| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _BCACHEFS_FORMAT_H |
| #define _BCACHEFS_FORMAT_H |
| |
| /* |
| * bcachefs on disk data structures |
| * |
| * OVERVIEW: |
| * |
| * There are three main types of on disk data structures in bcachefs (this is |
| * reduced from 5 in bcache) |
| * |
| * - superblock |
| * - journal |
| * - btree |
| * |
| * The btree is the primary structure; most metadata exists as keys in the |
| * various btrees. There are only a small number of btrees, they're not |
| * sharded - we have one btree for extents, another for inodes, et cetera. |
| * |
| * SUPERBLOCK: |
| * |
| * The superblock contains the location of the journal, the list of devices in |
| * the filesystem, and in general any metadata we need in order to decide |
| * whether we can start a filesystem or prior to reading the journal/btree |
| * roots. |
| * |
| * The superblock is extensible, and most of the contents of the superblock are |
| * in variable length, type tagged fields; see struct bch_sb_field. |
| * |
| * Backup superblocks do not reside in a fixed location; also, superblocks do |
| * not have a fixed size. To locate backup superblocks we have struct |
| * bch_sb_layout; we store a copy of this inside every superblock, and also |
| * before the first superblock. |
| * |
| * JOURNAL: |
| * |
| * The journal primarily records btree updates in the order they occurred; |
| * journal replay consists of just iterating over all the keys in the open |
| * journal entries and re-inserting them into the btrees. |
| * |
| * The journal also contains entry types for the btree roots, and blacklisted |
| * journal sequence numbers (see journal_seq_blacklist.c). |
| * |
| * BTREE: |
| * |
| * bcachefs btrees are copy on write b+ trees, where nodes are big (typically |
| * 128k-256k) and log structured. We use struct btree_node for writing the first |
| * entry in a given node (offset 0), and struct btree_node_entry for all |
| * subsequent writes. |
| * |
| * After the header, btree node entries contain a list of keys in sorted order. |
| * Values are stored inline with the keys; since values are variable length (and |
| * keys effectively are variable length too, due to packing) we can't do random |
| * access without building up additional in memory tables in the btree node read |
| * path. |
| * |
| * BTREE KEYS (struct bkey): |
| * |
| * The various btrees share a common format for the key - so as to avoid |
| * switching in fastpath lookup/comparison code - but define their own |
| * structures for the key values. |
| * |
| * The size of a key/value pair is stored as a u8 in units of u64s, so the max |
| * size is just under 2k. The common part also contains a type tag for the |
| * value, and a format field indicating whether the key is packed or not (and |
| * also meant to allow adding new key fields in the future, if desired). |
| * |
| * bkeys, when stored within a btree node, may also be packed. In that case, the |
| * bkey_format in that node is used to unpack it. Packed bkeys mean that we can |
| * be generous with field sizes in the common part of the key format (64 bit |
| * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. |
| */ |
| |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/kernel.h> |
| #include <linux/uuid.h> |
| #include "vstructs.h" |
| |
| #ifdef __KERNEL__ |
| typedef uuid_t __uuid_t; |
| #endif |
| |
| #define BITMASK(name, type, field, offset, end) \ |
| static const __maybe_unused unsigned name##_OFFSET = offset; \ |
| static const __maybe_unused unsigned name##_BITS = (end - offset); \ |
| \ |
| static inline __u64 name(const type *k) \ |
| { \ |
| return (k->field >> offset) & ~(~0ULL << (end - offset)); \ |
| } \ |
| \ |
| static inline void SET_##name(type *k, __u64 v) \ |
| { \ |
| k->field &= ~(~(~0ULL << (end - offset)) << offset); \ |
| k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ |
| } |
| |
| #define LE_BITMASK(_bits, name, type, field, offset, end) \ |
| static const __maybe_unused unsigned name##_OFFSET = offset; \ |
| static const __maybe_unused unsigned name##_BITS = (end - offset); \ |
| static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ |
| \ |
| static inline __u64 name(const type *k) \ |
| { \ |
| return (__le##_bits##_to_cpu(k->field) >> offset) & \ |
| ~(~0ULL << (end - offset)); \ |
| } \ |
| \ |
| static inline void SET_##name(type *k, __u64 v) \ |
| { \ |
| __u##_bits new = __le##_bits##_to_cpu(k->field); \ |
| \ |
| new &= ~(~(~0ULL << (end - offset)) << offset); \ |
| new |= (v & ~(~0ULL << (end - offset))) << offset; \ |
| k->field = __cpu_to_le##_bits(new); \ |
| } |
| |
| #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) |
| #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) |
| #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) |
| |
| struct bkey_format { |
| __u8 key_u64s; |
| __u8 nr_fields; |
| /* One unused slot for now: */ |
| __u8 bits_per_field[6]; |
| __le64 field_offset[6]; |
| }; |
| |
| /* Btree keys - all units are in sectors */ |
| |
| struct bpos { |
| /* |
| * Word order matches machine byte order - btree code treats a bpos as a |
| * single large integer, for search/comparison purposes |
| * |
| * Note that wherever a bpos is embedded in another on disk data |
| * structure, it has to be byte swabbed when reading in metadata that |
| * wasn't written in native endian order: |
| */ |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u32 snapshot; |
| __u64 offset; |
| __u64 inode; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| __u64 inode; |
| __u64 offset; /* Points to end of extent - sectors */ |
| __u32 snapshot; |
| #else |
| #error edit for your odd byteorder. |
| #endif |
