way_out)
mce_clear_state(toclear);
/*
* Do most of the synchronization with other CPUs.
* When there's any problem use only local no_way_out state.
*/
if (!lmce) {
if (mce_end(order) < 0) {
if (!no_way_out)
no_way_out = worst >= MCE_PANIC_SEVERITY;
if (no_way_out)
mce_panic("Fatal machine check on current CPU", &m, msg);
}
} else {
/*
* If there was a fatal machine check we should have
* already called mce_panic earlier in this function.
* Since we re-read the banks, we might have found
* something new. Check again to see if we found a
* fatal error. We call "mce_severity()" again to
* make sure we have the right "msg".
*/
if (worst >= MCE_PANIC_SEVERITY) {
mce_severity(&m, regs, &msg, true);
mce_panic("Local fatal machine check!", &m, msg);
}
}
/*
* Enable instrumentation around the external facilities like task_work_add()
* (via queue_task_work()), fixup_exception() etc. For now, that is. Fixing this
* properly would need a lot more involved reorganization.
*/
instrumentation_begin();
if (taint)
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
if (worst != MCE_AR_SEVERITY && !kill_current_task)
goto out;
/* Fault was in user mode and we need to take some action */
if ((m.cs & 3) == 3) {
/* If this triggers there is no way to recover. Die hard. */
BUG_ON(!on_thread_stack() || !user_mode(regs));
if (!mce_usable_address(&m))
queue_task_work(&m, msg, kill_me_now);
else
queue_task_work(&m, msg, kill_me_maybe);
} else {
/*
* Handle an MCE which has happened in kernel space but from
* which the kernel can recover: ex_has_fault_handler() has
* already verified that the rIP at which the error happened is
* a rIP from which the kernel can recover (by jumping to
* recovery code specified in _ASM_EXTABLE_FAULT()) and the
* corresponding exception handler which would do that is the
* proper one.
*/
if (m.kflags & MCE_IN_KERNEL_RECOV) {
if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
mce_panic("Failed kernel mode recovery", &m, msg);
}
if (m.kflags & MCE_IN_KERNEL_COPYIN)
queue_task_work(&m, msg, kill_me_never);
}
out:
instrumentation_end();
clear:
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
}
EXPORT_SYMBOL_GPL(do_machine_check);
#ifndef CONFIG_MEMORY_FAILURE
int memory_failure(unsigned long pfn, int flags)
{
/* mce_severity() should not hand us an ACTION_REQUIRED error */
BUG_ON(flags & MF_ACTION_REQUIRED);
pr_err("Uncorrected memory error in page 0x%lx ignored\n"
"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
pfn);
return 0;
}
#endif
/*
* Periodic polling timer for "silent" machine check errors. If the
* poller finds an MCE, poll 2x faster. When the poller finds no more
* errors, poll 2x slower (up to check_interval seconds).
*/
static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
static DEFINE_PER_CPU(struct timer_list, mce_timer);
static void __start_timer(struct timer_list *t, unsigned long interval)
{
unsigned long when = jiffies + interval;
unsigned long flags;
local_irq_save(flags);
if (!timer_pending(t) || time_before(when, t->expires))
mod_timer(t, round_jiffies(when));
local_irq_restore(flags);
}
static void mc_poll_banks_default(void)
{
machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
}
void (*mc_poll_banks)(void) = mc_poll_banks_default;
static void mce_timer_fn(struct timer_list *t)
{
struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
unsigned long iv;
WARN_ON(cpu_t != t);
iv = __this_cpu_read(mce_next_interval);
if (mce_available(this_cpu_ptr(&cpu_info)))
mc_poll_banks();
/*
* Alert userspace if needed. If we logged an MCE, reduce the polling
* interval, otherwise increase the polling interval.
*/
if (mce_notify_irq())
iv = max(iv / 2, (unsigned long) HZ/100);
else
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
if (mce_get_storm_mode()) {
__start_timer(t, HZ);
} else {
__this_cpu_write(mce_next_interval, iv);
__start_timer(t, iv);
}
}
/*
* When a storm starts on any bank on this CPU, switch to polling
* once per second. When the storm ends, revert to the default
* polling interval.
