| ######################################################################## |
| # Implement fast SHA-512 with SSSE3 instructions. (x86_64) |
| # |
| # Copyright (C) 2013 Intel Corporation. |
| # |
| # Authors: |
| # James Guilford <james.guilford@intel.com> |
| # Kirk Yap <kirk.s.yap@intel.com> |
| # David Cote <david.m.cote@intel.com> |
| # Tim Chen <tim.c.chen@linux.intel.com> |
| # |
| # This software is available to you under a choice of one of two |
| # licenses. You may choose to be licensed under the terms of the GNU |
| # General Public License (GPL) Version 2, available from the file |
| # COPYING in the main directory of this source tree, or the |
| # OpenIB.org BSD license below: |
| # |
| # Redistribution and use in source and binary forms, with or |
| # without modification, are permitted provided that the following |
| # conditions are met: |
| # |
| # - Redistributions of source code must retain the above |
| # copyright notice, this list of conditions and the following |
| # disclaimer. |
| # |
| # - Redistributions in binary form must reproduce the above |
| # copyright notice, this list of conditions and the following |
| # disclaimer in the documentation and/or other materials |
| # provided with the distribution. |
| # |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| # SOFTWARE. |
| # |
| ######################################################################## |
| # |
| # This code is described in an Intel White-Paper: |
| # "Fast SHA-512 Implementations on Intel Architecture Processors" |
| # |
| # To find it, surf to http://www.intel.com/p/en_US/embedded |
| # and search for that title. |
| # |
| ######################################################################## |
| |
| #include <linux/linkage.h> |
| |
| .text |
| |
| # Virtual Registers |
| # ARG1 |
| digest = %rdi |
| # ARG2 |
| msg = %rsi |
| # ARG3 |
| msglen = %rdx |
| T1 = %rcx |
| T2 = %r8 |
| a_64 = %r9 |
| b_64 = %r10 |
| c_64 = %r11 |
| d_64 = %r12 |
| e_64 = %r13 |
| f_64 = %r14 |
| g_64 = %r15 |
| h_64 = %rbx |
| tmp0 = %rax |
| |
| # Local variables (stack frame) |
| |
| W_SIZE = 80*8 |
| WK_SIZE = 2*8 |
| RSPSAVE_SIZE = 1*8 |
| GPRSAVE_SIZE = 5*8 |
| |
| frame_W = 0 |
| frame_WK = frame_W + W_SIZE |
| frame_RSPSAVE = frame_WK + WK_SIZE |
| frame_GPRSAVE = frame_RSPSAVE + RSPSAVE_SIZE |
| frame_size = frame_GPRSAVE + GPRSAVE_SIZE |
| |
| # Useful QWORD "arrays" for simpler memory references |
| # MSG, DIGEST, K_t, W_t are arrays |
| # WK_2(t) points to 1 of 2 qwords at frame.WK depdending on t being odd/even |
| |
| # Input message (arg1) |
| #define MSG(i) 8*i(msg) |
| |
| # Output Digest (arg2) |
| #define DIGEST(i) 8*i(digest) |
| |
| # SHA Constants (static mem) |
| #define K_t(i) 8*i+K512(%rip) |
| |
| # Message Schedule (stack frame) |
| #define W_t(i) 8*i+frame_W(%rsp) |
| |
| # W[t]+K[t] (stack frame) |
| #define WK_2(i) 8*((i%2))+frame_WK(%rsp) |
| |
| .macro RotateState |
| # Rotate symbols a..h right |
| TMP = h_64 |
| h_64 = g_64 |
| g_64 = f_64 |
| f_64 = e_64 |
| e_64 = d_64 |
| d_64 = c_64 |
| c_64 = b_64 |
| b_64 = a_64 |
| a_64 = TMP |
| .endm |
| |
| .macro SHA512_Round rnd |
| |
| # Compute Round %%t |
| mov f_64, T1 # T1 = f |
| mov e_64, tmp0 # tmp = e |
| xor g_64, T1 # T1 = f ^ g |
| ror $23, tmp0 # 41 # tmp = e ror 23 |
| and e_64, T1 # T1 = (f ^ g) & e |
| xor e_64, tmp0 # tmp = (e ror 23) ^ e |
| xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g) |
| idx = \rnd |
| add WK_2(idx), T1 # W[t] + K[t] from message scheduler |
| ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4 |
| xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e |
| mov a_64, T2 # T2 = a |
| add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h |
| ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e) |
| add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e) |
| mov a_64, tmp0 # tmp = a |
| xor c_64, T2 # T2 = a ^ c |
| and c_64, tmp0 # tmp = a & c |
| and b_64, T2 # T2 = (a ^ c) & b |
| xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c) |
| mov a_64, tmp0 # tmp = a |
| ror $5, tmp0 # 39 # tmp = a ror 5 |
| xor a_64, tmp0 # tmp = (a ror 5) ^ a |
| add T1, d_64 # e(next_state) = d + T1 |
| ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6 |
| xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a |
| lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c) |
| ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a) |
| add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a) |
| RotateState |
| .endm |
| |
| .macro SHA512_2Sched_2Round_sse rnd |
| |
| # Compute rounds t-2 and t-1 |
| # Compute message schedule QWORDS t and t+1 |
| |
| # Two rounds are computed based on the values for K[t-2]+W[t-2] and |
| # K[t-1]+W[t-1] which were previously stored at WK_2 by the message |
| # scheduler. |
| # The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)]. |
| # They are then added to their respective SHA512 constants at |
| # [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)] |
| # For brievity, the comments following vectored instructions only refer to |
| # the first of a pair of QWORDS. |
| # Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]} |
| # The computation of the message schedule and the rounds are tightly |
| # stitched to take advantage of instruction-level parallelism. |
| # For clarity, integer instructions (for the rounds calculation) are indented |
| # by one tab. Vectored instructions (for the message scheduler) are indented |
| # by two tabs. |
| |
| mov f_64, T1 |
| idx = \rnd -2 |
| movdqa W_t(idx), %xmm2 # XMM2 = W[t-2] |
| xor g_64, T1 |
| and e_64, T1 |
| movdqa %xmm2, %xmm0 # XMM0 = W[t-2] |
| xor g_64, T1 |
| idx = \rnd |
| add WK_2(idx), T1 |
| idx = \rnd - 15 |
| movdqu W_t(idx), %xmm5 # XMM5 = W[t-15] |
| mov e_64, tmp0 |
| ror $23, tmp0 # 41 |
| movdqa %xmm5, %xmm3 # XMM3 = W[t-15] |
| xor e_64, tmp0 |
| ror $4, tmp0 # 18 |
| psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42 |
| xor e_64, tmp0 |
| ror $14, tmp0 # 14 |
| psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1 |
| add tmp0, T1 |
| add h_64, T1 |
| pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2] |
| mov a_64, T2 |
| xor c_64, T2 |
| pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15] |
| and b_64, T2 |
| mov a_64, tmp0 |
| psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13 |
| and c_64, tmp0 |
| xor tmp0, T2 |
| psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6 |
| mov a_64, tmp0 |
| ror $5, tmp0 # 39 |
| pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2] |
| xor a_64, tmp0 |
| ror $6, tmp0 # 34 |
| pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15] |
| xor a_64, tmp0 |
| ror $28, tmp0 # 28 |
| psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6 |
| add tmp0, T2 |
| add T1, d_64 |
| psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1 |
| lea (T1, T2), h_64 |
| RotateState |
| movdqa %xmm2, %xmm1 # XMM1 = W[t-2] |
| mov f_64, T1 |
| xor g_64, T1 |
| movdqa %xmm5, %xmm4 # XMM4 = W[t-15] |
| and e_64, T1 |
| xor g_64, T1 |
| psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42 |
| idx = \rnd + 1 |
