| /* |
| * MTD SPI driver for ST M25Pxx (and similar) serial flash chips |
| * |
| * Author: Mike Lavender, mike@steroidmicros.com |
| * |
| * Copyright (c) 2005, Intec Automation Inc. |
| * |
| * Some parts are based on lart.c by Abraham Van Der Merwe |
| * |
| * Cleaned up and generalized based on mtd_dataflash.c |
| * |
| * This code is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| */ |
| |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/partitions.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/flash.h> |
| #include <linux/mtd/spi-nor.h> |
| |
| #define MAX_CMD_SIZE 6 |
| struct m25p { |
| struct spi_device *spi; |
| struct spi_nor spi_nor; |
| u8 command[MAX_CMD_SIZE]; |
| }; |
| |
| static int m25p80_read_reg(struct spi_nor *nor, u8 code, u8 *val, int len) |
| { |
| struct m25p *flash = nor->priv; |
| struct spi_device *spi = flash->spi; |
| int ret; |
| |
| ret = spi_write_then_read(spi, &code, 1, val, len); |
| if (ret < 0) |
| dev_err(&spi->dev, "error %d reading %x\n", ret, code); |
| |
| return ret; |
| } |
| |
| static void m25p_addr2cmd(struct spi_nor *nor, unsigned int addr, u8 *cmd) |
| { |
| /* opcode is in cmd[0] */ |
| cmd[1] = addr >> (nor->addr_width * 8 - 8); |
| cmd[2] = addr >> (nor->addr_width * 8 - 16); |
| cmd[3] = addr >> (nor->addr_width * 8 - 24); |
| cmd[4] = addr >> (nor->addr_width * 8 - 32); |
| } |
| |
| static int m25p_cmdsz(struct spi_nor *nor) |
| { |
| return 1 + nor->addr_width; |
| } |
| |
| static int m25p80_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len) |
| { |
| struct m25p *flash = nor->priv; |
| struct spi_device *spi = flash->spi; |
| |
| flash->command[0] = opcode; |
| if (buf) |
| memcpy(&flash->command[1], buf, len); |
| |
| return spi_write(spi, flash->command, len + 1); |
| } |
| |
| static ssize_t m25p80_write(struct spi_nor *nor, loff_t to, size_t len, |
| const u_char *buf) |
| { |
| struct m25p *flash = nor->priv; |
| struct spi_device *spi = flash->spi; |
| unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; |
| struct spi_transfer t[3] = {}; |
| struct spi_message m; |
| int cmd_sz = m25p_cmdsz(nor); |
| ssize_t ret; |
| |
| /* get transfer protocols. */ |
| inst_nbits = spi_nor_get_protocol_inst_nbits(nor->write_proto); |
| addr_nbits = spi_nor_get_protocol_addr_nbits(nor->write_proto); |
| data_nbits = spi_nor_get_protocol_data_nbits(nor->write_proto); |
| |
| spi_message_init(&m); |
| |
| if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second) |
| cmd_sz = 1; |
| |
| flash->command[0] = nor->program_opcode; |
| m25p_addr2cmd(nor, to, flash->command); |
| |
| t[0].tx_buf = flash->command; |
| t[0].tx_nbits = inst_nbits; |
| t[0].len = cmd_sz; |
| spi_message_add_tail(&t[0], &m); |
| |
| /* split the op code and address bytes into two transfers if needed. */ |
| data_idx = 1; |
| if (addr_nbits != inst_nbits) { |
| t[0].len = 1; |
| |
| t[1].tx_buf = &flash->command[1]; |
| t[1].tx_nbits = addr_nbits; |
| t[1].len = cmd_sz - 1; |
| spi_message_add_tail(&t[1], &m); |
| |
| data_idx = 2; |
| } |
| |
| t[data_idx].tx_buf = buf; |
| t[data_idx].tx_nbits = data_nbits; |
| t[data_idx].len = len; |
| spi_message_add_tail(&t[data_idx], &m); |
| |
| ret = spi_sync(spi, &m); |
| if (ret) |
| return ret; |
| |
| ret = m.actual_length - cmd_sz; |
| if (ret < 0) |
| return -EIO; |
| return ret; |
| } |
| |
| /* |
| * Read an address range from the nor chip. The address range |
| * may be any size provided it is within the physical boundaries. |
| */ |
| static ssize_t m25p80_read(struct spi_nor *nor, loff_t from, size_t len, |
| u_char *buf) |
| { |
| struct m25p *flash = nor->priv; |
| struct spi_device *spi = flash->spi; |
| unsigned int inst_nbits, addr_nbits, data_nbits, data_idx; |
| struct spi_transfer t[3]; |
| struct spi_message m; |
| unsigned int dummy = nor->read_dummy; |
| ssize_t ret; |
| int cmd_sz; |
| |
| /* get transfer protocols. */ |