*/
void mce_timer_kick(bool storm)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
mce_set_storm_mode(storm);
if (storm)
__start_timer(t, HZ);
else
__this_cpu_write(mce_next_interval, check_interval * HZ);
}
/* Must not be called in IRQ context where del_timer_sync() can deadlock */
static void mce_timer_delete_all(void)
{
int cpu;
for_each_online_cpu(cpu)
del_timer_sync(&per_cpu(mce_timer, cpu));
}
/*
* Notify the user(s) about new machine check events.
* Can be called from interrupt context, but not from machine check/NMI
* context.
*/
int mce_notify_irq(void)
{
/* Not more than two messages every minute */
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
if (test_and_clear_bit(0, &mce_need_notify)) {
mce_work_trigger();
if (__ratelimit(&ratelimit))
pr_info(HW_ERR "Machine check events logged\n");
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mce_notify_irq);
static void __mcheck_cpu_mce_banks_init(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
u8 n_banks = this_cpu_read(mce_num_banks);
int i;
for (i = 0; i < n_banks; i++) {
struct mce_bank *b = &mce_banks[i];
/*
* Init them all, __mcheck_cpu_apply_quirks() is going to apply
* the required vendor quirks before
* __mcheck_cpu_init_clear_banks() does the final bank setup.
*/
b->ctl = -1ULL;
b->init = true;
}
}
/*
* Initialize Machine Checks for a CPU.
*/
static void __mcheck_cpu_cap_init(void)
{
u64 cap;
u8 b;
rdmsrl(MSR_IA32_MCG_CAP, cap);
b = cap & MCG_BANKCNT_MASK;
if (b > MAX_NR_BANKS) {
pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
smp_processor_id(), MAX_NR_BANKS, b);
b = MAX_NR_BANKS;
}
this_cpu_write(mce_num_banks, b);
__mcheck_cpu_mce_banks_init();
/* Use accurate RIP reporting if available. */
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
if (cap & MCG_SER_P)
mca_cfg.ser = 1;
}
static void __mcheck_cpu_init_generic(void)
{
enum mcp_flags m_fl = 0;
mce_banks_t all_banks;
u64 cap;
if (!mca_cfg.bootlog)
m_fl = MCP_DONTLOG;
/*
* Log the machine checks left over from the previous reset. Log them
* only, do not start processing them. That will happen in mcheck_late_init()
* when all consumers have been registered on the notifier chain.
*/
bitmap_fill(all_banks, MAX_NR_BANKS);
machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
cr4_set_bits(X86_CR4_MCE);
rdmsrl(MSR_IA32_MCG_CAP, cap);
if (cap & MCG_CTL_P)
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
}
static void __mcheck_cpu_init_clear_banks(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (!b->init)
continue;
wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
}
/*
* Do a final check to see if there are any unused/RAZ banks.
*
* This must be done after the banks have been initialized and any quirks have
* been applied.
*
* Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
* Otherwise, a user who disables a bank will not be able to re-enable it
* without a system reboot.
*/
static void __mcheck_cpu_check_banks(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
u64 msrval;
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (!b->init)
continue;
rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
b->init = !!msrval;
}
}
/* Add per CPU specific workarounds here */
static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
struct mca_config *cfg = &mca_cfg;
if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
pr_info("unknown CPU type - not enabling MCE support\n");
return -EOPNOTSUPP;
}
/* This should be disabled by the BIOS, but isn't always */
if (c->x86_vendor == X86_VENDOR_AMD) {
if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
/*
* disable GART TBL walk error reporting, which
* trips off incorrectly with the IOMMU & 3ware
* & Cerberus:
*/
clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
}
if (c->x86 < 0x11 && cfg->bootlog < 0) {
/*
* Lots of broken BIOS around that don't clear them
* by default and leave crap in there. Don't log:
*/
cfg->bootlog = 0;
}
/*
* Various K7s with broken bank 0 around. Always disable
* by default.
*/
if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
mce_banks[0].ctl = 0;
/*
* overflow_recov is supported for F15h Models 00h-0fh
* even though we don't have a CPUID bit for it.
