blob: 1a8687f8073a89f3335038c8b3ba7e2ee45aa6d4 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_X86_RESCTRL_INTERNAL_H
#define _ASM_X86_RESCTRL_INTERNAL_H
#include <linux/resctrl.h>
#include <linux/sched.h>
#include <linux/kernfs.h>
#include <linux/fs_context.h>
#include <linux/jump_label.h>
#include <linux/tick.h>
#include <asm/resctrl.h>
#define L3_QOS_CDP_ENABLE 0x01ULL
#define L2_QOS_CDP_ENABLE 0x01ULL
#define CQM_LIMBOCHECK_INTERVAL 1000
#define MBM_CNTR_WIDTH_BASE 24
#define MBM_OVERFLOW_INTERVAL 1000
#define MAX_MBA_BW 100u
#define MBA_IS_LINEAR 0x4
#define MBM_CNTR_WIDTH_OFFSET_AMD 20
#define RMID_VAL_ERROR BIT_ULL(63)
#define RMID_VAL_UNAVAIL BIT_ULL(62)
/*
* With the above fields in use 62 bits remain in MSR_IA32_QM_CTR for
* data to be returned. The counter width is discovered from the hardware
* as an offset from MBM_CNTR_WIDTH_BASE.
*/
#define MBM_CNTR_WIDTH_OFFSET_MAX (62 - MBM_CNTR_WIDTH_BASE)
/* Reads to Local DRAM Memory */
#define READS_TO_LOCAL_MEM BIT(0)
/* Reads to Remote DRAM Memory */
#define READS_TO_REMOTE_MEM BIT(1)
/* Non-Temporal Writes to Local Memory */
#define NON_TEMP_WRITE_TO_LOCAL_MEM BIT(2)
/* Non-Temporal Writes to Remote Memory */
#define NON_TEMP_WRITE_TO_REMOTE_MEM BIT(3)
/* Reads to Local Memory the system identifies as "Slow Memory" */
#define READS_TO_LOCAL_S_MEM BIT(4)
/* Reads to Remote Memory the system identifies as "Slow Memory" */
#define READS_TO_REMOTE_S_MEM BIT(5)
/* Dirty Victims to All Types of Memory */
#define DIRTY_VICTIMS_TO_ALL_MEM BIT(6)
/* Max event bits supported */
#define MAX_EVT_CONFIG_BITS GENMASK(6, 0)
/**
* cpumask_any_housekeeping() - Choose any CPU in @mask, preferring those that
* aren't marked nohz_full
* @mask: The mask to pick a CPU from.
* @exclude_cpu:The CPU to avoid picking.
*
* Returns a CPU from @mask, but not @exclude_cpu. If there are housekeeping
* CPUs that don't use nohz_full, these are preferred. Pass
* RESCTRL_PICK_ANY_CPU to avoid excluding any CPUs.
*
* When a CPU is excluded, returns >= nr_cpu_ids if no CPUs are available.
*/
static inline unsigned int
cpumask_any_housekeeping(const struct cpumask *mask, int exclude_cpu)
{
unsigned int cpu, hk_cpu;
if (exclude_cpu == RESCTRL_PICK_ANY_CPU)
cpu = cpumask_any(mask);
else
cpu = cpumask_any_but(mask, exclude_cpu);
/* Only continue if tick_nohz_full_mask has been initialized. */
if (!tick_nohz_full_enabled())
return cpu;
/* If the CPU picked isn't marked nohz_full nothing more needs doing. */
if (cpu < nr_cpu_ids && !tick_nohz_full_cpu(cpu))
return cpu;
/* Try to find a CPU that isn't nohz_full to use in preference */
hk_cpu = cpumask_nth_andnot(0, mask, tick_nohz_full_mask);
if (hk_cpu == exclude_cpu)
hk_cpu = cpumask_nth_andnot(1, mask, tick_nohz_full_mask);
if (hk_cpu < nr_cpu_ids)
cpu = hk_cpu;
return cpu;
}
struct rdt_fs_context {
struct kernfs_fs_context kfc;
bool enable_cdpl2;
bool enable_cdpl3;
bool enable_mba_mbps;
bool enable_debug;
};
static inline struct rdt_fs_context *rdt_fc2context(struct fs_context *fc)
{
struct kernfs_fs_context *kfc = fc->fs_private;
return container_of(kfc, struct rdt_fs_context, kfc);
}
/**
* struct mon_evt - Entry in the event list of a resource
* @evtid: event id
* @name: name of the event
* @configurable: true if the event is configurable
* @list: entry in &rdt_resource->evt_list
*/
struct mon_evt {
enum resctrl_event_id evtid;
char *name;
bool configurable;
struct list_head list;
};
/**
* union mon_data_bits - Monitoring details for each event file