| } __packed |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __aligned(4) |
| #endif |
| ; |
| |
| #define KEY_INODE_MAX ((__u64)~0ULL) |
| #define KEY_OFFSET_MAX ((__u64)~0ULL) |
| #define KEY_SNAPSHOT_MAX ((__u32)~0U) |
| #define KEY_SIZE_MAX ((__u32)~0U) |
| |
| static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) |
| { |
| return (struct bpos) { |
| .inode = inode, |
| .offset = offset, |
| .snapshot = snapshot, |
| }; |
| } |
| |
| #define POS_MIN SPOS(0, 0, 0) |
| #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) |
| #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) |
| #define POS(_inode, _offset) SPOS(_inode, _offset, 0) |
| |
| /* Empty placeholder struct, for container_of() */ |
| struct bch_val { |
| __u64 __nothing[0]; |
| }; |
| |
| struct bversion { |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u64 lo; |
| __u32 hi; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| __u32 hi; |
| __u64 lo; |
| #endif |
| } __packed |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __aligned(4) |
| #endif |
| ; |
| |
| struct bkey { |
| /* Size of combined key and value, in u64s */ |
| __u8 u64s; |
| |
| /* Format of key (0 for format local to btree node) */ |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u8 format:7, |
| needs_whiteout:1; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u8 needs_whiteout:1, |
| format:7; |
| #else |
| #error edit for your odd byteorder. |
| #endif |
| |
| /* Type of the value */ |
| __u8 type; |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u8 pad[1]; |
| |
| struct bversion version; |
| __u32 size; /* extent size, in sectors */ |
| struct bpos p; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| struct bpos p; |
| __u32 size; /* extent size, in sectors */ |
| struct bversion version; |
| |
| __u8 pad[1]; |
| #endif |
| } __packed |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| /* |
| * The big-endian version of bkey can't be compiled by rustc with the "aligned" |
| * attr since it doesn't allow types to have both "packed" and "aligned" attrs. |
| * So for Rust compatibility, don't include this. It can be included in the LE |
| * version because the "packed" attr is redundant in that case. |
| * |
| * History: (quoting Kent) |
| * |
| * Specifically, when i was designing bkey, I wanted the header to be no |
| * bigger than necessary so that bkey_packed could use the rest. That means that |
| * decently offten extent keys will fit into only 8 bytes, instead of spilling over |
| * to 16. |
| * |
| * But packed_bkey treats the part after the header - the packed section - |
| * as a single multi word, variable length integer. And bkey, the unpacked |
| * version, is just a special case version of a bkey_packed; all the packed |
| * bkey code will work on keys in any packed format, the in-memory |
| * representation of an unpacked key also is just one type of packed key... |
| * |
| * So that constrains the key part of a bkig endian bkey to start right |
| * after the header. |
| * |
| * If we ever do a bkey_v2 and need to expand the hedaer by another byte for |
| * some reason - that will clean up this wart. |
| */ |
| __aligned(8) |
| #endif |
| ; |
| |
| struct bkey_packed { |
| __u64 _data[0]; |
| |
| /* Size of combined key and value, in u64s */ |
| __u8 u64s; |
| |
| /* Format of key (0 for format local to btree node) */ |
| |
| /* |
| * XXX: next incompat on disk format change, switch format and |
| * needs_whiteout - bkey_packed() will be cheaper if format is the high |
| * bits of the bitfield |
| */ |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u8 format:7, |
| needs_whiteout:1; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u8 needs_whiteout:1, |
| format:7; |
| #endif |
| |
| /* Type of the value */ |
| __u8 type; |
| __u8 key_start[0]; |
| |
| /* |
| * We copy bkeys with struct assignment in various places, and while |
| * that shouldn't be done with packed bkeys we can't disallow it in C, |
| * and it's legal to cast a bkey to a bkey_packed - so padding it out |
| * to the same size as struct bkey should hopefully be safest. |
| */ |
| __u8 pad[sizeof(struct bkey) - 3]; |
| } __packed __aligned(8); |
| |
| typedef struct { |
| __le64 lo; |
| __le64 hi; |
| } bch_le128; |
| |
| #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) |
| #define BKEY_U64s_MAX U8_MAX |
| #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) |
| |
| #define KEY_PACKED_BITS_START 24 |
| |
| #define KEY_FORMAT_LOCAL_BTREE 0 |
| #define KEY_FORMAT_CURRENT 1 |
| |
| enum bch_bkey_fields { |
| BKEY_FIELD_INODE, |
| BKEY_FIELD_OFFSET, |
| BKEY_FIELD_SNAPSHOT, |
| BKEY_FIELD_SIZE, |
| BKEY_FIELD_VERSION_HI, |
| BKEY_FIELD_VERSION_LO, |
| BKEY_NR_FIELDS, |
| }; |
| |
| #define bkey_format_field(name, field) \ |
| [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) |
| |
| #define BKEY_FORMAT_CURRENT \ |
| ((struct bkey_format) { \ |
| .key_u64s = BKEY_U64s, \ |
| .nr_fields = BKEY_NR_FIELDS, \ |
| .bits_per_field = { \ |
| bkey_format_field(INODE, p.inode), \ |
| bkey_format_field(OFFSET, p.offset), \ |
| bkey_format_field(SNAPSHOT, p.snapshot), \ |
| bkey_format_field(SIZE, size), \ |
| bkey_format_field(VERSION_HI, version.hi), \ |
| bkey_format_field(VERSION_LO, version.lo), \ |
| }, \ |
| }) |
| |
| /* bkey with inline value */ |
| struct bkey_i { |
| __u64 _data[0]; |
| |
| struct bkey k; |
| struct bch_val v; |
| }; |
| |
| #define POS_KEY(_pos) \ |
| ((struct bkey) { \ |
| .u64s = BKEY_U64s, \ |
| .format = KEY_FORMAT_CURRENT, \ |
| .p = _pos, \ |
| }) |
| |
| #define KEY(_inode, _offset, _size) \ |
| ((struct bkey) { \ |
| .u64s = BKEY_U64s, \ |
| .format = KEY_FORMAT_CURRENT, \ |
| .p = POS(_inode, _offset), \ |
| .size = _size, \ |
| }) |
| |