*/
if (c->x86 == 0x15 && c->x86_model <= 0xf)
mce_flags.overflow_recov = 1;
if (c->x86 >= 0x17 && c->x86 <= 0x1A)
mce_flags.zen_ifu_quirk = 1;
}
if (c->x86_vendor == X86_VENDOR_INTEL) {
/*
* SDM documents that on family 6 bank 0 should not be written
* because it aliases to another special BIOS controlled
* register.
* But it's not aliased anymore on model 0x1a+
* Don't ignore bank 0 completely because there could be a
* valid event later, merely don't write CTL0.
*/
if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
mce_banks[0].init = false;
/*
* All newer Intel systems support MCE broadcasting. Enable
* synchronization with a one second timeout.
*/
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
/*
* There are also broken BIOSes on some Pentium M and
* earlier systems:
*/
if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
cfg->bootlog = 0;
if (c->x86 == 6 && c->x86_model == 45)
mce_flags.snb_ifu_quirk = 1;
/*
* Skylake, Cascacde Lake and Cooper Lake require a quirk on
* rep movs.
*/
if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
mce_flags.skx_repmov_quirk = 1;
}
if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
/*
* All newer Zhaoxin CPUs support MCE broadcasting. Enable
* synchronization with a one second timeout.
*/
if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
}
}
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = 0;
if (cfg->bootlog != 0)
cfg->panic_timeout = 30;
return 0;
}
static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
{
if (c->x86 != 5)
return 0;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
intel_p5_mcheck_init(c);
mce_flags.p5 = 1;
return 1;
case X86_VENDOR_CENTAUR:
winchip_mcheck_init(c);
mce_flags.winchip = 1;
return 1;
default:
return 0;
}
return 0;
}
/*
* Init basic CPU features needed for early decoding of MCEs.
*/
static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
{
if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
mce_flags.amd_threshold = 1;
}
}
static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
{
struct mca_config *cfg = &mca_cfg;
/*
* All newer Centaur CPUs support MCE broadcasting. Enable
* synchronization with a one second timeout.
*/
if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
c->x86 > 6) {
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
}
}
static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
/*
* These CPUs have MCA bank 8 which reports only one error type called
* SVAD (System View Address Decoder). The reporting of that error is
* controlled by IA32_MC8.CTL.0.
*
* If enabled, prefetching on these CPUs will cause SVAD MCE when
* virtual machines start and result in a system panic. Always disable
* bank 8 SVAD error by default.
*/
if ((c->x86 == 7 && c->x86_model == 0x1b) ||
(c->x86_model == 0x19 || c->x86_model == 0x1f)) {
if (this_cpu_read(mce_num_banks) > 8)
mce_banks[8].ctl = 0;
}
intel_init_cmci();
intel_init_lmce();
}
static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
{
intel_clear_lmce();
}
static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_init(c);
break;
case X86_VENDOR_AMD: {
mce_amd_feature_init(c);
break;
}
case X86_VENDOR_HYGON:
mce_hygon_feature_init(c);
break;
case X86_VENDOR_CENTAUR:
mce_centaur_feature_init(c);
break;
case X86_VENDOR_ZHAOXIN:
mce_zhaoxin_feature_init(c);
break;
default:
break;
}
}
static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_clear(c);
break;
case X86_VENDOR_ZHAOXIN:
mce_zhaoxin_feature_clear(c);
break;
default:
break;
}
}
static void mce_start_timer(struct timer_list *t)
{
unsigned long iv = check_interval * HZ;
if (mca_cfg.ignore_ce || !iv)
return;
this_cpu_write(mce_next_interval, iv);
__start_timer(t, iv);
}
static void __mcheck_cpu_setup_timer(void)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
timer_setup(t, mce_timer_fn, TIMER_PINNED);
}
static void __mcheck_cpu_init_timer(void)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
timer_setup(t, mce_timer_fn, TIMER_PINNED);
mce_start_timer(t);
}
bool filter_mce(struct mce *m)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
return amd_filter_mce(m);
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
return intel_filter_mce(m);
return false;
}
static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
{
irqentry_state_t irq_state;
WARN_ON_ONCE(user_mode(regs));
/*
* Only required when from kernel mode. See
* mce_check_crashing_cpu() for details.