* @priv: Used to store monitoring event data in @u
* as kernfs private data
* @rid: Resource id associated with the event file
* @evtid: Event id associated with the event file
* @domid: The domain to which the event file belongs
* @u: Name of the bit fields struct
*/
union mon_data_bits {
void *priv;
struct {
unsigned int rid : 10;
enum resctrl_event_id evtid : 8;
unsigned int domid : 14;
} u;
};
struct rmid_read {
struct rdtgroup *rgrp;
struct rdt_resource *r;
struct rdt_domain *d;
enum resctrl_event_id evtid;
bool first;
int err;
u64 val;
void *arch_mon_ctx;
};
extern unsigned int rdt_mon_features;
extern struct list_head resctrl_schema_all;
extern bool resctrl_mounted;
enum rdt_group_type {
RDTCTRL_GROUP = 0,
RDTMON_GROUP,
RDT_NUM_GROUP,
};
/**
* enum rdtgrp_mode - Mode of a RDT resource group
* @RDT_MODE_SHAREABLE: This resource group allows sharing of its allocations
* @RDT_MODE_EXCLUSIVE: No sharing of this resource group's allocations allowed
* @RDT_MODE_PSEUDO_LOCKSETUP: Resource group will be used for Pseudo-Locking
* @RDT_MODE_PSEUDO_LOCKED: No sharing of this resource group's allocations
* allowed AND the allocations are Cache Pseudo-Locked
* @RDT_NUM_MODES: Total number of modes
*
* The mode of a resource group enables control over the allowed overlap
* between allocations associated with different resource groups (classes
* of service). User is able to modify the mode of a resource group by
* writing to the "mode" resctrl file associated with the resource group.
*
* The "shareable", "exclusive", and "pseudo-locksetup" modes are set by
* writing the appropriate text to the "mode" file. A resource group enters
* "pseudo-locked" mode after the schemata is written while the resource
* group is in "pseudo-locksetup" mode.
*/
enum rdtgrp_mode {
RDT_MODE_SHAREABLE = 0,
RDT_MODE_EXCLUSIVE,
RDT_MODE_PSEUDO_LOCKSETUP,
RDT_MODE_PSEUDO_LOCKED,
/* Must be last */
RDT_NUM_MODES,
};
/**
* struct mongroup - store mon group's data in resctrl fs.
* @mon_data_kn: kernfs node for the mon_data directory
* @parent: parent rdtgrp
* @crdtgrp_list: child rdtgroup node list
* @rmid: rmid for this rdtgroup
*/
struct mongroup {
struct kernfs_node *mon_data_kn;
struct rdtgroup *parent;
struct list_head crdtgrp_list;
u32 rmid;
};
/**
* struct pseudo_lock_region - pseudo-lock region information
* @s: Resctrl schema for the resource to which this
* pseudo-locked region belongs
* @d: RDT domain to which this pseudo-locked region
* belongs
* @cbm: bitmask of the pseudo-locked region
* @lock_thread_wq: waitqueue used to wait on the pseudo-locking thread
* completion
* @thread_done: variable used by waitqueue to test if pseudo-locking
* thread completed
* @cpu: core associated with the cache on which the setup code
* will be run
* @line_size: size of the cache lines
* @size: size of pseudo-locked region in bytes
* @kmem: the kernel memory associated with pseudo-locked region
* @minor: minor number of character device associated with this
* region
* @debugfs_dir: pointer to this region's directory in the debugfs
* filesystem
* @pm_reqs: Power management QoS requests related to this region
*/
struct pseudo_lock_region {
struct resctrl_schema *s;
struct rdt_domain *d;
u32 cbm;
wait_queue_head_t lock_thread_wq;
int thread_done;
int cpu;
unsigned int line_size;
unsigned int size;
void *kmem;
unsigned int minor;
struct dentry *debugfs_dir;
struct list_head pm_reqs;
};
/**
* struct rdtgroup - store rdtgroup's data in resctrl file system.