| add WK_2(idx), T1 |
| mov e_64, tmp0 |
| psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7 |
| ror $23, tmp0 # 41 |
| xor e_64, tmp0 |
| pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2] |
| ror $4, tmp0 # 18 |
| xor e_64, tmp0 |
| pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15] |
| ror $14, tmp0 # 14 |
| add tmp0, T1 |
| psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3 |
| add h_64, T1 |
| mov a_64, T2 |
| psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56 |
| xor c_64, T2 |
| and b_64, T2 |
| pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2]) |
| mov a_64, tmp0 |
| and c_64, tmp0 |
| idx = \rnd - 7 |
| movdqu W_t(idx), %xmm1 # XMM1 = W[t-7] |
| xor tmp0, T2 |
| pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15]) |
| mov a_64, tmp0 |
| paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) |
| ror $5, tmp0 # 39 |
| idx =\rnd-16 |
| paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16] |
| xor a_64, tmp0 |
| paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16] |
| ror $6, tmp0 # 34 |
| movdqa %xmm0, W_t(\rnd) # Store scheduled qwords |
| xor a_64, tmp0 |
| paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t] |
| ror $28, tmp0 # 28 |
| idx = \rnd |
| movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds |
| add tmp0, T2 |
| add T1, d_64 |
| lea (T1, T2), h_64 |
| RotateState |
| .endm |
| |
| ######################################################################## |
| ## void sha512_transform_ssse3(struct sha512_state *state, const u8 *data, |
| ## int blocks); |
| # (struct sha512_state is assumed to begin with u64 state[8]) |
| # Purpose: Updates the SHA512 digest stored at "state" with the message |
| # stored in "data". |
| # The size of the message pointed to by "data" must be an integer multiple |
| # of SHA512 message blocks. |
| # "blocks" is the message length in SHA512 blocks. |
| ######################################################################## |
| SYM_FUNC_START(sha512_transform_ssse3) |
| |
| test msglen, msglen |
| je nowork |
| |
| # Allocate Stack Space |
| mov %rsp, %rax |
| sub $frame_size, %rsp |
| and $~(0x20 - 1), %rsp |
| mov %rax, frame_RSPSAVE(%rsp) |
| |
| # Save GPRs |
| mov %rbx, frame_GPRSAVE(%rsp) |
| mov %r12, frame_GPRSAVE +8*1(%rsp) |
| mov %r13, frame_GPRSAVE +8*2(%rsp) |
| mov %r14, frame_GPRSAVE +8*3(%rsp) |
| mov %r15, frame_GPRSAVE +8*4(%rsp) |
| |
| updateblock: |
| |
| # Load state variables |
| mov DIGEST(0), a_64 |
| mov DIGEST(1), b_64 |
| mov DIGEST(2), c_64 |
| mov DIGEST(3), d_64 |
| mov DIGEST(4), e_64 |
| mov DIGEST(5), f_64 |
| mov DIGEST(6), g_64 |
| mov DIGEST(7), h_64 |
| |
| t = 0 |
| .rept 80/2 + 1 |
| # (80 rounds) / (2 rounds/iteration) + (1 iteration) |
| # +1 iteration because the scheduler leads hashing by 1 iteration |
| .if t < 2 |
| # BSWAP 2 QWORDS |
| movdqa XMM_QWORD_BSWAP(%rip), %xmm1 |
| movdqu MSG(t), %xmm0 |
| pshufb %xmm1, %xmm0 # BSWAP |
| movdqa %xmm0, W_t(t) # Store Scheduled Pair |
| paddq K_t(t), %xmm0 # Compute W[t]+K[t] |
| movdqa %xmm0, WK_2(t) # Store into WK for rounds |
| .elseif t < 16 |
| # BSWAP 2 QWORDS# Compute 2 Rounds |
| movdqu MSG(t), %xmm0 |
| pshufb %xmm1, %xmm0 # BSWAP |
| SHA512_Round t-2 # Round t-2 |
| movdqa %xmm0, W_t(t) # Store Scheduled Pair |
| paddq K_t(t), %xmm0 # Compute W[t]+K[t] |
| SHA512_Round t-1 # Round t-1 |
| movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK |
| .elseif t < 79 |
| # Schedule 2 QWORDS# Compute 2 Rounds |
| SHA512_2Sched_2Round_sse t |
| .else |
| # Compute 2 Rounds |
| SHA512_Round t-2 |
| SHA512_Round t-1 |
| .endif |
| t = t+2 |
| .endr |
| |
| # Update digest |
| add a_64, DIGEST(0) |
| add b_64, DIGEST(1) |
| add c_64, DIGEST(2) |
| add d_64, DIGEST(3) |
| add e_64, DIGEST(4) |
| add f_64, DIGEST(5) |
| add g_64, DIGEST(6) |
| add h_64, DIGEST(7) |
| |
| # Advance to next message block |
| add $16*8, msg |
| dec msglen |
| jnz updateblock |
| |
| # Restore GPRs |
| mov frame_GPRSAVE(%rsp), %rbx |
| mov frame_GPRSAVE +8*1(%rsp), %r12 |
| mov frame_GPRSAVE +8*2(%rsp), %r13 |
| mov frame_GPRSAVE +8*3(%rsp), %r14 |
| mov frame_GPRSAVE +8*4(%rsp), %r15 |
| |
| # Restore Stack Pointer |
| mov frame_RSPSAVE(%rsp), %rsp |
| |
| nowork: |
| ret |
| SYM_FUNC_END(sha512_transform_ssse3) |
| |
| ######################################################################## |
| ### Binary Data |
| |
| .section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16 |
| .align 16 |
| # Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. |
| XMM_QWORD_BSWAP: |
| .octa 0x08090a0b0c0d0e0f0001020304050607 |
| |
| # Mergeable 640-byte rodata section. This allows linker to merge the table |
| # with other, exactly the same 640-byte fragment of another rodata section |
| # (if such section exists). |
| .section .rodata.cst640.K512, "aM", @progbits, 640 |
| .align 64 |
| # K[t] used in SHA512 hashing |
| K512: |
| .quad 0x428a2f98d728ae22,0x7137449123ef65cd |
| .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc |
| .quad 0x3956c25bf348b538,0x59f111f1b605d019 |
| .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118 |
| .quad 0xd807aa98a3030242,0x12835b0145706fbe |
| .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2 |
| .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1 |
| .quad 0x9bdc06a725c71235,0xc19bf174cf692694 |
| .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3 |
| .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65 |
| .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483 |
| .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5 |
| .quad 0x983e5152ee66dfab,0xa831c66d2db43210 |
| .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4 |
| .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725 |
| .quad 0x06ca6351e003826f,0x142929670a0e6e70 |
| .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926 |
| .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df |
| .quad 0x650a73548baf63de,0x766a0abb3c77b2a8 |
| .quad 0x81c2c92e47edaee6,0x92722c851482353b |
| .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001 |
| .quad 0xc24b8b70d0f89791,0xc76c51a30654be30 |
| .quad 0xd192e819d6ef5218,0xd69906245565a910 |
| .quad 0xf40e35855771202a,0x106aa07032bbd1b8 |
| .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53 |
| .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8 |
| .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb |
| .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3 |
| .quad 0x748f82ee5defb2fc,0x78a5636f43172f60 |
| .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec |
| .quad 0x90befffa23631e28,0xa4506cebde82bde9 |
| .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b |
| .quad 0xca273eceea26619c,0xd186b8c721c0c207 |
| .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178 |
| .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6 |
| .quad 0x113f9804bef90dae,0x1b710b35131c471b |
| .quad 0x28db77f523047d84,0x32caab7b40c72493 |
| .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c |
| .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a |
| .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817 |