*/
if (mca_cfg.initialized && mce_check_crashing_cpu())
return;
irq_state = irqentry_nmi_enter(regs);
do_machine_check(regs);
irqentry_nmi_exit(regs, irq_state);
}
static __always_inline void exc_machine_check_user(struct pt_regs *regs)
{
irqentry_enter_from_user_mode(regs);
do_machine_check(regs);
irqentry_exit_to_user_mode(regs);
}
#ifdef CONFIG_X86_64
/* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
exc_machine_check_kernel(regs);
local_db_restore(dr7);
}
/* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
exc_machine_check_user(regs);
local_db_restore(dr7);
}
#ifdef CONFIG_X86_FRED
/*
* When occurred on different ring level, i.e., from user or kernel
* context, #MCE needs to be handled on different stack: User #MCE
* on current task stack, while kernel #MCE on a dedicated stack.
*
* This is exactly how FRED event delivery invokes an exception
* handler: ring 3 event on level 0 stack, i.e., current task stack;
* ring 0 event on the #MCE dedicated stack specified in the
* IA32_FRED_STKLVLS MSR. So unlike IDT, the FRED machine check entry
* stub doesn't do stack switch.
*/
DEFINE_FREDENTRY_MCE(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
if (user_mode(regs))
exc_machine_check_user(regs);
else
exc_machine_check_kernel(regs);
local_db_restore(dr7);
}
#endif
#else
/* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
if (user_mode(regs))
exc_machine_check_user(regs);
else
exc_machine_check_kernel(regs);
local_db_restore(dr7);
}
#endif
/*
* Called for each booted CPU to set up machine checks.
* Must be called with preempt off:
*/
void mcheck_cpu_init(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return;
if (__mcheck_cpu_ancient_init(c))
return;
if (!mce_available(c))
return;
__mcheck_cpu_cap_init();
if (__mcheck_cpu_apply_quirks(c) < 0) {
mca_cfg.disabled = 1;
return;
}
if (mce_gen_pool_init()) {
mca_cfg.disabled = 1;
pr_emerg("Couldn't allocate MCE records pool!\n");
return;
}
mca_cfg.initialized = 1;
__mcheck_cpu_init_early(c);
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(c);
__mcheck_cpu_init_clear_banks();
__mcheck_cpu_check_banks();
__mcheck_cpu_setup_timer();
}
/*
* Called for each booted CPU to clear some machine checks opt-ins
*/
void mcheck_cpu_clear(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return;
if (!mce_available(c))
return;
/*
* Possibly to clear general settings generic to x86
* __mcheck_cpu_clear_generic(c);
*/
__mcheck_cpu_clear_vendor(c);
}
static void __mce_disable_bank(void *arg)
{
int bank = *((int *)arg);
__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
cmci_disable_bank(bank);
}
void mce_disable_bank(int bank)
{
if (bank >= this_cpu_read(mce_num_banks)) {
pr_warn(FW_BUG
"Ignoring request to disable invalid MCA bank %d.\n",
bank);
return;
}
set_bit(bank, mce_banks_ce_disabled);
on_each_cpu(__mce_disable_bank, &bank, 1);
}
/*
* mce=off Disables machine check
* mce=no_cmci Disables CMCI
* mce=no_lmce Disables LMCE
* mce=dont_log_ce Clears corrected events silently, no log created for CEs.
* mce=print_all Print all machine check logs to console
* mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
* mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
* monarchtimeout is how long to wait for other CPUs on machine
* check, or 0 to not wait
* mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
and older.
* mce=nobootlog Don't log MCEs from before booting.