* @kn: kernfs node
* @rdtgroup_list: linked list for all rdtgroups
* @closid: closid for this rdtgroup
* @cpu_mask: CPUs assigned to this rdtgroup
* @flags: status bits
* @waitcount: how many cpus expect to find this
* group when they acquire rdtgroup_mutex
* @type: indicates type of this rdtgroup - either
* monitor only or ctrl_mon group
* @mon: mongroup related data
* @mode: mode of resource group
* @plr: pseudo-locked region
*/
struct rdtgroup {
struct kernfs_node *kn;
struct list_head rdtgroup_list;
u32 closid;
struct cpumask cpu_mask;
int flags;
atomic_t waitcount;
enum rdt_group_type type;
struct mongroup mon;
enum rdtgrp_mode mode;
struct pseudo_lock_region *plr;
};
/* rdtgroup.flags */
#define RDT_DELETED 1
/* rftype.flags */
#define RFTYPE_FLAGS_CPUS_LIST 1
/*
* Define the file type flags for base and info directories.
*/
#define RFTYPE_INFO BIT(0)
#define RFTYPE_BASE BIT(1)
#define RFTYPE_CTRL BIT(4)
#define RFTYPE_MON BIT(5)
#define RFTYPE_TOP BIT(6)
#define RFTYPE_RES_CACHE BIT(8)
#define RFTYPE_RES_MB BIT(9)
#define RFTYPE_DEBUG BIT(10)
#define RFTYPE_CTRL_INFO (RFTYPE_INFO | RFTYPE_CTRL)
#define RFTYPE_MON_INFO (RFTYPE_INFO | RFTYPE_MON)
#define RFTYPE_TOP_INFO (RFTYPE_INFO | RFTYPE_TOP)
#define RFTYPE_CTRL_BASE (RFTYPE_BASE | RFTYPE_CTRL)
#define RFTYPE_MON_BASE (RFTYPE_BASE | RFTYPE_MON)
/* List of all resource groups */
extern struct list_head rdt_all_groups;
extern int max_name_width, max_data_width;
int __init rdtgroup_init(void);
void __exit rdtgroup_exit(void);
/**
* struct rftype - describe each file in the resctrl file system
* @name: File name
* @mode: Access mode
* @kf_ops: File operations
* @flags: File specific RFTYPE_FLAGS_* flags
* @fflags: File specific RFTYPE_* flags
* @seq_show: Show content of the file
* @write: Write to the file
*/
struct rftype {
char *name;
umode_t mode;
const struct kernfs_ops *kf_ops;
unsigned long flags;
unsigned long fflags;
int (*seq_show)(struct kernfs_open_file *of,
struct seq_file *sf, void *v);
/*
* write() is the generic write callback which maps directly to
* kernfs write operation and overrides all other operations.
* Maximum write size is determined by ->max_write_len.
*/
ssize_t (*write)(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
};
/**
* struct mbm_state - status for each MBM counter in each domain
* @prev_bw_bytes: Previous bytes value read for bandwidth calculation
* @prev_bw: The most recent bandwidth in MBps
*/
struct mbm_state {
u64 prev_bw_bytes;
u32 prev_bw;
};
/**
* struct arch_mbm_state - values used to compute resctrl_arch_rmid_read()s
* return value.
* @chunks: Total data moved (multiply by rdt_group.mon_scale to get bytes)
* @prev_msr: Value of IA32_QM_CTR last time it was read for the RMID used to
* find this struct.
*/
struct arch_mbm_state {
u64 chunks;
u64 prev_msr;
};
/**
* struct rdt_hw_domain - Arch private attributes of a set of CPUs that share
* a resource
* @d_resctrl: Properties exposed to the resctrl file system
* @ctrl_val: array of cache or mem ctrl values (indexed by CLOSID)
* @arch_mbm_total: arch private state for MBM total bandwidth
* @arch_mbm_local: arch private state for MBM local bandwidth
*
* Members of this structure are accessed via helpers that provide abstraction.