| static inline void bkey_init(struct bkey *k) |
| { |
| *k = KEY(0, 0, 0); |
| } |
| |
| #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) |
| |
| #define __BKEY_PADDED(key, pad) \ |
| struct bkey_i key; __u64 key ## _pad[pad] |
| |
| /* |
| * - DELETED keys are used internally to mark keys that should be ignored but |
| * override keys in composition order. Their version number is ignored. |
| * |
| * - DISCARDED keys indicate that the data is all 0s because it has been |
| * discarded. DISCARDs may have a version; if the version is nonzero the key |
| * will be persistent, otherwise the key will be dropped whenever the btree |
| * node is rewritten (like DELETED keys). |
| * |
| * - ERROR: any read of the data returns a read error, as the data was lost due |
| * to a failing device. Like DISCARDED keys, they can be removed (overridden) |
| * by new writes or cluster-wide GC. Node repair can also overwrite them with |
| * the same or a more recent version number, but not with an older version |
| * number. |
| * |
| * - WHITEOUT: for hash table btrees |
| */ |
| #define BCH_BKEY_TYPES() \ |
| x(deleted, 0) \ |
| x(whiteout, 1) \ |
| x(error, 2) \ |
| x(cookie, 3) \ |
| x(hash_whiteout, 4) \ |
| x(btree_ptr, 5) \ |
| x(extent, 6) \ |
| x(reservation, 7) \ |
| x(inode, 8) \ |
| x(inode_generation, 9) \ |
| x(dirent, 10) \ |
| x(xattr, 11) \ |
| x(alloc, 12) \ |
| x(quota, 13) \ |
| x(stripe, 14) \ |
| x(reflink_p, 15) \ |
| x(reflink_v, 16) \ |
| x(inline_data, 17) \ |
| x(btree_ptr_v2, 18) \ |
| x(indirect_inline_data, 19) \ |
| x(alloc_v2, 20) \ |
| x(subvolume, 21) \ |
| x(snapshot, 22) \ |
| x(inode_v2, 23) \ |
| x(alloc_v3, 24) \ |
| x(set, 25) \ |
| x(lru, 26) \ |
| x(alloc_v4, 27) \ |
| x(backpointer, 28) \ |
| x(inode_v3, 29) \ |
| x(bucket_gens, 30) \ |
| x(snapshot_tree, 31) \ |
| x(logged_op_truncate, 32) \ |
| x(logged_op_finsert, 33) |
| |
| enum bch_bkey_type { |
| #define x(name, nr) KEY_TYPE_##name = nr, |
| BCH_BKEY_TYPES() |
| #undef x |
| KEY_TYPE_MAX, |
| }; |
| |
| struct bch_deleted { |
| struct bch_val v; |
| }; |
| |
| struct bch_whiteout { |
| struct bch_val v; |
| }; |
| |
| struct bch_error { |
| struct bch_val v; |
| }; |
| |
| struct bch_cookie { |
| struct bch_val v; |
| __le64 cookie; |
| }; |
| |
| struct bch_hash_whiteout { |
| struct bch_val v; |
| }; |
| |
| struct bch_set { |
| struct bch_val v; |
| }; |
| |
| /* 128 bits, sufficient for cryptographic MACs: */ |
| struct bch_csum { |
| __le64 lo; |
| __le64 hi; |
| } __packed __aligned(8); |
| |
| struct bch_backpointer { |
| struct bch_val v; |
| __u8 btree_id; |
| __u8 level; |
| __u8 data_type; |
| __u64 bucket_offset:40; |
| __u32 bucket_len; |
| struct bpos pos; |
| } __packed __aligned(8); |
| |
| /* LRU btree: */ |
| |
| struct bch_lru { |
| struct bch_val v; |
| __le64 idx; |
| } __packed __aligned(8); |
| |
| #define LRU_ID_STRIPES (1U << 16) |
| |
| /* Optional/variable size superblock sections: */ |
| |
| struct bch_sb_field { |
| __u64 _data[0]; |
| __le32 u64s; |
| __le32 type; |
| }; |
| |
| #define BCH_SB_FIELDS() \ |
| x(journal, 0) \ |
| x(members_v1, 1) \ |
| x(crypt, 2) \ |
| x(replicas_v0, 3) \ |
| x(quota, 4) \ |
| x(disk_groups, 5) \ |
| x(clean, 6) \ |
| x(replicas, 7) \ |
| x(journal_seq_blacklist, 8) \ |
| x(journal_v2, 9) \ |
| x(counters, 10) \ |
| x(members_v2, 11) \ |
| x(errors, 12) \ |
| x(ext, 13) \ |
| x(downgrade, 14) |
| |
| #include "alloc_background_format.h" |
| #include "extents_format.h" |
| #include "reflink_format.h" |
| #include "ec_format.h" |
| #include "inode_format.h" |
| #include "dirent_format.h" |
| #include "xattr_format.h" |
| #include "quota_format.h" |
| #include "logged_ops_format.h" |
| #include "snapshot_format.h" |
| #include "subvolume_format.h" |
| #include "sb-counters_format.h" |
| |
| enum bch_sb_field_type { |
| #define x(f, nr) BCH_SB_FIELD_##f = nr, |
| BCH_SB_FIELDS() |
| #undef x |
| BCH_SB_FIELD_NR |
| }; |
| |
| /* |
| * Most superblock fields are replicated in all device's superblocks - a few are |
| * not: |
| */ |
| #define BCH_SINGLE_DEVICE_SB_FIELDS \ |
| ((1U << BCH_SB_FIELD_journal)| \ |
| (1U << BCH_SB_FIELD_journal_v2)) |
| |
| /* BCH_SB_FIELD_journal: */ |
| |
| struct bch_sb_field_journal { |
| struct bch_sb_field field; |
| __le64 buckets[]; |
| }; |
| |
| struct bch_sb_field_journal_v2 { |
| struct bch_sb_field field; |
| |
| struct bch_sb_field_journal_v2_entry { |
| __le64 start; |
| __le64 nr; |
| } d[]; |
| }; |
| |
| /* BCH_SB_FIELD_members_v1: */ |
| |
| #define BCH_MIN_NR_NBUCKETS (1 << 6) |
| |
| #define BCH_IOPS_MEASUREMENTS() \ |
| x(seqread, 0) \ |
| x(seqwrite, 1) \ |
| x(randread, 2) \ |
| x(randwrite, 3) |
| |
| enum bch_iops_measurement { |
| #define x(t, n) BCH_IOPS_##t = n, |
| BCH_IOPS_MEASUREMENTS() |
| #undef x |
| BCH_IOPS_NR |
| }; |
| |
| #define BCH_MEMBER_ERROR_TYPES() \ |
| x(read, 0) \ |
| x(write, 1) \ |
| x(checksum, 2) |
| |
| enum bch_member_error_type { |
| #define x(t, n) BCH_MEMBER_ERROR_##t = n, |
| BCH_MEMBER_ERROR_TYPES() |
| #undef x |
| BCH_MEMBER_ERROR_NR |
| }; |
| |
| struct bch_member { |
| __uuid_t uuid; |
| __le64 nbuckets; /* device size */ |
| __le16 first_bucket; /* index of first bucket used */ |
| __le16 bucket_size; /* sectors */ |
| __le32 pad; |
| __le64 last_mount; /* time_t */ |
| |
| __le64 flags; |
| __le32 iops[4]; |
| __le64 errors[BCH_MEMBER_ERROR_NR]; |
| __le64 errors_at_reset[BCH_MEMBER_ERROR_NR]; |
| __le64 errors_reset_time; |
| __le64 seq; |
| }; |
| |
| #define BCH_MEMBER_V1_BYTES 56 |
| |
| LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) |
| /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ |
| LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) |
| LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) |
| LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) |
| LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) |
| LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, |
| struct bch_member, flags, 30, 31) |
| |
| #if 0 |
| LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); |
| LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); |
| #endif |
| |
| #define BCH_MEMBER_STATES() \ |
| x(rw, 0) \ |
| x(ro, 1) \ |
| x(failed, 2) \ |
| x(spare, 3) |
| |
| enum bch_member_state { |
| #define x(t, n) BCH_MEMBER_STATE_##t = n, |
| BCH_MEMBER_STATES() |
| #undef x |
| BCH_MEMBER_STATE_NR |
| }; |
| |
| struct bch_sb_field_members_v1 { |
| struct bch_sb_field field; |
| struct bch_member _members[]; //Members are now variable size |
| }; |
| |
| struct bch_sb_field_members_v2 { |
| struct bch_sb_field field; |
| __le16 member_bytes; //size of single member entry |
| u8 pad[6]; |
| struct bch_member _members[]; |
| }; |
| |
| /* BCH_SB_FIELD_crypt: */ |
| |
| struct nonce { |
| __le32 d[4]; |
| }; |
| |
| struct bch_key { |
| __le64 key[4]; |
| }; |
| |
| #define BCH_KEY_MAGIC \ |
| (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ |
| ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ |
| ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ |
| ((__u64) 'e' << 48)|((__u64) 'y' << 56)) |
| |
| struct bch_encrypted_key { |
| __le64 magic; |
| struct bch_key key; |
| }; |
| |
| /* |
| * If this field is present in the superblock, it stores an encryption key which |
| * is used encrypt all other data/metadata. The key will normally be encrypted |
| * with the key userspace provides, but if encryption has been turned off we'll |
| * just store the master key unencrypted in the superblock so we can access the |
| * previously encrypted data. |
| */ |
| struct bch_sb_field_crypt { |
| struct bch_sb_field field; |
| |
| __le64 flags; |
| __le64 kdf_flags; |
| struct bch_encrypted_key key; |
| }; |
| |
| LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); |
| |
| enum bch_kdf_types { |
| BCH_KDF_SCRYPT = 0, |
| BCH_KDF_NR = 1, |
| }; |
| |
| /* stored as base 2 log of scrypt params: */ |
| LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); |
| LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); |
| LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); |
| |
| /* BCH_SB_FIELD_replicas: */ |
| |
| #define BCH_DATA_TYPES() \ |
| x(free, 0) \ |
| x(sb, 1) \ |
| x(journal, 2) \ |
| x(btree, 3) \ |
| x(user, 4) \ |
| x(cached, 5) \ |
| x(parity, 6) \ |
| x(stripe, 7) \ |
| x(need_gc_gens, 8) \ |
| x(need_discard, 9) |
| |
| enum bch_data_type { |
| #define x(t, n) BCH_DATA_##t, |
| BCH_DATA_TYPES() |
| #undef x |
| BCH_DATA_NR |
| }; |
| |
| static inline bool data_type_is_empty(enum bch_data_type type) |
| { |
| switch (type) { |
| case BCH_DATA_free: |
| case BCH_DATA_need_gc_gens: |
| case BCH_DATA_need_discard: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline bool data_type_is_hidden(enum bch_data_type type) |
| { |
| switch (type) { |
| case BCH_DATA_sb: |
| case BCH_DATA_journal: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| struct bch_replicas_entry_v0 { |
| __u8 data_type; |
| __u8 nr_devs; |
| __u8 devs[]; |
| } __packed; |
| |
| struct bch_sb_field_replicas_v0 { |
| struct bch_sb_field field; |
| struct bch_replicas_entry_v0 entries[]; |
| } __packed __aligned(8); |
| |
| struct bch_replicas_entry_v1 { |
| __u8 data_type; |
| __u8 nr_devs; |
| __u8 nr_required; |
| __u8 devs[]; |
| } __packed; |
| |
| #define replicas_entry_bytes(_i) \ |
| (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) |
| |
| struct bch_sb_field_replicas { |
| struct bch_sb_field field; |
| struct bch_replicas_entry_v1 entries[]; |
| } __packed __aligned(8); |
| |
| /* BCH_SB_FIELD_disk_groups: */ |
| |
| #define BCH_SB_LABEL_SIZE 32 |
| |
| struct bch_disk_group { |
| __u8 label[BCH_SB_LABEL_SIZE]; |
| __le64 flags[2]; |
| } __packed __aligned(8); |
| |
| LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) |
| LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) |
| LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) |
| |
| struct bch_sb_field_disk_groups { |
| struct bch_sb_field field; |
| struct bch_disk_group entries[]; |
| } __packed __aligned(8); |
| |
| /* |
| * On clean shutdown, store btree roots and current journal sequence number in |
| * the superblock: |
| */ |
| struct jset_entry { |
| __le16 u64s; |
| __u8 btree_id; |
| __u8 level; |
| __u8 type; /* designates what this jset holds */ |
| __u8 pad[3]; |
| |
| struct bkey_i start[0]; |
| __u64 _data[]; |
| }; |
| |
| struct bch_sb_field_clean { |
| struct bch_sb_field field; |
| |
| __le32 flags; |
| __le16 _read_clock; /* no longer used */ |
| __le16 _write_clock; |
| __le64 journal_seq; |
| |
| struct jset_entry start[0]; |
| __u64 _data[]; |
| }; |
| |
| struct journal_seq_blacklist_entry { |
| __le64 start; |
| __le64 end; |
| }; |
| |
| struct bch_sb_field_journal_seq_blacklist { |
| struct bch_sb_field field; |
| struct journal_seq_blacklist_entry start[]; |
| }; |
| |
| struct bch_sb_field_errors { |
| struct bch_sb_field field; |
| struct bch_sb_field_error_entry { |
| __le64 v; |
| __le64 last_error_time; |
| } entries[]; |
| }; |
| |
| LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16); |
| LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64); |
| |
| struct bch_sb_field_ext { |
| struct bch_sb_field field; |
| __le64 recovery_passes_required[2]; |
| __le64 errors_silent[8]; |
| __le64 btrees_lost_data; |
| }; |
| |
| struct bch_sb_field_downgrade_entry { |
| __le16 version; |
| __le64 recovery_passes[2]; |
| __le16 nr_errors; |
| __le16 errors[] __counted_by(nr_errors); |
| } __packed __aligned(2); |
| |
| struct bch_sb_field_downgrade { |
| struct bch_sb_field field; |
| struct bch_sb_field_downgrade_entry entries[]; |
| }; |
| |
| /* Superblock: */ |
| |
| /* |
| * New versioning scheme: |
| * One common version number for all on disk data structures - superblock, btree |
| * nodes, journal entries |
| */ |
| #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) |
| #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) |
| #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) |
| |
| /* |
| * field 1: version name |
| * field 2: BCH_VERSION(major, minor) |
| * field 3: recovery passess required on upgrade |
| */ |
| #define BCH_METADATA_VERSIONS() \ |
| x(bkey_renumber, BCH_VERSION(0, 10)) \ |
| x(inode_btree_change, BCH_VERSION(0, 11)) \ |
| x(snapshot, BCH_VERSION(0, 12)) \ |
| x(inode_backpointers, BCH_VERSION(0, 13)) \ |
| x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ |
| x(snapshot_2, BCH_VERSION(0, 15)) \ |
| x(reflink_p_fix, BCH_VERSION(0, 16)) \ |
| x(subvol_dirent, BCH_VERSION(0, 17)) \ |
| x(inode_v2, BCH_VERSION(0, 18)) \ |
| x(freespace, BCH_VERSION(0, 19)) \ |
| x(alloc_v4, BCH_VERSION(0, 20)) \ |
| x(new_data_types, BCH_VERSION(0, 21)) \ |
| x(backpointers, BCH_VERSION(0, 22)) \ |
| x(inode_v3, BCH_VERSION(0, 23)) \ |
| x(unwritten_extents, BCH_VERSION(0, 24)) \ |
| x(bucket_gens, BCH_VERSION(0, 25)) \ |
| x(lru_v2, BCH_VERSION(0, 26)) \ |
| x(fragmentation_lru, BCH_VERSION(0, 27)) \ |
| x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ |
| x(snapshot_trees, BCH_VERSION(0, 29)) \ |
| x(major_minor, BCH_VERSION(1, 0)) \ |
| x(snapshot_skiplists, BCH_VERSION(1, 1)) \ |
| x(deleted_inodes, BCH_VERSION(1, 2)) \ |
| x(rebalance_work, BCH_VERSION(1, 3)) \ |
| x(member_seq, BCH_VERSION(1, 4)) \ |
| x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ |
| x(btree_subvolume_children, BCH_VERSION(1, 6)) |
| |
| enum bcachefs_metadata_version { |
| bcachefs_metadata_version_min = 9, |
| #define x(t, n) bcachefs_metadata_version_##t = n, |
| BCH_METADATA_VERSIONS() |
| #undef x |
| bcachefs_metadata_version_max |
| }; |
| |
| static const __maybe_unused |
| unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; |
| |
| #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) |
| |
| #define BCH_SB_SECTOR 8 |
| #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ |
| |
| struct bch_sb_layout { |
| __uuid_t magic; /* bcachefs superblock UUID */ |
| __u8 layout_type; |
| __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ |
| __u8 nr_superblocks; |
| __u8 pad[5]; |
| __le64 sb_offset[61]; |
| } __packed __aligned(8); |
| |
| #define BCH_SB_LAYOUT_SECTOR 7 |
| |
| /* |
| * @offset - sector where this sb was written |
| * @version - on disk format version |
| * @version_min - Oldest metadata version this filesystem contains; so we can |
| * safely drop compatibility code and refuse to mount filesystems |
| * we'd need it for |
| * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) |
| * @seq - incremented each time superblock is written |
| * @uuid - used for generating various magic numbers and identifying |
| * member devices, never changes |
| * @user_uuid - user visible UUID, may be changed |
| * @label - filesystem label |
| * @seq - identifies most recent superblock, incremented each time |
| * superblock is written |
| * @features - enabled incompatible features |
| */ |
| struct bch_sb { |
| struct bch_csum csum; |
| __le16 version; |
| __le16 version_min; |
| __le16 pad[2]; |
| __uuid_t magic; |
| __uuid_t uuid; |
| __uuid_t user_uuid; |
| __u8 label[BCH_SB_LABEL_SIZE]; |
| __le64 offset; |
| __le64 seq; |
| |
| __le16 block_size; |
| __u8 dev_idx; |
| __u8 nr_devices; |
| __le32 u64s; |
| |
| __le64 time_base_lo; |
| __le32 time_base_hi; |
| __le32 time_precision; |
| |
| __le64 flags[7]; |
| __le64 write_time; |
| __le64 features[2]; |
| __le64 compat[2]; |
| |
| struct bch_sb_layout layout; |
| |
| struct bch_sb_field start[0]; |
| __le64 _data[]; |
| } __packed __aligned(8); |
| |
| /* |
| * Flags: |
| * BCH_SB_INITALIZED - set on first mount |
| * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect |
| * behaviour of mount/recovery path: |
| * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits |
| * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 |
| * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides |
| * DATA/META_CSUM_TYPE. Also indicates encryption |
| * algorithm in use, if/when we get more than one |
| */ |
| |
| LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); |
| |
| LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); |
| LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); |
| LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); |
| LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); |
| |
| LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); |
| |
| LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); |
| LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); |
| |
| LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); |
| LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); |
| |
| LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); |
| LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); |
| |
| LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); |
| LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); |
| LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); |
| LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); |
| |
| LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); |
| LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); |
| |
| LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); |
| |
| LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); |
| LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); |
| LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); |
| |
| LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); |
| LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); |
| |
| /* |
| * Max size of an extent that may require bouncing to read or write |
| * (checksummed, compressed): 64k |
| */ |
| LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, |
| struct bch_sb, flags[1], 14, 20); |
| |
| LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); |
| LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); |
| |
| LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); |
| LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); |
| LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); |
| |
| LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, |
| struct bch_sb, flags[2], 0, 4); |
| LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); |
| |
| LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); |
| LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); |
| LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); |
| LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); |
| LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); |
| LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); |
| LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); |
| LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); |
| LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); |
| LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); |
| LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); |
| |
| LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); |
| LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, |
| struct bch_sb, flags[4], 60, 64); |
| |
| LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, |
| struct bch_sb, flags[5], 0, 16); |
| |
| static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) |
| { |
| return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); |
| } |
| |
| static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) |
| { |
| SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); |
| SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); |
| } |
| |
| static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) |
| { |
| return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | |
| (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); |
| } |
| |
| static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) |
| { |
| SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); |
| SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); |
| } |
| |
| /* |
| * Features: |
| * |
| * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist |
| * reflink: gates KEY_TYPE_reflink |
| * inline_data: gates KEY_TYPE_inline_data |
| * new_siphash: gates BCH_STR_HASH_siphash |
| * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE |
| */ |
| #define BCH_SB_FEATURES() \ |
| x(lz4, 0) \ |
| x(gzip, 1) \ |
| x(zstd, 2) \ |
| x(atomic_nlink, 3) \ |
| x(ec, 4) \ |
| x(journal_seq_blacklist_v3, 5) \ |
| x(reflink, 6) \ |
| x(new_siphash, 7) \ |
| x(inline_data, 8) \ |
| x(new_extent_overwrite, 9) \ |
| x(incompressible, 10) \ |
| x(btree_ptr_v2, 11) \ |
| x(extents_above_btree_updates, 12) \ |
| x(btree_updates_journalled, 13) \ |
| x(reflink_inline_data, 14) \ |
| x(new_varint, 15) \ |
| x(journal_no_flush, 16) \ |
| x(alloc_v2, 17) \ |
| x(extents_across_btree_nodes, 18) |
| |
| #define BCH_SB_FEATURES_ALWAYS \ |
| ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ |
| (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ |
| (1ULL << BCH_FEATURE_btree_updates_journalled)|\ |
| (1ULL << BCH_FEATURE_alloc_v2)|\ |
| (1ULL << BCH_FEATURE_extents_across_btree_nodes)) |
| |
| #define BCH_SB_FEATURES_ALL \ |
| (BCH_SB_FEATURES_ALWAYS| \ |
| (1ULL << BCH_FEATURE_new_siphash)| \ |
| (1ULL << BCH_FEATURE_btree_ptr_v2)| \ |
| (1ULL << BCH_FEATURE_new_varint)| \ |
| (1ULL << BCH_FEATURE_journal_no_flush)) |
| |
| enum bch_sb_feature { |
| #define x(f, n) BCH_FEATURE_##f, |
| BCH_SB_FEATURES() |
| #undef x |
| BCH_FEATURE_NR, |
| }; |
| |
| #define BCH_SB_COMPAT() \ |
| x(alloc_info, 0) \ |
| x(alloc_metadata, 1) \ |
| x(extents_above_btree_updates_done, 2) \ |
| x(bformat_overflow_done, 3) |
| |
| enum bch_sb_compat { |
| #define x(f, n) BCH_COMPAT_##f, |
| BCH_SB_COMPAT() |
| #undef x |
| BCH_COMPAT_NR, |
| }; |
| |
| /* options: */ |
| |
| #define BCH_VERSION_UPGRADE_OPTS() \ |
| x(compatible, 0) \ |
| x(incompatible, 1) \ |
| x(none, 2) |
| |
| enum bch_version_upgrade_opts { |
| #define x(t, n) BCH_VERSION_UPGRADE_##t = n, |
| BCH_VERSION_UPGRADE_OPTS() |
| #undef x |
| }; |
| |
| #define BCH_REPLICAS_MAX 4U |
| |
| #define BCH_BKEY_PTRS_MAX 16U |
| |
| #define BCH_ERROR_ACTIONS() \ |
| x(continue, 0) \ |
| x(ro, 1) \ |
| x(panic, 2) |
| |
| enum bch_error_actions { |
| #define x(t, n) BCH_ON_ERROR_##t = n, |
| BCH_ERROR_ACTIONS() |
| #undef x |
| BCH_ON_ERROR_NR |
| }; |
| |
| #define BCH_STR_HASH_TYPES() \ |
| x(crc32c, 0) \ |
| x(crc64, 1) \ |
| x(siphash_old, 2) \ |
| x(siphash, 3) |
| |
| enum bch_str_hash_type { |
| #define x(t, n) BCH_STR_HASH_##t = n, |
| BCH_STR_HASH_TYPES() |
| #undef x |
| BCH_STR_HASH_NR |
| }; |
| |
| #define BCH_STR_HASH_OPTS() \ |
| x(crc32c, 0) \ |
| x(crc64, 1) \ |
| x(siphash, 2) |
| |
| enum bch_str_hash_opts { |
| #define x(t, n) BCH_STR_HASH_OPT_##t = n, |
| BCH_STR_HASH_OPTS() |
| #undef x |
| BCH_STR_HASH_OPT_NR |
| }; |
| |
| #define BCH_CSUM_TYPES() \ |
| x(none, 0) \ |
| x(crc32c_nonzero, 1) \ |
| x(crc64_nonzero, 2) \ |
| x(chacha20_poly1305_80, 3) \ |
| x(chacha20_poly1305_128, 4) \ |
| x(crc32c, 5) \ |
| x(crc64, 6) \ |
| x(xxhash, 7) |