* mce=bios_cmci_threshold Don't program the CMCI threshold
* mce=recovery force enable copy_mc_fragile()
*/
static int __init mcheck_enable(char *str)
{
struct mca_config *cfg = &mca_cfg;
if (*str == 0) {
enable_p5_mce();
return 1;
}
if (*str == '=')
str++;
if (!strcmp(str, "off"))
cfg->disabled = 1;
else if (!strcmp(str, "no_cmci"))
cfg->cmci_disabled = true;
else if (!strcmp(str, "no_lmce"))
cfg->lmce_disabled = 1;
else if (!strcmp(str, "dont_log_ce"))
cfg->dont_log_ce = true;
else if (!strcmp(str, "print_all"))
cfg->print_all = true;
else if (!strcmp(str, "ignore_ce"))
cfg->ignore_ce = true;
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
cfg->bootlog = (str[0] == 'b');
else if (!strcmp(str, "bios_cmci_threshold"))
cfg->bios_cmci_threshold = 1;
else if (!strcmp(str, "recovery"))
cfg->recovery = 1;
else if (isdigit(str[0]))
get_option(&str, &(cfg->monarch_timeout));
else {
pr_info("mce argument %s ignored. Please use /sys\n", str);
return 0;
}
return 1;
}
__setup("mce", mcheck_enable);
int __init mcheck_init(void)
{
mce_register_decode_chain(&early_nb);
mce_register_decode_chain(&mce_uc_nb);
mce_register_decode_chain(&mce_default_nb);
INIT_WORK(&mce_work, mce_gen_pool_process);
init_irq_work(&mce_irq_work, mce_irq_work_cb);
return 0;
}
/*
* mce_syscore: PM support
*/
/*
* Disable machine checks on suspend and shutdown. We can't really handle
* them later.
*/
static void mce_disable_error_reporting(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
}
return;
}
static void vendor_disable_error_reporting(void)
{
/*
* Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
* MSRs are socket-wide. Disabling them for just a single offlined CPU
* is bad, since it will inhibit reporting for all shared resources on
* the socket like the last level cache (LLC), the integrated memory
* controller (iMC), etc.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
return;
mce_disable_error_reporting();
}
static int mce_syscore_suspend(void)
{
vendor_disable_error_reporting();
return 0;
}
static void mce_syscore_shutdown(void)
{
vendor_disable_error_reporting();
}
/*
* On resume clear all MCE state. Don't want to see leftovers from the BIOS.
* Only one CPU is active at this time, the others get re-added later using
* CPU hotplug:
*/
static void mce_syscore_resume(void)
{
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
__mcheck_cpu_init_clear_banks();
}
static struct syscore_ops mce_syscore_ops = {
.suspend = mce_syscore_suspend,
.shutdown = mce_syscore_shutdown,
.resume = mce_syscore_resume,
};
/*
* mce_device: Sysfs support
*/
static void mce_cpu_restart(void *data)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
__mcheck_cpu_init_generic();
__mcheck_cpu_init_clear_banks();
__mcheck_cpu_init_timer();
}
/* Reinit MCEs after user configuration changes */
static void mce_restart(void)
{
mce_timer_delete_all();
on_each_cpu(mce_cpu_restart, NULL, 1);
mce_schedule_work();
}
/* Toggle features for corrected errors */
static void mce_disable_cmci(void *data)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
cmci_clear();
}
static void mce_enable_ce(void *all)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
cmci_reenable();
cmci_recheck();
if (all)
__mcheck_cpu_init_timer();
}
static const struct bus_type mce_subsys = {
.name = "machinecheck",
.dev_name = "machinecheck",
};
DEFINE_PER_CPU(struct device *, mce_device);
static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
{
return container_of(attr, struct mce_bank_dev, attr);
}
static ssize_t show_bank(struct device *s, struct device_attribute *attr,
char *buf)
{
u8 bank = attr_to_bank(attr)->bank;
struct mce_bank *b;
if (bank >= per_cpu(mce_num_banks, s->id))
return -EINVAL;
b = &per_cpu(mce_banks_array, s->id)[bank];
if (!b->init)
return -ENODEV;
return sprintf(buf, "%llx\n", b->ctl);
}
static ssize_t set_bank(struct device *s, struct device_attribute *attr,