*/
struct rdt_hw_domain {
struct rdt_domain d_resctrl;
u32 *ctrl_val;
struct arch_mbm_state *arch_mbm_total;
struct arch_mbm_state *arch_mbm_local;
};
static inline struct rdt_hw_domain *resctrl_to_arch_dom(struct rdt_domain *r)
{
return container_of(r, struct rdt_hw_domain, d_resctrl);
}
/**
* struct msr_param - set a range of MSRs from a domain
* @res: The resource to use
* @low: Beginning index from base MSR
* @high: End index
*/
struct msr_param {
struct rdt_resource *res;
u32 low;
u32 high;
};
static inline bool is_llc_occupancy_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_OCCUP_EVENT_ID));
}
static inline bool is_mbm_total_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_MBM_TOTAL_EVENT_ID));
}
static inline bool is_mbm_local_enabled(void)
{
return (rdt_mon_features & (1 << QOS_L3_MBM_LOCAL_EVENT_ID));
}
static inline bool is_mbm_enabled(void)
{
return (is_mbm_total_enabled() || is_mbm_local_enabled());
}
static inline bool is_mbm_event(int e)
{
return (e >= QOS_L3_MBM_TOTAL_EVENT_ID &&
e <= QOS_L3_MBM_LOCAL_EVENT_ID);
}
struct rdt_parse_data {
struct rdtgroup *rdtgrp;
char *buf;
};
/**
* struct rdt_hw_resource - arch private attributes of a resctrl resource
* @r_resctrl: Attributes of the resource used directly by resctrl.
* @num_closid: Maximum number of closid this hardware can support,
* regardless of CDP. This is exposed via
* resctrl_arch_get_num_closid() to avoid confusion
* with struct resctrl_schema's property of the same name,
* which has been corrected for features like CDP.
* @msr_base: Base MSR address for CBMs
* @msr_update: Function pointer to update QOS MSRs
* @mon_scale: cqm counter * mon_scale = occupancy in bytes
* @mbm_width: Monitor width, to detect and correct for overflow.
* @mbm_cfg_mask: Bandwidth sources that can be tracked when Bandwidth
* Monitoring Event Configuration (BMEC) is supported.
* @cdp_enabled: CDP state of this resource
*
* Members of this structure are either private to the architecture
* e.g. mbm_width, or accessed via helpers that provide abstraction. e.g.
* msr_update and msr_base.
*/
struct rdt_hw_resource {
struct rdt_resource r_resctrl;
u32 num_closid;
unsigned int msr_base;
void (*msr_update) (struct rdt_domain *d, struct msr_param *m,
struct rdt_resource *r);
unsigned int mon_scale;
unsigned int mbm_width;
unsigned int mbm_cfg_mask;
bool cdp_enabled;
};
static inline struct rdt_hw_resource *resctrl_to_arch_res(struct rdt_resource *r)
{
return container_of(r, struct rdt_hw_resource, r_resctrl);
}
int parse_cbm(struct rdt_parse_data *data, struct resctrl_schema *s,
struct rdt_domain *d);
int parse_bw(struct rdt_parse_data *data, struct resctrl_schema *s,
struct rdt_domain *d);
extern struct mutex rdtgroup_mutex;
extern struct rdt_hw_resource rdt_resources_all[];
extern struct rdtgroup rdtgroup_default;
extern struct dentry *debugfs_resctrl;
enum resctrl_res_level {
RDT_RESOURCE_L3,
RDT_RESOURCE_L2,
RDT_RESOURCE_MBA,
RDT_RESOURCE_SMBA,
/* Must be the last */
RDT_NUM_RESOURCES,
};
static inline struct rdt_resource *resctrl_inc(struct rdt_resource *res)
{
struct rdt_hw_resource *hw_res = resctrl_to_arch_res(res);
hw_res++;
return &hw_res->r_resctrl;
}
static inline bool resctrl_arch_get_cdp_enabled(enum resctrl_res_level l)
{
return rdt_resources_all[l].cdp_enabled;
}
int resctrl_arch_set_cdp_enabled(enum resctrl_res_level l, bool enable);
/*
* To return the common struct rdt_resource, which is contained in struct
* rdt_hw_resource, walk the resctrl member of struct rdt_hw_resource.