| inst_nbits = spi_nor_get_protocol_inst_nbits(nor->read_proto); |
| addr_nbits = spi_nor_get_protocol_addr_nbits(nor->read_proto); |
| data_nbits = spi_nor_get_protocol_data_nbits(nor->read_proto); |
| |
| /* convert the dummy cycles to the number of bytes */ |
| dummy = (dummy * addr_nbits) / 8; |
| |
| if (spi_flash_read_supported(spi)) { |
| struct spi_flash_read_message msg; |
| |
| memset(&msg, 0, sizeof(msg)); |
| |
| msg.buf = buf; |
| msg.from = from; |
| msg.len = len; |
| msg.read_opcode = nor->read_opcode; |
| msg.addr_width = nor->addr_width; |
| msg.dummy_bytes = dummy; |
| msg.opcode_nbits = inst_nbits; |
| msg.addr_nbits = addr_nbits; |
| msg.data_nbits = data_nbits; |
| |
| ret = spi_flash_read(spi, &msg); |
| if (ret < 0) |
| return ret; |
| return msg.retlen; |
| } |
| |
| spi_message_init(&m); |
| memset(t, 0, (sizeof t)); |
| |
| flash->command[0] = nor->read_opcode; |
| m25p_addr2cmd(nor, from, flash->command); |
| |
| t[0].tx_buf = flash->command; |
| t[0].tx_nbits = inst_nbits; |
| t[0].len = m25p_cmdsz(nor) + dummy; |
| spi_message_add_tail(&t[0], &m); |
| |
| /* |
| * Set all dummy/mode cycle bits to avoid sending some manufacturer |
| * specific pattern, which might make the memory enter its Continuous |
| * Read mode by mistake. |
| * Based on the different mode cycle bit patterns listed and described |
| * in the JESD216B specification, the 0xff value works for all memories |
| * and all manufacturers. |
| */ |
| cmd_sz = t[0].len; |
| memset(flash->command + cmd_sz - dummy, 0xff, dummy); |
| |
| /* split the op code and address bytes into two transfers if needed. */ |
| data_idx = 1; |
| if (addr_nbits != inst_nbits) { |
| t[0].len = 1; |
| |
| t[1].tx_buf = &flash->command[1]; |
| t[1].tx_nbits = addr_nbits; |
| t[1].len = cmd_sz - 1; |
| spi_message_add_tail(&t[1], &m); |
| |
| data_idx = 2; |
| } |
| |
| t[data_idx].rx_buf = buf; |
| t[data_idx].rx_nbits = data_nbits; |
| t[data_idx].len = min3(len, spi_max_transfer_size(spi), |
| spi_max_message_size(spi) - cmd_sz); |
| spi_message_add_tail(&t[data_idx], &m); |
| |
| ret = spi_sync(spi, &m); |
| if (ret) |
| return ret; |
| |
| ret = m.actual_length - cmd_sz; |
| if (ret < 0) |
| return -EIO; |
| return ret; |
| } |
| |
| /* |
| * board specific setup should have ensured the SPI clock used here |
| * matches what the READ command supports, at least until this driver |
| * understands FAST_READ (for clocks over 25 MHz). |
| */ |
| static int m25p_probe(struct spi_device *spi) |
| { |
| struct flash_platform_data *data; |
| struct m25p *flash; |
| struct spi_nor *nor; |
| struct spi_nor_hwcaps hwcaps = { |
| .mask = SNOR_HWCAPS_READ | |
| SNOR_HWCAPS_READ_FAST | |
| SNOR_HWCAPS_PP, |
| }; |
| char *flash_name; |
| int ret; |
| |
| data = dev_get_platdata(&spi->dev); |
| |
| flash = devm_kzalloc(&spi->dev, sizeof(*flash), GFP_KERNEL); |
| if (!flash) |
| return -ENOMEM; |
| |
| nor = &flash->spi_nor; |
| |
| /* install the hooks */ |
| nor->read = m25p80_read; |
| nor->write = m25p80_write; |
| nor->write_reg = m25p80_write_reg; |
| nor->read_reg = m25p80_read_reg; |
| |
| nor->dev = &spi->dev; |
| spi_nor_set_flash_node(nor, spi->dev.of_node); |
| nor->priv = flash; |
| |
| spi_set_drvdata(spi, flash); |
| flash->spi = spi; |
| |
| if (spi->mode & SPI_RX_QUAD) { |
| hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4; |
| |
| if (spi->mode & SPI_TX_QUAD) |
| hwcaps.mask |= (SNOR_HWCAPS_READ_1_4_4 | |
| SNOR_HWCAPS_PP_1_1_4 | |
| SNOR_HWCAPS_PP_1_4_4); |
| } else if (spi->mode & SPI_RX_DUAL) { |
| hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2; |
| |
| if (spi->mode & SPI_TX_DUAL) |
| hwcaps.mask |= SNOR_HWCAPS_READ_1_2_2; |
| } |
| |
| if (data && data->name) |
| nor->mtd.name = data->name; |
| |
| /* For some (historical?) reason many platforms provide two different |
| * names in flash_platform_data: "name" and "type". Quite often name is |