const char *buf, size_t size)
{
u8 bank = attr_to_bank(attr)->bank;
struct mce_bank *b;
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
if (bank >= per_cpu(mce_num_banks, s->id))
return -EINVAL;
b = &per_cpu(mce_banks_array, s->id)[bank];
if (!b->init)
return -ENODEV;
b->ctl = new;
mutex_lock(&mce_sysfs_mutex);
mce_restart();
mutex_unlock(&mce_sysfs_mutex);
return size;
}
static ssize_t set_ignore_ce(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
mutex_lock(&mce_sysfs_mutex);
if (mca_cfg.ignore_ce ^ !!new) {
if (new) {
/* disable ce features */
mce_timer_delete_all();
on_each_cpu(mce_disable_cmci, NULL, 1);
mca_cfg.ignore_ce = true;
} else {
/* enable ce features */
mca_cfg.ignore_ce = false;
on_each_cpu(mce_enable_ce, (void *)1, 1);
}
}
mutex_unlock(&mce_sysfs_mutex);
return size;
}
static ssize_t set_cmci_disabled(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
mutex_lock(&mce_sysfs_mutex);
if (mca_cfg.cmci_disabled ^ !!new) {
if (new) {
/* disable cmci */
on_each_cpu(mce_disable_cmci, NULL, 1);
mca_cfg.cmci_disabled = true;
} else {
/* enable cmci */
mca_cfg.cmci_disabled = false;
on_each_cpu(mce_enable_ce, NULL, 1);
}
}
mutex_unlock(&mce_sysfs_mutex);
return size;
}
static ssize_t store_int_with_restart(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long old_check_interval = check_interval;
ssize_t ret = device_store_ulong(s, attr, buf, size);
if (check_interval == old_check_interval)
return ret;
mutex_lock(&mce_sysfs_mutex);
mce_restart();
mutex_unlock(&mce_sysfs_mutex);
return ret;
}
static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
static struct dev_ext_attribute dev_attr_check_interval = {
__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
&check_interval
};
static struct dev_ext_attribute dev_attr_ignore_ce = {
__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
&mca_cfg.ignore_ce
};
static struct dev_ext_attribute dev_attr_cmci_disabled = {
__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
&mca_cfg.cmci_disabled
};
static struct device_attribute *mce_device_attrs[] = {
&dev_attr_check_interval.attr,
#ifdef CONFIG_X86_MCELOG_LEGACY
&dev_attr_trigger,
#endif
&dev_attr_monarch_timeout.attr,
&dev_attr_dont_log_ce.attr,
&dev_attr_print_all.attr,
&dev_attr_ignore_ce.attr,
&dev_attr_cmci_disabled.attr,
NULL
};
static cpumask_var_t mce_device_initialized;
static void mce_device_release(struct device *dev)
{
kfree(dev);
}
/* Per CPU device init. All of the CPUs still share the same bank device: */
static int mce_device_create(unsigned int cpu)
{
struct device *dev;
int err;
int i, j;
dev = per_cpu(mce_device, cpu);
if (dev)
return 0;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->id = cpu;
dev->bus = &mce_subsys;
dev->release = &mce_device_release;
err = device_register(dev);
if (err) {
put_device(dev);
return err;
}
for (i = 0; mce_device_attrs[i]; i++) {
err = device_create_file(dev, mce_device_attrs[i]);
if (err)
goto error;
}
for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
err = device_create_file(dev, &mce_bank_devs[j].attr);
if (err)
goto error2;
}
cpumask_set_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = dev;
return 0;
error2:
while (--j >= 0)
device_remove_file(dev, &mce_bank_devs[j].attr);
error:
while (--i >= 0)
device_remove_file(dev, mce_device_attrs[i]);
device_unregister(dev);
return err;
}
static void mce_device_remove(unsigned int cpu)
{
struct device *dev = per_cpu(mce_device, cpu);
int i;
if (!cpumask_test_cpu(cpu, mce_device_initialized))
return;
for (i = 0; mce_device_attrs[i]; i++)
device_remove_file(dev, mce_device_attrs[i]);
for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
device_remove_file(dev, &mce_bank_devs[i].attr);
device_unregister(dev);
cpumask_clear_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = NULL;
}
/* Make sure there are no machine checks on offlined CPUs. */