| |
| enum bch_csum_type { |
| #define x(t, n) BCH_CSUM_##t = n, |
| BCH_CSUM_TYPES() |
| #undef x |
| BCH_CSUM_NR |
| }; |
| |
| static const __maybe_unused unsigned bch_crc_bytes[] = { |
| [BCH_CSUM_none] = 0, |
| [BCH_CSUM_crc32c_nonzero] = 4, |
| [BCH_CSUM_crc32c] = 4, |
| [BCH_CSUM_crc64_nonzero] = 8, |
| [BCH_CSUM_crc64] = 8, |
| [BCH_CSUM_xxhash] = 8, |
| [BCH_CSUM_chacha20_poly1305_80] = 10, |
| [BCH_CSUM_chacha20_poly1305_128] = 16, |
| }; |
| |
| static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) |
| { |
| switch (type) { |
| case BCH_CSUM_chacha20_poly1305_80: |
| case BCH_CSUM_chacha20_poly1305_128: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| #define BCH_CSUM_OPTS() \ |
| x(none, 0) \ |
| x(crc32c, 1) \ |
| x(crc64, 2) \ |
| x(xxhash, 3) |
| |
| enum bch_csum_opts { |
| #define x(t, n) BCH_CSUM_OPT_##t = n, |
| BCH_CSUM_OPTS() |
| #undef x |
| BCH_CSUM_OPT_NR |
| }; |
| |
| #define BCH_COMPRESSION_TYPES() \ |
| x(none, 0) \ |
| x(lz4_old, 1) \ |
| x(gzip, 2) \ |
| x(lz4, 3) \ |
| x(zstd, 4) \ |
| x(incompressible, 5) |
| |
| enum bch_compression_type { |
| #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, |
| BCH_COMPRESSION_TYPES() |
| #undef x |
| BCH_COMPRESSION_TYPE_NR |
| }; |
| |
| #define BCH_COMPRESSION_OPTS() \ |
| x(none, 0) \ |
| x(lz4, 1) \ |
| x(gzip, 2) \ |
| x(zstd, 3) |
| |
| enum bch_compression_opts { |
| #define x(t, n) BCH_COMPRESSION_OPT_##t = n, |
| BCH_COMPRESSION_OPTS() |
| #undef x |
| BCH_COMPRESSION_OPT_NR |
| }; |
| |
| /* |
| * Magic numbers |
| * |
| * The various other data structures have their own magic numbers, which are |
| * xored with the first part of the cache set's UUID |
| */ |
| |
| #define BCACHE_MAGIC \ |
| UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ |
| 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) |
| #define BCHFS_MAGIC \ |
| UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ |
| 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) |
| |
| #define BCACHEFS_STATFS_MAGIC 0xca451a4e |
| |
| #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) |
| #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) |
| |
| static inline __le64 __bch2_sb_magic(struct bch_sb *sb) |
| { |
| __le64 ret; |
| |
| memcpy(&ret, &sb->uuid, sizeof(ret)); |
| return ret; |
| } |
| |
| static inline __u64 __jset_magic(struct bch_sb *sb) |
| { |
| return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); |
| } |
| |
| static inline __u64 __bset_magic(struct bch_sb *sb) |
| { |
| return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); |
| } |
| |
| /* Journal */ |
| |
| #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) |
| |
| #define BCH_JSET_ENTRY_TYPES() \ |
| x(btree_keys, 0) \ |
| x(btree_root, 1) \ |
| x(prio_ptrs, 2) \ |
| x(blacklist, 3) \ |
| x(blacklist_v2, 4) \ |
| x(usage, 5) \ |
| x(data_usage, 6) \ |
| x(clock, 7) \ |
| x(dev_usage, 8) \ |
| x(log, 9) \ |
| x(overwrite, 10) \ |
| x(write_buffer_keys, 11) \ |
| x(datetime, 12) |
| |
| enum { |
| #define x(f, nr) BCH_JSET_ENTRY_##f = nr, |
| BCH_JSET_ENTRY_TYPES() |
| #undef x |
| BCH_JSET_ENTRY_NR |
| }; |
| |
| static inline bool jset_entry_is_key(struct jset_entry *e) |
| { |
| switch (e->type) { |
| case BCH_JSET_ENTRY_btree_keys: |
| case BCH_JSET_ENTRY_btree_root: |
| case BCH_JSET_ENTRY_overwrite: |
| case BCH_JSET_ENTRY_write_buffer_keys: |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Journal sequence numbers can be blacklisted: bsets record the max sequence |
| * number of all the journal entries they contain updates for, so that on |
| * recovery we can ignore those bsets that contain index updates newer that what |
| * made it into the journal. |
| * |
| * This means that we can't reuse that journal_seq - we have to skip it, and |
| * then record that we skipped it so that the next time we crash and recover we |
| * don't think there was a missing journal entry. |
| */ |
| struct jset_entry_blacklist { |
| struct jset_entry entry; |
| __le64 seq; |
| }; |
| |
| struct jset_entry_blacklist_v2 { |
| struct jset_entry entry; |
| __le64 start; |
| __le64 end; |
| }; |
| |
| #define BCH_FS_USAGE_TYPES() \ |
| x(reserved, 0) \ |
| x(inodes, 1) \ |
| x(key_version, 2) |
| |
| enum { |
| #define x(f, nr) BCH_FS_USAGE_##f = nr, |
| BCH_FS_USAGE_TYPES() |
| #undef x |
| BCH_FS_USAGE_NR |
| }; |
| |
| struct jset_entry_usage { |
| struct jset_entry entry; |
| __le64 v; |
| } __packed; |
| |
| struct jset_entry_data_usage { |
| struct jset_entry entry; |
| __le64 v; |
| struct bch_replicas_entry_v1 r; |
| } __packed; |
| |
| struct jset_entry_clock { |
| struct jset_entry entry; |
| __u8 rw; |
| __u8 pad[7]; |
| __le64 time; |
| } __packed; |
| |
| struct jset_entry_dev_usage_type { |
| __le64 buckets; |
| __le64 sectors; |
| __le64 fragmented; |
| } __packed; |
| |
| struct jset_entry_dev_usage { |
| struct jset_entry entry; |
| __le32 dev; |
| __u32 pad; |
| |
| __le64 _buckets_ec; /* No longer used */ |
| __le64 _buckets_unavailable; /* No longer used */ |
| |
| struct jset_entry_dev_usage_type d[]; |
| }; |
| |
| static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) |
| { |
| return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / |
| sizeof(struct jset_entry_dev_usage_type); |
| } |
| |
| struct jset_entry_log { |
| struct jset_entry entry; |
| u8 d[]; |
| } __packed __aligned(8); |
| |
| struct jset_entry_datetime { |
| struct jset_entry entry; |
| __le64 seconds; |
| } __packed __aligned(8); |
| |
| /* |
| * On disk format for a journal entry: |
| * seq is monotonically increasing; every journal entry has its own unique |
| * sequence number. |
| * |
| * last_seq is the oldest journal entry that still has keys the btree hasn't |
| * flushed to disk yet. |