*/
#define for_each_rdt_resource(r) \
for (r = &rdt_resources_all[0].r_resctrl; \
r <= &rdt_resources_all[RDT_NUM_RESOURCES - 1].r_resctrl; \
r = resctrl_inc(r))
#define for_each_capable_rdt_resource(r) \
for_each_rdt_resource(r) \
if (r->alloc_capable || r->mon_capable)
#define for_each_alloc_capable_rdt_resource(r) \
for_each_rdt_resource(r) \
if (r->alloc_capable)
#define for_each_mon_capable_rdt_resource(r) \
for_each_rdt_resource(r) \
if (r->mon_capable)
/* CPUID.(EAX=10H, ECX=ResID=1).EAX */
union cpuid_0x10_1_eax {
struct {
unsigned int cbm_len:5;
} split;
unsigned int full;
};
/* CPUID.(EAX=10H, ECX=ResID=3).EAX */
union cpuid_0x10_3_eax {
struct {
unsigned int max_delay:12;
} split;
unsigned int full;
};
/* CPUID.(EAX=10H, ECX=ResID).ECX */
union cpuid_0x10_x_ecx {
struct {
unsigned int reserved:3;
unsigned int noncont:1;
} split;
unsigned int full;
};
/* CPUID.(EAX=10H, ECX=ResID).EDX */
union cpuid_0x10_x_edx {
struct {
unsigned int cos_max:16;
} split;
unsigned int full;
};
void rdt_last_cmd_clear(void);
void rdt_last_cmd_puts(const char *s);
__printf(1, 2)
void rdt_last_cmd_printf(const char *fmt, ...);
void rdt_ctrl_update(void *arg);
struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn);
void rdtgroup_kn_unlock(struct kernfs_node *kn);
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name);
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
umode_t mask);
struct rdt_domain *rdt_find_domain(struct rdt_resource *r, int id,
struct list_head **pos);
ssize_t rdtgroup_schemata_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off);
int rdtgroup_schemata_show(struct kernfs_open_file *of,
struct seq_file *s, void *v);
bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_domain *d,
unsigned long cbm, int closid, bool exclusive);
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, struct rdt_domain *d,
unsigned long cbm);
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid);
int rdtgroup_tasks_assigned(struct rdtgroup *r);
int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp);
int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp);
bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_domain *d, unsigned long cbm);
bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_domain *d);
int rdt_pseudo_lock_init(void);
void rdt_pseudo_lock_release(void);
int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp);
void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp);
struct rdt_domain *get_domain_from_cpu(int cpu, struct rdt_resource *r);
int closids_supported(void);
void closid_free(int closid);
int alloc_rmid(u32 closid);
void free_rmid(u32 closid, u32 rmid);
int rdt_get_mon_l3_config(struct rdt_resource *r);
void __exit rdt_put_mon_l3_config(void);
bool __init rdt_cpu_has(int flag);
void mon_event_count(void *info);
int rdtgroup_mondata_show(struct seq_file *m, void *arg);
void mon_event_read(struct rmid_read *rr, struct rdt_resource *r,
struct rdt_domain *d, struct rdtgroup *rdtgrp,
int evtid, int first);
void mbm_setup_overflow_handler(struct rdt_domain *dom,
unsigned long delay_ms,
int exclude_cpu);
void mbm_handle_overflow(struct work_struct *work);
void __init intel_rdt_mbm_apply_quirk(void);
bool is_mba_sc(struct rdt_resource *r);
void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms,
int exclude_cpu);
void cqm_handle_limbo(struct work_struct *work);
bool has_busy_rmid(struct rdt_domain *d);
void __check_limbo(struct rdt_domain *d, bool force_free);
void rdt_domain_reconfigure_cdp(struct rdt_resource *r);
void __init thread_throttle_mode_init(void);
void __init mbm_config_rftype_init(const char *config);
void rdt_staged_configs_clear(void);
bool closid_allocated(unsigned int closid);
int resctrl_find_cleanest_closid(void);
#endif /* _ASM_X86_RESCTRL_INTERNAL_H */