static void mce_disable_cpu(void)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
if (!cpuhp_tasks_frozen)
cmci_clear();
vendor_disable_error_reporting();
}
static void mce_reenable_cpu(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
if (!cpuhp_tasks_frozen)
cmci_reenable();
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
}
}
static int mce_cpu_dead(unsigned int cpu)
{
/* intentionally ignoring frozen here */
if (!cpuhp_tasks_frozen)
cmci_rediscover();
return 0;
}
static int mce_cpu_online(unsigned int cpu)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
int ret;
mce_device_create(cpu);
ret = mce_threshold_create_device(cpu);
if (ret) {
mce_device_remove(cpu);
return ret;
}
mce_reenable_cpu();
mce_start_timer(t);
return 0;
}
static int mce_cpu_pre_down(unsigned int cpu)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
mce_disable_cpu();
del_timer_sync(t);
mce_threshold_remove_device(cpu);
mce_device_remove(cpu);
return 0;
}
static __init void mce_init_banks(void)
{
int i;
for (i = 0; i < MAX_NR_BANKS; i++) {
struct mce_bank_dev *b = &mce_bank_devs[i];
struct device_attribute *a = &b->attr;
b->bank = i;
sysfs_attr_init(&a->attr);
a->attr.name = b->attrname;
snprintf(b->attrname, ATTR_LEN, "bank%d", i);
a->attr.mode = 0644;
a->show = show_bank;
a->store = set_bank;
}
}
/*
* When running on XEN, this initcall is ordered against the XEN mcelog
* initcall:
*
* device_initcall(xen_late_init_mcelog);
* device_initcall_sync(mcheck_init_device);
*/
static __init int mcheck_init_device(void)
{
int err;
/*
* Check if we have a spare virtual bit. This will only become
* a problem if/when we move beyond 5-level page tables.
*/
MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
if (!mce_available(&boot_cpu_data)) {
err = -EIO;
goto err_out;
}
if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
err = -ENOMEM;
goto err_out;
}
mce_init_banks();
err = subsys_system_register(&mce_subsys, NULL);
if (err)
goto err_out_mem;
err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
mce_cpu_dead);
if (err)
goto err_out_mem;
/*
* Invokes mce_cpu_online() on all CPUs which are online when
* the state is installed.
*/
err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
mce_cpu_online, mce_cpu_pre_down);
if (err < 0)
goto err_out_online;
register_syscore_ops(&mce_syscore_ops);
return 0;
err_out_online:
cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
err_out_mem:
free_cpumask_var(mce_device_initialized);
err_out:
pr_err("Unable to init MCE device (rc: %d)\n", err);
return err;
}
device_initcall_sync(mcheck_init_device);
/*
* Old style boot options parsing. Only for compatibility.
*/
static int __init mcheck_disable(char *str)
{
mca_cfg.disabled = 1;
return 1;
}
__setup("nomce", mcheck_disable);
#ifdef CONFIG_DEBUG_FS
struct dentry *mce_get_debugfs_dir(void)
{
static struct dentry *dmce;
if (!dmce)
dmce = debugfs_create_dir("mce", NULL);
return dmce;
}
static void mce_reset(void)
{
atomic_set(&mce_fake_panicked, 0);
atomic_set(&mce_executing, 0);
atomic_set(&mce_callin, 0);
atomic_set(&global_nwo, 0);
cpumask_setall(&mce_missing_cpus);
}
static int fake_panic_get(void *data, u64 *val)
{
*val = fake_panic;
return 0;
}
static int fake_panic_set(void *data, u64 val)
{
mce_reset();
fake_panic = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
"%llu\n");
static void __init mcheck_debugfs_init(void)
{
struct dentry *dmce;
dmce = mce_get_debugfs_dir();
debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
&fake_panic_fops);
}
#else
static void __init mcheck_debugfs_init(void) { }
#endif
static int __init mcheck_late_init(void)
{
if (mca_cfg.recovery)
enable_copy_mc_fragile();
mcheck_debugfs_init();
/*
* Flush out everything that has been logged during early boot, now that
* everything has been initialized (workqueues, decoders, ...).
*/
mce_schedule_work();
return 0;
}
late_initcall(mcheck_late_init);