| * |
| * version is for on disk format changes. |
| */ |
| struct jset { |
| struct bch_csum csum; |
| |
| __le64 magic; |
| __le64 seq; |
| __le32 version; |
| __le32 flags; |
| |
| __le32 u64s; /* size of d[] in u64s */ |
| |
| __u8 encrypted_start[0]; |
| |
| __le16 _read_clock; /* no longer used */ |
| __le16 _write_clock; |
| |
| /* Sequence number of oldest dirty journal entry */ |
| __le64 last_seq; |
| |
| |
| struct jset_entry start[0]; |
| __u64 _data[]; |
| } __packed __aligned(8); |
| |
| LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); |
| LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); |
| LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); |
| |
| #define BCH_JOURNAL_BUCKETS_MIN 8 |
| |
| /* Btree: */ |
| |
| enum btree_id_flags { |
| BTREE_ID_EXTENTS = BIT(0), |
| BTREE_ID_SNAPSHOTS = BIT(1), |
| BTREE_ID_SNAPSHOT_FIELD = BIT(2), |
| BTREE_ID_DATA = BIT(3), |
| }; |
| |
| #define BCH_BTREE_IDS() \ |
| x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ |
| BIT_ULL(KEY_TYPE_whiteout)| \ |
| BIT_ULL(KEY_TYPE_error)| \ |
| BIT_ULL(KEY_TYPE_cookie)| \ |
| BIT_ULL(KEY_TYPE_extent)| \ |
| BIT_ULL(KEY_TYPE_reservation)| \ |
| BIT_ULL(KEY_TYPE_reflink_p)| \ |
| BIT_ULL(KEY_TYPE_inline_data)) \ |
| x(inodes, 1, BTREE_ID_SNAPSHOTS, \ |
| BIT_ULL(KEY_TYPE_whiteout)| \ |
| BIT_ULL(KEY_TYPE_inode)| \ |
| BIT_ULL(KEY_TYPE_inode_v2)| \ |
| BIT_ULL(KEY_TYPE_inode_v3)| \ |
| BIT_ULL(KEY_TYPE_inode_generation)) \ |
| x(dirents, 2, BTREE_ID_SNAPSHOTS, \ |
| BIT_ULL(KEY_TYPE_whiteout)| \ |
| BIT_ULL(KEY_TYPE_hash_whiteout)| \ |
| BIT_ULL(KEY_TYPE_dirent)) \ |
| x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ |
| BIT_ULL(KEY_TYPE_whiteout)| \ |
| BIT_ULL(KEY_TYPE_cookie)| \ |
| BIT_ULL(KEY_TYPE_hash_whiteout)| \ |
| BIT_ULL(KEY_TYPE_xattr)) \ |
| x(alloc, 4, 0, \ |
| BIT_ULL(KEY_TYPE_alloc)| \ |
| BIT_ULL(KEY_TYPE_alloc_v2)| \ |
| BIT_ULL(KEY_TYPE_alloc_v3)| \ |
| BIT_ULL(KEY_TYPE_alloc_v4)) \ |
| x(quotas, 5, 0, \ |
| BIT_ULL(KEY_TYPE_quota)) \ |
| x(stripes, 6, 0, \ |
| BIT_ULL(KEY_TYPE_stripe)) \ |
| x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ |
| BIT_ULL(KEY_TYPE_reflink_v)| \ |
| BIT_ULL(KEY_TYPE_indirect_inline_data)) \ |
| x(subvolumes, 8, 0, \ |
| BIT_ULL(KEY_TYPE_subvolume)) \ |
| x(snapshots, 9, 0, \ |
| BIT_ULL(KEY_TYPE_snapshot)) \ |
| x(lru, 10, 0, \ |
| BIT_ULL(KEY_TYPE_set)) \ |
| x(freespace, 11, BTREE_ID_EXTENTS, \ |
| BIT_ULL(KEY_TYPE_set)) \ |
| x(need_discard, 12, 0, \ |
| BIT_ULL(KEY_TYPE_set)) \ |
| x(backpointers, 13, 0, \ |
| BIT_ULL(KEY_TYPE_backpointer)) \ |
| x(bucket_gens, 14, 0, \ |
| BIT_ULL(KEY_TYPE_bucket_gens)) \ |
| x(snapshot_trees, 15, 0, \ |
| BIT_ULL(KEY_TYPE_snapshot_tree)) \ |
| x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ |
| BIT_ULL(KEY_TYPE_set)) \ |
| x(logged_ops, 17, 0, \ |
| BIT_ULL(KEY_TYPE_logged_op_truncate)| \ |
| BIT_ULL(KEY_TYPE_logged_op_finsert)) \ |
| x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ |
| BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ |
| x(subvolume_children, 19, 0, \ |
| BIT_ULL(KEY_TYPE_set)) |
| |
| enum btree_id { |
| #define x(name, nr, ...) BTREE_ID_##name = nr, |
| BCH_BTREE_IDS() |
| #undef x |
| BTREE_ID_NR |
| }; |
| |
| #define BTREE_MAX_DEPTH 4U |
| |
| /* Btree nodes */ |
| |
| /* |
| * Btree nodes |
| * |
| * On disk a btree node is a list/log of these; within each set the keys are |
| * sorted |
| */ |
| struct bset { |
| __le64 seq; |
| |
| /* |
| * Highest journal entry this bset contains keys for. |
| * If on recovery we don't see that journal entry, this bset is ignored: |
| * this allows us to preserve the order of all index updates after a |
| * crash, since the journal records a total order of all index updates |
| * and anything that didn't make it to the journal doesn't get used. |
| */ |
| __le64 journal_seq; |
| |
| __le32 flags; |
| __le16 version; |
| __le16 u64s; /* count of d[] in u64s */ |
| |
| struct bkey_packed start[0]; |
| __u64 _data[]; |
| } __packed __aligned(8); |
| |
| LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); |
| |
| LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); |
| LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, |
| struct bset, flags, 5, 6); |
| |
| /* Sector offset within the btree node: */ |
| LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); |
| |
| struct btree_node { |
| struct bch_csum csum; |
| __le64 magic; |
| |
| /* this flags field is encrypted, unlike bset->flags: */ |
| __le64 flags; |
| |
| /* Closed interval: */ |
| struct bpos min_key; |
| struct bpos max_key; |
| struct bch_extent_ptr _ptr; /* not used anymore */ |
| struct bkey_format format; |
| |
| union { |
| struct bset keys; |
| struct { |
| __u8 pad[22]; |
| __le16 u64s; |
| __u64 _data[0]; |
| |
| }; |
| }; |
| } __packed __aligned(8); |
| |
| LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); |
| LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); |
| LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, |
| struct btree_node, flags, 8, 9); |
| LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); |
| /* 25-32 unused */ |
| LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); |
| |
| static inline __u64 BTREE_NODE_ID(struct btree_node *n) |
| { |
| return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); |
| } |
| |
| static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) |
| { |
| SET_BTREE_NODE_ID_LO(n, v); |
| SET_BTREE_NODE_ID_HI(n, v >> 4); |
| } |
| |
| struct btree_node_entry { |
| struct bch_csum csum; |
| |
| union { |
| struct bset keys; |
| struct { |
| __u8 pad[22]; |
| __le16 u64s; |
| __u64 _data[0]; |
| }; |
| }; |
| } __packed __aligned(8); |
| |
| #endif /* _BCACHEFS_FORMAT_H */ |