| * set to "m25p80" and then "type" provides a real chip name. |
| * If that's the case, respect "type" and ignore a "name". |
| */ |
| if (data && data->type) |
| flash_name = data->type; |
| else if (!strcmp(spi->modalias, "spi-nor")) |
| flash_name = NULL; /* auto-detect */ |
| else |
| flash_name = spi->modalias; |
| |
| ret = spi_nor_scan(nor, flash_name, &hwcaps); |
| if (ret) |
| return ret; |
| |
| return mtd_device_register(&nor->mtd, data ? data->parts : NULL, |
| data ? data->nr_parts : 0); |
| } |
| |
| |
| static int m25p_remove(struct spi_device *spi) |
| { |
| struct m25p *flash = spi_get_drvdata(spi); |
| |
| /* Clean up MTD stuff. */ |
| return mtd_device_unregister(&flash->spi_nor.mtd); |
| } |
| |
| /* |
| * Do NOT add to this array without reading the following: |
| * |
| * Historically, many flash devices are bound to this driver by their name. But |
| * since most of these flash are compatible to some extent, and their |
| * differences can often be differentiated by the JEDEC read-ID command, we |
| * encourage new users to add support to the spi-nor library, and simply bind |
| * against a generic string here (e.g., "jedec,spi-nor"). |
| * |
| * Many flash names are kept here in this list (as well as in spi-nor.c) to |
| * keep them available as module aliases for existing platforms. |
| */ |
| static const struct spi_device_id m25p_ids[] = { |
| /* |
| * Allow non-DT platform devices to bind to the "spi-nor" modalias, and |
| * hack around the fact that the SPI core does not provide uevent |
| * matching for .of_match_table |
| */ |
| {"spi-nor"}, |
| |
| /* |
| * Entries not used in DTs that should be safe to drop after replacing |
| * them with "spi-nor" in platform data. |
| */ |
| {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"}, |
| |
| /* |
| * Entries that were used in DTs without "jedec,spi-nor" fallback and |
| * should be kept for backward compatibility. |
| */ |
| {"at25df321a"}, {"at25df641"}, {"at26df081a"}, |
| {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"}, |
| {"mx25l25635e"},{"mx66l51235l"}, |
| {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"}, |
| {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"}, |
| {"s25fl064k"}, |
| {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"}, |
| {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"}, |
| {"m25p64"}, {"m25p128"}, |
| {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"}, |
| {"w25q80bl"}, {"w25q128"}, {"w25q256"}, |
| |
| /* Flashes that can't be detected using JEDEC */ |
| {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"}, |
| {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"}, |
| {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"}, |
| |
| /* Everspin MRAMs (non-JEDEC) */ |
| { "mr25h128" }, /* 128 Kib, 40 MHz */ |
| { "mr25h256" }, /* 256 Kib, 40 MHz */ |
| { "mr25h10" }, /* 1 Mib, 40 MHz */ |
| { "mr25h40" }, /* 4 Mib, 40 MHz */ |
| |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(spi, m25p_ids); |
| |
| static const struct of_device_id m25p_of_table[] = { |
| /* |
| * Generic compatibility for SPI NOR that can be identified by the |
| * JEDEC READ ID opcode (0x9F). Use this, if possible. |
| */ |
| { .compatible = "jedec,spi-nor" }, |
| {} |
| }; |
| MODULE_DEVICE_TABLE(of, m25p_of_table); |
| |
| static struct spi_driver m25p80_driver = { |
| .driver = { |
| .name = "m25p80", |
| .of_match_table = m25p_of_table, |
| }, |
| .id_table = m25p_ids, |
| .probe = m25p_probe, |
| .remove = m25p_remove, |
| |
| /* REVISIT: many of these chips have deep power-down modes, which |
| * should clearly be entered on suspend() to minimize power use. |
| * And also when they're otherwise idle... |
| */ |
| }; |
| |
| module_spi_driver(m25p80_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Mike Lavender"); |
| MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |