blob: 4c6e57f9976defe00390e58119593d1403bf011b [file] [log] [blame]
/*-
* Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
* Copyright (c) 2004-2005 Atheros Communications, Inc.
* Copyright (c) 2006 Devicescape Software, Inc.
* Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
* Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/hardirq.h>
#include <linux/if.h>
#include <linux/io.h>
#include <linux/netdevice.h>
#include <linux/cache.h>
#include <linux/ethtool.h>
#include <linux/uaccess.h>
#include <linux/slab.h>
#include <linux/etherdevice.h>
#include <linux/nl80211.h>
#include <net/cfg80211.h>
#include <net/ieee80211_radiotap.h>
#include <asm/unaligned.h>
#include <net/mac80211.h>
#include "base.h"
#include "reg.h"
#include "debug.h"
#include "ani.h"
#include "ath5k.h"
#include "../regd.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
bool ath5k_modparam_nohwcrypt;
module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
static bool modparam_fastchanswitch;
module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
static bool ath5k_modparam_no_hw_rfkill_switch;
module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
bool, 0444);
MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
/* Module info */
MODULE_AUTHOR("Jiri Slaby");
MODULE_AUTHOR("Nick Kossifidis");
MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
MODULE_LICENSE("Dual BSD/GPL");
static int ath5k_init(struct ieee80211_hw *hw);
static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
bool skip_pcu);
/* Known SREVs */
static const struct ath5k_srev_name srev_names[] = {
#ifdef CONFIG_ATH5K_AHB
{ "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
{ "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
{ "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
{ "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
{ "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
{ "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
{ "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
#else
{ "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
{ "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
{ "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
{ "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
{ "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
{ "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
{ "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
{ "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
{ "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
{ "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
{ "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
{ "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
{ "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
{ "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
{ "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
{ "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
{ "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
{ "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
#endif
{ "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
{ "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
{ "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
{ "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
{ "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
{ "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
{ "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
{ "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
{ "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
{ "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
{ "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
{ "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
{ "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
{ "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
{ "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
#ifdef CONFIG_ATH5K_AHB
{ "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
{ "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
#endif
{ "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
};
static const struct ieee80211_rate ath5k_rates[] = {
{ .bitrate = 10,
.hw_value = ATH5K_RATE_CODE_1M, },
{ .bitrate = 20,
.hw_value = ATH5K_RATE_CODE_2M,
.hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 55,
.hw_value = ATH5K_RATE_CODE_5_5M,
.hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 110,
.hw_value = ATH5K_RATE_CODE_11M,
.hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
.flags = IEEE80211_RATE_SHORT_PREAMBLE },
{ .bitrate = 60,
.hw_value = ATH5K_RATE_CODE_6M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 90,
.hw_value = ATH5K_RATE_CODE_9M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 120,
.hw_value = ATH5K_RATE_CODE_12M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 180,
.hw_value = ATH5K_RATE_CODE_18M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 240,
.hw_value = ATH5K_RATE_CODE_24M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 360,
.hw_value = ATH5K_RATE_CODE_36M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 480,
.hw_value = ATH5K_RATE_CODE_48M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
{ .bitrate = 540,
.hw_value = ATH5K_RATE_CODE_54M,
.flags = IEEE80211_RATE_SUPPORTS_5MHZ |
IEEE80211_RATE_SUPPORTS_10MHZ },
};
static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
{
u64 tsf = ath5k_hw_get_tsf64(ah);
if ((tsf & 0x7fff) < rstamp)
tsf -= 0x8000;
return (tsf & ~0x7fff) | rstamp;
}
const char *
ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
{
const char *name = "xxxxx";
unsigned int i;
for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
if (srev_names[i].sr_type != type)
continue;
if ((val & 0xf0) == srev_names[i].sr_val)
name = srev_names[i].sr_name;
if ((val & 0xff) == srev_names[i].sr_val) {
name = srev_names[i].sr_name;
break;
}
}
return name;
}
static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
{
struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
return ath5k_hw_reg_read(ah, reg_offset);
}
static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
{
struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
ath5k_hw_reg_write(ah, val, reg_offset);
}
static const struct ath_ops ath5k_common_ops = {
.read = ath5k_ioread32,
.write = ath5k_iowrite32,
};
/***********************\
* Driver Initialization *
\***********************/
static void ath5k_reg_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct ath5k_hw *ah = hw->priv;
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
ath_reg_notifier_apply(wiphy, request, regulatory);
}
/********************\
* Channel/mode setup *
\********************/
/*
* Returns true for the channel numbers used.
*/
#ifdef CONFIG_ATH5K_TEST_CHANNELS
static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
{
return true;
}
#else
static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
{
if (band == NL80211_BAND_2GHZ && chan <= 14)
return true;
return /* UNII 1,2 */
(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
/* midband */
((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
/* UNII-3 */
((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
/* 802.11j 5.030-5.080 GHz (20MHz) */
(chan == 8 || chan == 12 || chan == 16) ||
/* 802.11j 4.9GHz (20MHz) */
(chan == 184 || chan == 188 || chan == 192 || chan == 196));
}
#endif
static unsigned int
ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
unsigned int mode, unsigned int max)
{
unsigned int count, size, freq, ch;
enum nl80211_band band;
switch (mode) {
case AR5K_MODE_11A:
/* 1..220, but 2GHz frequencies are filtered by check_channel */
size = 220;
band = NL80211_BAND_5GHZ;
break;
case AR5K_MODE_11B:
case AR5K_MODE_11G:
size = 26;
band = NL80211_BAND_2GHZ;
break;
default:
ATH5K_WARN(ah, "bad mode, not copying channels\n");
return 0;
}
count = 0;
for (ch = 1; ch <= size && count < max; ch++) {
freq = ieee80211_channel_to_frequency(ch, band);
if (freq == 0) /* mapping failed - not a standard channel */
continue;
/* Write channel info, needed for ath5k_channel_ok() */
channels[count].center_freq = freq;
channels[count].band = band;
channels[count].hw_value = mode;
/* Check if channel is supported by the chipset */
if (!ath5k_channel_ok(ah, &channels[count]))
continue;
if (!ath5k_is_standard_channel(ch, band))
continue;
count++;
}
return count;
}
static void
ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
{
u8 i;
for (i = 0; i < AR5K_MAX_RATES; i++)
ah->rate_idx[b->band][i] = -1;
for (i = 0; i < b->n_bitrates; i++) {
ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
if (b->bitrates[i].hw_value_short)
ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
}
}
static int
ath5k_setup_bands(struct ieee80211_hw *hw)
{
struct ath5k_hw *ah = hw->priv;
struct ieee80211_supported_band *sband;
int max_c, count_c = 0;
int i;
BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
max_c = ARRAY_SIZE(ah->channels);
/* 2GHz band */
sband = &ah->sbands[NL80211_BAND_2GHZ];
sband->band = NL80211_BAND_2GHZ;
sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
/* G mode */
memcpy(sband->bitrates, &ath5k_rates[0],
sizeof(struct ieee80211_rate) * 12);
sband->n_bitrates = 12;
sband->channels = ah->channels;
sband->n_channels = ath5k_setup_channels(ah, sband->channels,
AR5K_MODE_11G, max_c);
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
count_c = sband->n_channels;
max_c -= count_c;
} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
/* B mode */
memcpy(sband->bitrates, &ath5k_rates[0],
sizeof(struct ieee80211_rate) * 4);
sband->n_bitrates = 4;
/* 5211 only supports B rates and uses 4bit rate codes
* (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
* fix them up here:
*/
if (ah->ah_version == AR5K_AR5211) {
for (i = 0; i < 4; i++) {
sband->bitrates[i].hw_value =
sband->bitrates[i].hw_value & 0xF;
sband->bitrates[i].hw_value_short =
sband->bitrates[i].hw_value_short & 0xF;
}
}
sband->channels = ah->channels;
sband->n_channels = ath5k_setup_channels(ah, sband->channels,
AR5K_MODE_11B, max_c);
hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
count_c = sband->n_channels;
max_c -= count_c;
}
ath5k_setup_rate_idx(ah, sband);
/* 5GHz band, A mode */
if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
sband = &ah->sbands[NL80211_BAND_5GHZ];
sband->band = NL80211_BAND_5GHZ;
sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
memcpy(sband->bitrates, &ath5k_rates[4],
sizeof(struct ieee80211_rate) * 8);
sband->n_bitrates = 8;
sband->channels = &ah->channels[count_c];
sband->n_channels = ath5k_setup_channels(ah, sband->channels,
AR5K_MODE_11A, max_c);
hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
}
ath5k_setup_rate_idx(ah, sband);
ath5k_debug_dump_bands(ah);
return 0;
}
/*
* Set/change channels. We always reset the chip.
* To accomplish this we must first cleanup any pending DMA,
* then restart stuff after a la ath5k_init.
*
* Called with ah->lock.
*/
int
ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
{
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"channel set, resetting (%u -> %u MHz)\n",
ah->curchan->center_freq, chandef->chan->center_freq);
switch (chandef->width) {
case NL80211_CHAN_WIDTH_20:
case NL80211_CHAN_WIDTH_20_NOHT:
ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
break;
case NL80211_CHAN_WIDTH_5:
ah->ah_bwmode = AR5K_BWMODE_5MHZ;
break;
case NL80211_CHAN_WIDTH_10:
ah->ah_bwmode = AR5K_BWMODE_10MHZ;
break;
default:
WARN_ON(1);
return -EINVAL;
}
/*
* To switch channels clear any pending DMA operations;
* wait long enough for the RX fifo to drain, reset the
* hardware at the new frequency, and then re-enable
* the relevant bits of the h/w.
*/
return ath5k_reset(ah, chandef->chan, true);
}
void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
{
struct ath5k_vif_iter_data *iter_data = data;
int i;
struct ath5k_vif *avf = (void *)vif->drv_priv;
if (iter_data->hw_macaddr)
for (i = 0; i < ETH_ALEN; i++)
iter_data->mask[i] &=
~(iter_data->hw_macaddr[i] ^ mac[i]);
if (!iter_data->found_active) {
iter_data->found_active = true;
memcpy(iter_data->active_mac, mac, ETH_ALEN);
}
if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
if (ether_addr_equal(iter_data->hw_macaddr, mac))
iter_data->need_set_hw_addr = false;
if (!iter_data->any_assoc) {
if (avf->assoc)
iter_data->any_assoc = true;
}
/* Calculate combined mode - when APs are active, operate in AP mode.
* Otherwise use the mode of the new interface. This can currently
* only deal with combinations of APs and STAs. Only one ad-hoc
* interfaces is allowed.
*/
if (avf->opmode == NL80211_IFTYPE_AP)
iter_data->opmode = NL80211_IFTYPE_AP;
else {
if (avf->opmode == NL80211_IFTYPE_STATION)
iter_data->n_stas++;
if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
iter_data->opmode = avf->opmode;
}
}
void
ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
struct ieee80211_vif *vif)
{
struct ath_common *common = ath5k_hw_common(ah);
struct ath5k_vif_iter_data iter_data;
u32 rfilt;
/*
* Use the hardware MAC address as reference, the hardware uses it
* together with the BSSID mask when matching addresses.
*/
iter_data.hw_macaddr = common->macaddr;
eth_broadcast_addr(iter_data.mask);
iter_data.found_active = false;
iter_data.need_set_hw_addr = true;
iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
iter_data.n_stas = 0;
if (vif)
ath5k_vif_iter(&iter_data, vif->addr, vif);
/* Get list of all active MAC addresses */
ieee80211_iterate_active_interfaces_atomic(
ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
ath5k_vif_iter, &iter_data);
memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
ah->opmode = iter_data.opmode;
if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
/* Nothing active, default to station mode */
ah->opmode = NL80211_IFTYPE_STATION;
ath5k_hw_set_opmode(ah, ah->opmode);
ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
ah->opmode, ath_opmode_to_string(ah->opmode));
if (iter_data.need_set_hw_addr && iter_data.found_active)
ath5k_hw_set_lladdr(ah, iter_data.active_mac);
if (ath5k_hw_hasbssidmask(ah))
ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
/* Set up RX Filter */
if (iter_data.n_stas > 1) {
/* If you have multiple STA interfaces connected to
* different APs, ARPs are not received (most of the time?)
* Enabling PROMISC appears to fix that problem.
*/
ah->filter_flags |= AR5K_RX_FILTER_PROM;
}
rfilt = ah->filter_flags;
ath5k_hw_set_rx_filter(ah, rfilt);
ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
}
static inline int
ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
{
int rix;
/* return base rate on errors */
if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
"hw_rix out of bounds: %x\n", hw_rix))
return 0;
rix = ah->rate_idx[ah->curchan->band][hw_rix];
if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
rix = 0;
return rix;
}
/***************\
* Buffers setup *
\***************/
static
struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
{
struct ath_common *common = ath5k_hw_common(ah);
struct sk_buff *skb;
/*
* Allocate buffer with headroom_needed space for the
* fake physical layer header at the start.
*/
skb = ath_rxbuf_alloc(common,
common->rx_bufsize,
GFP_ATOMIC);
if (!skb) {
ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
common->rx_bufsize);
return NULL;
}
*skb_addr = dma_map_single(ah->dev,
skb->data, common->rx_bufsize,
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
dev_kfree_skb(skb);
return NULL;
}
return skb;
}
static int
ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
{
struct sk_buff *skb = bf->skb;
struct ath5k_desc *ds;
int ret;
if (!skb) {
skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
if (!skb)
return -ENOMEM;
bf->skb = skb;
}
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY error frames).
*
* To ensure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is "fixed" naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This ensures the hardware always has
* someplace to write a new frame.
*/
ds = bf->desc;
ds->ds_link = bf->daddr; /* link to self */
ds->ds_data = bf->skbaddr;
ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
if (ret) {
ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
return ret;
}
if (ah->rxlink != NULL)
*ah->rxlink = bf->daddr;
ah->rxlink = &ds->ds_link;
return 0;
}
static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
enum ath5k_pkt_type htype;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_beacon(fc))
htype = AR5K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc))
htype = AR5K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc))
htype = AR5K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc))
htype = AR5K_PKT_TYPE_PSPOLL;
else
htype = AR5K_PKT_TYPE_NORMAL;
return htype;
}
static struct ieee80211_rate *
ath5k_get_rate(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *info,
struct ath5k_buf *bf, int idx)
{
/*
* convert a ieee80211_tx_rate RC-table entry to
* the respective ieee80211_rate struct
*/
if (bf->rates[idx].idx < 0) {
return NULL;
}
return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
}
static u16
ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
const struct ieee80211_tx_info *info,
struct ath5k_buf *bf, int idx)
{
struct ieee80211_rate *rate;
u16 hw_rate;
u8 rc_flags;
rate = ath5k_get_rate(hw, info, bf, idx);
if (!rate)
return 0;
rc_flags = bf->rates[idx].flags;
hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
rate->hw_value_short : rate->hw_value;
return hw_rate;
}
static int
ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
struct ath5k_txq *txq, int padsize,
struct ieee80211_tx_control *control)
{
struct ath5k_desc *ds = bf->desc;
struct sk_buff *skb = bf->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
struct ieee80211_rate *rate;
unsigned int mrr_rate[3], mrr_tries[3];
int i, ret;
u16 hw_rate;
u16 cts_rate = 0;
u16 duration = 0;
u8 rc_flags;
flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
/* XXX endianness */
bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(ah->dev, bf->skbaddr))
return -ENOSPC;
ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
ARRAY_SIZE(bf->rates));
rate = ath5k_get_rate(ah->hw, info, bf, 0);
if (!rate) {
ret = -EINVAL;
goto err_unmap;
}
if (info->flags & IEEE80211_TX_CTL_NO_ACK)
flags |= AR5K_TXDESC_NOACK;
rc_flags = bf->rates[0].flags;
hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
pktlen = skb->len;
/* FIXME: If we are in g mode and rate is a CCK rate
* subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
* from tx power (value is in dB units already) */
if (info->control.hw_key) {
keyidx = info->control.hw_key->hw_key_idx;
pktlen += info->control.hw_key->icv_len;
}
if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
flags |= AR5K_TXDESC_RTSENA;
cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
info->control.vif, pktlen, info));
}
if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
flags |= AR5K_TXDESC_CTSENA;
cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
info->control.vif, pktlen, info));
}
ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
ieee80211_get_hdrlen_from_skb(skb), padsize,
get_hw_packet_type(skb),
(ah->ah_txpower.txp_requested * 2),
hw_rate,
bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
cts_rate, duration);
if (ret)
goto err_unmap;
/* Set up MRR descriptor */
if (ah->ah_capabilities.cap_has_mrr_support) {
memset(mrr_rate, 0, sizeof(mrr_rate));
memset(mrr_tries, 0, sizeof(mrr_tries));
for (i = 0; i < 3; i++) {
rate = ath5k_get_rate(ah->hw, info, bf, i);
if (!rate)
break;
mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
mrr_tries[i] = bf->rates[i].count;
}
ath5k_hw_setup_mrr_tx_desc(ah, ds,
mrr_rate[0], mrr_tries[0],
mrr_rate[1], mrr_tries[1],
mrr_rate[2], mrr_tries[2]);
}
ds->ds_link = 0;
ds->ds_data = bf->skbaddr;
spin_lock_bh(&txq->lock);
list_add_tail(&bf->list, &txq->q);
txq->txq_len++;
if (txq->link == NULL) /* is this first packet? */
ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
else /* no, so only link it */
*txq->link = bf->daddr;
txq->link = &ds->ds_link;
ath5k_hw_start_tx_dma(ah, txq->qnum);
spin_unlock_bh(&txq->lock);
return 0;
err_unmap:
dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
return ret;
}
/*******************\
* Descriptors setup *
\*******************/
static int
ath5k_desc_alloc(struct ath5k_hw *ah)
{
struct ath5k_desc *ds;
struct ath5k_buf *bf;
dma_addr_t da;
unsigned int i;
int ret;
/* allocate descriptors */
ah->desc_len = sizeof(struct ath5k_desc) *
(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
&ah->desc_daddr, GFP_KERNEL);
if (ah->desc == NULL) {
ATH5K_ERR(ah, "can't allocate descriptors\n");
ret = -ENOMEM;
goto err;
}
ds = ah->desc;
da = ah->desc_daddr;
ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
sizeof(struct ath5k_buf), GFP_KERNEL);
if (bf == NULL) {
ATH5K_ERR(ah, "can't allocate bufptr\n");
ret = -ENOMEM;
goto err_free;
}
ah->bufptr = bf;
INIT_LIST_HEAD(&ah->rxbuf);
for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
bf->desc = ds;
bf->daddr = da;
list_add_tail(&bf->list, &ah->rxbuf);
}
INIT_LIST_HEAD(&ah->txbuf);
ah->txbuf_len = ATH_TXBUF;
for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
bf->desc = ds;
bf->daddr = da;
list_add_tail(&bf->list, &ah->txbuf);
}
/* beacon buffers */
INIT_LIST_HEAD(&ah->bcbuf);
for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
bf->desc = ds;
bf->daddr = da;
list_add_tail(&bf->list, &ah->bcbuf);
}
return 0;
err_free:
dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
err:
ah->desc = NULL;
return ret;
}
void
ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
{
BUG_ON(!bf);
if (!bf->skb)
return;
dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
DMA_TO_DEVICE);
ieee80211_free_txskb(ah->hw, bf->skb);
bf->skb = NULL;
bf->skbaddr = 0;
bf->desc->ds_data = 0;
}
void
ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
{
struct ath_common *common = ath5k_hw_common(ah);
BUG_ON(!bf);
if (!bf->skb)
return;
dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
DMA_FROM_DEVICE);
dev_kfree_skb_any(bf->skb);
bf->skb = NULL;
bf->skbaddr = 0;
bf->desc->ds_data = 0;
}
static void
ath5k_desc_free(struct ath5k_hw *ah)
{
struct ath5k_buf *bf;
list_for_each_entry(bf, &ah->txbuf, list)
ath5k_txbuf_free_skb(ah, bf);
list_for_each_entry(bf, &ah->rxbuf, list)
ath5k_rxbuf_free_skb(ah, bf);
list_for_each_entry(bf, &ah->bcbuf, list)
ath5k_txbuf_free_skb(ah, bf);
/* Free memory associated with all descriptors */
dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
ah->desc = NULL;
ah->desc_daddr = 0;
kfree(ah->bufptr);
ah->bufptr = NULL;
}
/**************\
* Queues setup *
\**************/
static struct ath5k_txq *
ath5k_txq_setup(struct ath5k_hw *ah,
int qtype, int subtype)
{
struct ath5k_txq *txq;
struct ath5k_txq_info qi = {
.tqi_subtype = subtype,
/* XXX: default values not correct for B and XR channels,
* but who cares? */
.tqi_aifs = AR5K_TUNE_AIFS,
.tqi_cw_min = AR5K_TUNE_CWMIN,
.tqi_cw_max = AR5K_TUNE_CWMAX
};
int qnum;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise we wait for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*/
qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
if (qnum < 0) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return ERR_PTR(qnum);
}
txq = &ah->txqs[qnum];
if (!txq->setup) {
txq->qnum = qnum;
txq->link = NULL;
INIT_LIST_HEAD(&txq->q);
spin_lock_init(&txq->lock);
txq->setup = true;
txq->txq_len = 0;
txq->txq_max = ATH5K_TXQ_LEN_MAX;
txq->txq_poll_mark = false;
txq->txq_stuck = 0;
}
return &ah->txqs[qnum];
}
static int
ath5k_beaconq_setup(struct ath5k_hw *ah)
{
struct ath5k_txq_info qi = {
/* XXX: default values not correct for B and XR channels,
* but who cares? */
.tqi_aifs = AR5K_TUNE_AIFS,
.tqi_cw_min = AR5K_TUNE_CWMIN,
.tqi_cw_max = AR5K_TUNE_CWMAX,
/* NB: for dynamic turbo, don't enable any other interrupts */
.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
};
return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
}
static int
ath5k_beaconq_config(struct ath5k_hw *ah)
{
struct ath5k_txq_info qi;
int ret;
ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
if (ret)
goto err;
if (ah->opmode == NL80211_IFTYPE_AP ||
ah->opmode == NL80211_IFTYPE_MESH_POINT) {
/*
* Always burst out beacon and CAB traffic
* (aifs = cwmin = cwmax = 0)
*/
qi.tqi_aifs = 0;
qi.tqi_cw_min = 0;
qi.tqi_cw_max = 0;
} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
/*
* Adhoc mode; backoff between 0 and (2 * cw_min).
*/
qi.tqi_aifs = 0;
qi.tqi_cw_min = 0;
qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
}
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
if (ret) {
ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
"hardware queue!\n", __func__);
goto err;
}
ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
if (ret)
goto err;
/* reconfigure cabq with ready time to 80% of beacon_interval */
ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
if (ret)
goto err;
qi.tqi_ready_time = (ah->bintval * 80) / 100;
ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
if (ret)
goto err;
ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
err:
return ret;
}
/**
* ath5k_drain_tx_buffs - Empty tx buffers
*
* @ah: The &struct ath5k_hw
*
* Empty tx buffers from all queues in preparation
* of a reset or during shutdown.
*
* NB: this assumes output has been stopped and
* we do not need to block ath5k_tx_tasklet
*/
static void
ath5k_drain_tx_buffs(struct ath5k_hw *ah)
{
struct ath5k_txq *txq;
struct ath5k_buf *bf, *bf0;
int i;
for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
if (ah->txqs[i].setup) {
txq = &ah->txqs[i];
spin_lock_bh(&txq->lock);
list_for_each_entry_safe(bf, bf0, &txq->q, list) {
ath5k_debug_printtxbuf(ah, bf);
ath5k_txbuf_free_skb(ah, bf);
spin_lock(&ah->txbuflock);
list_move_tail(&bf->list, &ah->txbuf);
ah->txbuf_len++;
txq->txq_len--;
spin_unlock(&ah->txbuflock);
}
txq->link = NULL;
txq->txq_poll_mark = false;
spin_unlock_bh(&txq->lock);
}
}
}
static void
ath5k_txq_release(struct ath5k_hw *ah)
{
struct ath5k_txq *txq = ah->txqs;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
if (txq->setup) {
ath5k_hw_release_tx_queue(ah, txq->qnum);
txq->setup = false;
}
}
/*************\
* RX Handling *
\*************/
/*
* Enable the receive h/w following a reset.
*/
static int
ath5k_rx_start(struct ath5k_hw *ah)
{
struct ath_common *common = ath5k_hw_common(ah);
struct ath5k_buf *bf;
int ret;
common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
common->cachelsz, common->rx_bufsize);
spin_lock_bh(&ah->rxbuflock);
ah->rxlink = NULL;
list_for_each_entry(bf, &ah->rxbuf, list) {
ret = ath5k_rxbuf_setup(ah, bf);
if (ret != 0) {
spin_unlock_bh(&ah->rxbuflock);
goto err;
}
}
bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
ath5k_hw_set_rxdp(ah, bf->daddr);
spin_unlock_bh(&ah->rxbuflock);
ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
return 0;
err:
return ret;
}
/*
* Disable the receive logic on PCU (DRU)
* In preparation for a shutdown.
*
* Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
* does.
*/
static void
ath5k_rx_stop(struct ath5k_hw *ah)
{
ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
ath5k_debug_printrxbuffs(ah);
}
static unsigned int
ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
struct ath5k_rx_status *rs)
{
struct ath_common *common = ath5k_hw_common(ah);
struct ieee80211_hdr *hdr = (void *)skb->data;
unsigned int keyix, hlen;
if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
rs->rs_keyix != AR5K_RXKEYIX_INVALID)
return RX_FLAG_DECRYPTED;
/* Apparently when a default key is used to decrypt the packet
the hw does not set the index used to decrypt. In such cases
get the index from the packet. */
hlen = ieee80211_hdrlen(hdr->frame_control);
if (ieee80211_has_protected(hdr->frame_control) &&
!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
skb->len >= hlen + 4) {
keyix = skb->data[hlen + 3] >> 6;
if (test_bit(keyix, common->keymap))
return RX_FLAG_DECRYPTED;
}
return 0;
}
static void
ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
struct ieee80211_rx_status *rxs)
{
u64 tsf, bc_tstamp;
u32 hw_tu;
struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
/*
* Received an IBSS beacon with the same BSSID. Hardware *must*
* have updated the local TSF. We have to work around various
* hardware bugs, though...
*/
tsf = ath5k_hw_get_tsf64(ah);
bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
hw_tu = TSF_TO_TU(tsf);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
(unsigned long long)bc_tstamp,
(unsigned long long)rxs->mactime,
(unsigned long long)(rxs->mactime - bc_tstamp),
(unsigned long long)tsf);
/*
* Sometimes the HW will give us a wrong tstamp in the rx
* status, causing the timestamp extension to go wrong.
* (This seems to happen especially with beacon frames bigger
* than 78 byte (incl. FCS))
* But we know that the receive timestamp must be later than the
* timestamp of the beacon since HW must have synced to that.
*
* NOTE: here we assume mactime to be after the frame was
* received, not like mac80211 which defines it at the start.
*/
if (bc_tstamp > rxs->mactime) {
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"fixing mactime from %llx to %llx\n",
(unsigned long long)rxs->mactime,
(unsigned long long)tsf);
rxs->mactime = tsf;
}
/*
* Local TSF might have moved higher than our beacon timers,
* in that case we have to update them to continue sending
* beacons. This also takes care of synchronizing beacon sending
* times with other stations.
*/
if (hw_tu >= ah->nexttbtt)
ath5k_beacon_update_timers(ah, bc_tstamp);
/* Check if the beacon timers are still correct, because a TSF
* update might have created a window between them - for a
* longer description see the comment of this function: */
if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
ath5k_beacon_update_timers(ah, bc_tstamp);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"fixed beacon timers after beacon receive\n");
}
}
}
/*
* Compute padding position. skb must contain an IEEE 802.11 frame
*/
static int ath5k_common_padpos(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
__le16 frame_control = hdr->frame_control;
int padpos = 24;
if (ieee80211_has_a4(frame_control))
padpos += ETH_ALEN;
if (ieee80211_is_data_qos(frame_control))
padpos += IEEE80211_QOS_CTL_LEN;
return padpos;
}
/*
* This function expects an 802.11 frame and returns the number of
* bytes added, or -1 if we don't have enough header room.
*/
static int ath5k_add_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
int padsize = padpos & 3;
if (padsize && skb->len > padpos) {
if (skb_headroom(skb) < padsize)
return -1;
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, padpos);
return padsize;
}
return 0;
}
/*
* The MAC header is padded to have 32-bit boundary if the
* packet payload is non-zero. The general calculation for
* padsize would take into account odd header lengths:
* padsize = 4 - (hdrlen & 3); however, since only
* even-length headers are used, padding can only be 0 or 2
* bytes and we can optimize this a bit. We must not try to
* remove padding from short control frames that do not have a
* payload.
*
* This function expects an 802.11 frame and returns the number of
* bytes removed.
*/
static int ath5k_remove_padding(struct sk_buff *skb)
{
int padpos = ath5k_common_padpos(skb);
int padsize = padpos & 3;
if (padsize && skb->len >= padpos + padsize) {
memmove(skb->data + padsize, skb->data, padpos);
skb_pull(skb, padsize);
return padsize;
}
return 0;
}
static void
ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
struct ath5k_rx_status *rs)
{
struct ieee80211_rx_status *rxs;
struct ath_common *common = ath5k_hw_common(ah);
ath5k_remove_padding(skb);
rxs = IEEE80211_SKB_RXCB(skb);
rxs->flag = 0;
if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
rxs->flag |= RX_FLAG_MMIC_ERROR;
if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
/*
* always extend the mac timestamp, since this information is
* also needed for proper IBSS merging.
*
* XXX: it might be too late to do it here, since rs_tstamp is
* 15bit only. that means TSF extension has to be done within
* 32768usec (about 32ms). it might be necessary to move this to
* the interrupt handler, like it is done in madwifi.
*/
rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
rxs->flag |= RX_FLAG_MACTIME_END;
rxs->freq = ah->curchan->center_freq;
rxs->band = ah->curchan->band;
rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
rxs->antenna = rs->rs_antenna;
if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
ah->stats.antenna_rx[rs->rs_antenna]++;
else
ah->stats.antenna_rx[0]++; /* invalid */
rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
switch (ah->ah_bwmode) {
case AR5K_BWMODE_5MHZ:
rxs->bw = RATE_INFO_BW_5;
break;
case AR5K_BWMODE_10MHZ:
rxs->bw = RATE_INFO_BW_10;
break;
default:
break;
}
if (rs->rs_rate ==
ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
trace_ath5k_rx(ah, skb);
if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
/* check beacons in IBSS mode */
if (ah->opmode == NL80211_IFTYPE_ADHOC)
ath5k_check_ibss_tsf(ah, skb, rxs);
}
ieee80211_rx(ah->hw, skb);
}
/** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
*
* Check if we want to further process this frame or not. Also update
* statistics. Return true if we want this frame, false if not.
*/
static bool
ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
{
ah->stats.rx_all_count++;
ah->stats.rx_bytes_count += rs->rs_datalen;
if (unlikely(rs->rs_status)) {
unsigned int filters;
if (rs->rs_status & AR5K_RXERR_CRC)
ah->stats.rxerr_crc++;
if (rs->rs_status & AR5K_RXERR_FIFO)
ah->stats.rxerr_fifo++;
if (rs->rs_status & AR5K_RXERR_PHY) {
ah->stats.rxerr_phy++;
if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
/*
* Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
* These restarts happen when the radio resynchronizes to a stronger frame
* while receiving a weaker frame. Here we receive the prefix of the weak
* frame. Since these are incomplete packets, mark their CRC as invalid.
*/
if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
rs->rs_status |= AR5K_RXERR_CRC;
rs->rs_status &= ~AR5K_RXERR_PHY;
} else {
return false;
}
}
if (rs->rs_status & AR5K_RXERR_DECRYPT) {
/*
* Decrypt error. If the error occurred
* because there was no hardware key, then
* let the frame through so the upper layers
* can process it. This is necessary for 5210
* parts which have no way to setup a ``clear''
* key cache entry.
*
* XXX do key cache faulting
*/
ah->stats.rxerr_decrypt++;
if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
!(rs->rs_status & AR5K_RXERR_CRC))
return true;
}
if (rs->rs_status & AR5K_RXERR_MIC) {
ah->stats.rxerr_mic++;
return true;
}
/*
* Reject any frames with non-crypto errors, and take into account the
* current FIF_* filters.
*/
filters = AR5K_RXERR_DECRYPT;
if (ah->fif_filter_flags & FIF_FCSFAIL)
filters |= AR5K_RXERR_CRC;
if (rs->rs_status & ~filters)
return false;
}
if (unlikely(rs->rs_more)) {
ah->stats.rxerr_jumbo++;
return false;
}
return true;
}
static void
ath5k_set_current_imask(struct ath5k_hw *ah)
{
enum ath5k_int imask;
unsigned long flags;
if (test_bit(ATH_STAT_RESET, ah->status))
return;
spin_lock_irqsave(&ah->irqlock, flags);
imask = ah->imask;
if (ah->rx_pending)
imask &= ~AR5K_INT_RX_ALL;
if (ah->tx_pending)
imask &= ~AR5K_INT_TX_ALL;
ath5k_hw_set_imr(ah, imask);
spin_unlock_irqrestore(&ah->irqlock, flags);
}
static void
ath5k_tasklet_rx(struct tasklet_struct *t)
{
struct ath5k_rx_status rs = {};
struct sk_buff *skb, *next_skb;
dma_addr_t next_skb_addr;
struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
struct ath_common *common = ath5k_hw_common(ah);
struct ath5k_buf *bf;
struct ath5k_desc *ds;
int ret;
spin_lock(&ah->rxbuflock);
if (list_empty(&ah->rxbuf)) {
ATH5K_WARN(ah, "empty rx buf pool\n");
goto unlock;
}
do {
bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
BUG_ON(bf->skb == NULL);
skb = bf->skb;
ds = bf->desc;
/* bail if HW is still using self-linked descriptor */
if (ath5k_hw_get_rxdp(ah) == bf->daddr)
break;
ret = ah->ah_proc_rx_desc(ah, ds, &rs);
if (unlikely(ret == -EINPROGRESS))
break;
else if (unlikely(ret)) {
ATH5K_ERR(ah, "error in processing rx descriptor\n");
ah->stats.rxerr_proc++;
break;
}
if (ath5k_receive_frame_ok(ah, &rs)) {
next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
/*
* If we can't replace bf->skb with a new skb under
* memory pressure, just skip this packet
*/
if (!next_skb)
goto next;
dma_unmap_single(ah->dev, bf->skbaddr,
common->rx_bufsize,
DMA_FROM_DEVICE);
skb_put(skb, rs.rs_datalen);
ath5k_receive_frame(ah, skb, &rs);
bf->skb = next_skb;
bf->skbaddr = next_skb_addr;
}
next:
list_move_tail(&bf->list, &ah->rxbuf);
} while (ath5k_rxbuf_setup(ah, bf) == 0);
unlock:
spin_unlock(&ah->rxbuflock);
ah->rx_pending = false;
ath5k_set_current_imask(ah);
}
/*************\
* TX Handling *
\*************/
void
ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
struct ath5k_txq *txq, struct ieee80211_tx_control *control)
{
struct ath5k_hw *ah = hw->priv;
struct ath5k_buf *bf;
unsigned long flags;
int padsize;
trace_ath5k_tx(ah, skb, txq);
/*
* The hardware expects the header padded to 4 byte boundaries.
* If this is not the case, we add the padding after the header.
*/
padsize = ath5k_add_padding(skb);
if (padsize < 0) {
ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
" headroom to pad");
goto drop_packet;
}
if (txq->txq_len >= txq->txq_max &&
txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
ieee80211_stop_queue(hw, txq->qnum);
spin_lock_irqsave(&ah->txbuflock, flags);
if (list_empty(&ah->txbuf)) {
ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
spin_unlock_irqrestore(&ah->txbuflock, flags);
ieee80211_stop_queues(hw);
goto drop_packet;
}
bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
list_del(&bf->list);
ah->txbuf_len--;
if (list_empty(&ah->txbuf))
ieee80211_stop_queues(hw);
spin_unlock_irqrestore(&ah->txbuflock, flags);
bf->skb = skb;
if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
bf->skb = NULL;
spin_lock_irqsave(&ah->txbuflock, flags);
list_add_tail(&bf->list, &ah->txbuf);
ah->txbuf_len++;
spin_unlock_irqrestore(&ah->txbuflock, flags);
goto drop_packet;
}
return;
drop_packet:
ieee80211_free_txskb(hw, skb);
}
static void
ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
struct ath5k_txq *txq, struct ath5k_tx_status *ts,
struct ath5k_buf *bf)
{
struct ieee80211_tx_info *info;
u8 tries[3];
int i;
int size = 0;
ah->stats.tx_all_count++;
ah->stats.tx_bytes_count += skb->len;
info = IEEE80211_SKB_CB(skb);
size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
memcpy(info->status.rates, bf->rates, size);
tries[0] = info->status.rates[0].count;
tries[1] = info->status.rates[1].count;
tries[2] = info->status.rates[2].count;
ieee80211_tx_info_clear_status(info);
for (i = 0; i < ts->ts_final_idx; i++) {
struct ieee80211_tx_rate *r =
&info->status.rates[i];
r->count = tries[i];
}
info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
info->status.rates[ts->ts_final_idx + 1].idx = -1;
if (unlikely(ts->ts_status)) {
ah->stats.ack_fail++;
if (ts->ts_status & AR5K_TXERR_FILT) {
info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
ah->stats.txerr_filt++;
}
if (ts->ts_status & AR5K_TXERR_XRETRY)
ah->stats.txerr_retry++;
if (ts->ts_status & AR5K_TXERR_FIFO)
ah->stats.txerr_fifo++;
} else {
info->flags |= IEEE80211_TX_STAT_ACK;
info->status.ack_signal = ts->ts_rssi;
/* count the successful attempt as well */
info->status.rates[ts->ts_final_idx].count++;
}
/*
* Remove MAC header padding before giving the frame
* back to mac80211.
*/
ath5k_remove_padding(skb);
if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
ah->stats.antenna_tx[ts->ts_antenna]++;
else
ah->stats.antenna_tx[0]++; /* invalid */
trace_ath5k_tx_complete(ah, skb, txq, ts);
ieee80211_tx_status(ah->hw, skb);
}
static void
ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
{
struct ath5k_tx_status ts = {};
struct ath5k_buf *bf, *bf0;
struct ath5k_desc *ds;
struct sk_buff *skb;
int ret;
spin_lock(&txq->lock);
list_for_each_entry_safe(bf, bf0, &txq->q, list) {
txq->txq_poll_mark = false;
/* skb might already have been processed last time. */
if (bf->skb != NULL) {
ds = bf->desc;
ret = ah->ah_proc_tx_desc(ah, ds, &ts);
if (unlikely(ret == -EINPROGRESS))
break;
else if (unlikely(ret)) {
ATH5K_ERR(ah,
"error %d while processing "
"queue %u\n", ret, txq->qnum);
break;
}
skb = bf->skb;
bf->skb = NULL;
dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
DMA_TO_DEVICE);
ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
}
/*
* It's possible that the hardware can say the buffer is
* completed when it hasn't yet loaded the ds_link from
* host memory and moved on.
* Always keep the last descriptor to avoid HW races...
*/
if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
spin_lock(&ah->txbuflock);
list_move_tail(&bf->list, &ah->txbuf);
ah->txbuf_len++;
txq->txq_len--;
spin_unlock(&ah->txbuflock);
}
}
spin_unlock(&txq->lock);
if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
ieee80211_wake_queue(ah->hw, txq->qnum);
}
static void
ath5k_tasklet_tx(struct tasklet_struct *t)
{
int i;
struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
ath5k_tx_processq(ah, &ah->txqs[i]);
ah->tx_pending = false;
ath5k_set_current_imask(ah);
}
/*****************\
* Beacon handling *
\*****************/
/*
* Setup the beacon frame for transmit.
*/
static int
ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
{
struct sk_buff *skb = bf->skb;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath5k_desc *ds;
int ret = 0;
u8 antenna;
u32 flags;
const int padsize = 0;
bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
DMA_TO_DEVICE);
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
"skbaddr %llx\n", skb, skb->data, skb->len,
(unsigned long long)bf->skbaddr);
if (dma_mapping_error(ah->dev, bf->skbaddr)) {
ATH5K_ERR(ah, "beacon DMA mapping failed\n");
dev_kfree_skb_any(skb);
bf->skb = NULL;
return -EIO;
}
ds = bf->desc;
antenna = ah->ah_tx_ant;
flags = AR5K_TXDESC_NOACK;
if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
ds->ds_link = bf->daddr; /* self-linked */
flags |= AR5K_TXDESC_VEOL;
} else
ds->ds_link = 0;
/*
* If we use multiple antennas on AP and use
* the Sectored AP scenario, switch antenna every
* 4 beacons to make sure everybody hears our AP.
* When a client tries to associate, hw will keep
* track of the tx antenna to be used for this client
* automatically, based on ACKed packets.
*
* Note: AP still listens and transmits RTS on the
* default antenna which is supposed to be an omni.
*
* Note2: On sectored scenarios it's possible to have
* multiple antennas (1 omni -- the default -- and 14
* sectors), so if we choose to actually support this
* mode, we need to allow the user to set how many antennas
* we have and tweak the code below to send beacons
* on all of them.
*/
if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
antenna = ah->bsent & 4 ? 2 : 1;
/* FIXME: If we are in g mode and rate is a CCK rate
* subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
* from tx power (value is in dB units already) */
ds->ds_data = bf->skbaddr;
ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
ieee80211_get_hdrlen_from_skb(skb), padsize,
AR5K_PKT_TYPE_BEACON,
(ah->ah_txpower.txp_requested * 2),
ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1, AR5K_TXKEYIX_INVALID,
antenna, flags, 0, 0);
if (ret)
goto err_unmap;
return 0;
err_unmap:
dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
return ret;
}
/*
* Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
* this is called only once at config_bss time, for AP we do it every
* SWBA interrupt so that the TIM will reflect buffered frames.
*
* Called with the beacon lock.
*/
int
ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
int ret;
struct ath5k_hw *ah = hw->priv;
struct ath5k_vif *avf;
struct sk_buff *skb;
if (WARN_ON(!vif)) {
ret = -EINVAL;
goto out;
}
skb = ieee80211_beacon_get(hw, vif);
if (!skb) {
ret = -ENOMEM;
goto out;
}
avf = (void *)vif->drv_priv;
ath5k_txbuf_free_skb(ah, avf->bbuf);
avf->bbuf->skb = skb;
ret = ath5k_beacon_setup(ah, avf->bbuf);
out:
return ret;
}
/*
* Transmit a beacon frame at SWBA. Dynamic updates to the
* frame contents are done as needed and the slot time is
* also adjusted based on current state.
*
* This is called from software irq context (beacontq tasklets)
* or user context from ath5k_beacon_config.
*/
static void
ath5k_beacon_send(struct ath5k_hw *ah)
{
struct ieee80211_vif *vif;
struct ath5k_vif *avf;
struct ath5k_buf *bf;
struct sk_buff *skb;
int err;
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
/*
* Check if the previous beacon has gone out. If
* not, don't don't try to post another: skip this
* period and wait for the next. Missed beacons
* indicate a problem and should not occur. If we
* miss too many consecutive beacons reset the device.
*/
if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
ah->bmisscount++;
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"missed %u consecutive beacons\n", ah->bmisscount);
if (ah->bmisscount > 10) { /* NB: 10 is a guess */
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"stuck beacon time (%u missed)\n",
ah->bmisscount);
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"stuck beacon, resetting\n");
ieee80211_queue_work(ah->hw, &ah->reset_work);
}
return;
}
if (unlikely(ah->bmisscount != 0)) {
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"resume beacon xmit after %u misses\n",
ah->bmisscount);
ah->bmisscount = 0;
}
if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
ah->num_mesh_vifs > 1) ||
ah->opmode == NL80211_IFTYPE_MESH_POINT) {
u64 tsf = ath5k_hw_get_tsf64(ah);
u32 tsftu = TSF_TO_TU(tsf);
int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
vif = ah->bslot[(slot + 1) % ATH_BCBUF];
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"tsf %llx tsftu %x intval %u slot %u vif %p\n",
(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
} else /* only one interface */
vif = ah->bslot[0];
if (!vif)
return;
avf = (void *)vif->drv_priv;
bf = avf->bbuf;
/*
* Stop any current dma and put the new frame on the queue.
* This should never fail since we check above that no frames
* are still pending on the queue.
*/
if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
/* NB: hw still stops DMA, so proceed */
}
/* refresh the beacon for AP or MESH mode */
if (ah->opmode == NL80211_IFTYPE_AP ||
ah->opmode == NL80211_IFTYPE_MESH_POINT) {
err = ath5k_beacon_update(ah->hw, vif);
if (err)
return;
}
if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
ah->opmode == NL80211_IFTYPE_MONITOR)) {
ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
return;
}
trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
ath5k_hw_start_tx_dma(ah, ah->bhalq);
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
skb = ieee80211_get_buffered_bc(ah->hw, vif);
while (skb) {
ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
if (ah->cabq->txq_len >= ah->cabq->txq_max)
break;
skb = ieee80211_get_buffered_bc(ah->hw, vif);
}
ah->bsent++;
}
/**
* ath5k_beacon_update_timers - update beacon timers
*
* @ah: struct ath5k_hw pointer we are operating on
* @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
* beacon timer update based on the current HW TSF.
*
* Calculate the next target beacon transmit time (TBTT) based on the timestamp
* of a received beacon or the current local hardware TSF and write it to the
* beacon timer registers.
*
* This is called in a variety of situations, e.g. when a beacon is received,
* when a TSF update has been detected, but also when an new IBSS is created or
* when we otherwise know we have to update the timers, but we keep it in this
* function to have it all together in one place.
*/
void
ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
{
u32 nexttbtt, intval, hw_tu, bc_tu;
u64 hw_tsf;
intval = ah->bintval & AR5K_BEACON_PERIOD;
if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
+ ah->num_mesh_vifs > 1) {
intval /= ATH_BCBUF; /* staggered multi-bss beacons */
if (intval < 15)
ATH5K_WARN(ah, "intval %u is too low, min 15\n",
intval);
}
if (WARN_ON(!intval))
return;
/* beacon TSF converted to TU */
bc_tu = TSF_TO_TU(bc_tsf);
/* current TSF converted to TU */
hw_tsf = ath5k_hw_get_tsf64(ah);
hw_tu = TSF_TO_TU(hw_tsf);
#define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
* Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
* configuration we need to make sure it is bigger than that. */
if (bc_tsf == -1) {
/*
* no beacons received, called internally.
* just need to refresh timers based on HW TSF.
*/
nexttbtt = roundup(hw_tu + FUDGE, intval);
} else if (bc_tsf == 0) {
/*
* no beacon received, probably called by ath5k_reset_tsf().
* reset TSF to start with 0.
*/
nexttbtt = intval;
intval |= AR5K_BEACON_RESET_TSF;
} else if (bc_tsf > hw_tsf) {
/*
* beacon received, SW merge happened but HW TSF not yet updated.
* not possible to reconfigure timers yet, but next time we
* receive a beacon with the same BSSID, the hardware will
* automatically update the TSF and then we need to reconfigure
* the timers.
*/
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"need to wait for HW TSF sync\n");
return;
} else {
/*
* most important case for beacon synchronization between STA.
*
* beacon received and HW TSF has been already updated by HW.
* update next TBTT based on the TSF of the beacon, but make
* sure it is ahead of our local TSF timer.
*/
nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
}
#undef FUDGE
ah->nexttbtt = nexttbtt;
intval |= AR5K_BEACON_ENA;
ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
/*
* debugging output last in order to preserve the time critical aspect
* of this function
*/
if (bc_tsf == -1)
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"reconfigured timers based on HW TSF\n");
else if (bc_tsf == 0)
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"reset HW TSF and timers\n");
else
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"updated timers based on beacon TSF\n");
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
"bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
(unsigned long long) bc_tsf,
(unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
intval & AR5K_BEACON_PERIOD,
intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
}
/**
* ath5k_beacon_config - Configure the beacon queues and interrupts
*
* @ah: struct ath5k_hw pointer we are operating on
*
* In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
* interrupts to detect TSF updates only.
*/
void
ath5k_beacon_config(struct ath5k_hw *ah)
{
spin_lock_bh(&ah->block);
ah->bmisscount = 0;
ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
if (ah->enable_beacon) {
/*
* In IBSS mode we use a self-linked tx descriptor and let the
* hardware send the beacons automatically. We have to load it
* only once here.
* We use the SWBA interrupt only to keep track of the beacon
* timers in order to detect automatic TSF updates.
*/
ath5k_beaconq_config(ah);
ah->imask |= AR5K_INT_SWBA;
if (ah->opmode == NL80211_IFTYPE_ADHOC) {
if (ath5k_hw_hasveol(ah))
ath5k_beacon_send(ah);
} else
ath5k_beacon_update_timers(ah, -1);
} else {
ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
}
ath5k_hw_set_imr(ah, ah->imask);
spin_unlock_bh(&ah->block);
}
static void ath5k_tasklet_beacon(struct tasklet_struct *t)
{
struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
/*
* Software beacon alert--time to send a beacon.
*
* In IBSS mode we use this interrupt just to
* keep track of the next TBTT (target beacon
* transmission time) in order to detect whether
* automatic TSF updates happened.
*/
if (ah->opmode == NL80211_IFTYPE_ADHOC) {
/* XXX: only if VEOL supported */
u64 tsf = ath5k_hw_get_tsf64(ah);
ah->nexttbtt += ah->bintval;
ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
"SWBA nexttbtt: %x hw_tu: %x "
"TSF: %llx\n",
ah->nexttbtt,
TSF_TO_TU(tsf),
(unsigned long long) tsf);
} else {
spin_lock(&ah->block);
ath5k_beacon_send(ah);
spin_unlock(&ah->block);
}
}
/********************\
* Interrupt handling *
\********************/
static void
ath5k_intr_calibration_poll(struct ath5k_hw *ah)
{
if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
/* Run ANI only when calibration is not active */
ah->ah_cal_next_ani = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
tasklet_schedule(&ah->ani_tasklet);
} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
/* Run calibration only when another calibration
* is not running.
*
* Note: This is for both full/short calibration,
* if it's time for a full one, ath5k_calibrate_work will deal
* with it. */
ah->ah_cal_next_short = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
ieee80211_queue_work(ah->hw, &ah->calib_work);
}
/* we could use SWI to generate enough interrupts to meet our
* calibration interval requirements, if necessary:
* AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
}
static void
ath5k_schedule_rx(struct ath5k_hw *ah)
{
ah->rx_pending = true;
tasklet_schedule(&ah->rxtq);
}
static void
ath5k_schedule_tx(struct ath5k_hw *ah)
{
ah->tx_pending = true;
tasklet_schedule(&ah->txtq);
}
static irqreturn_t
ath5k_intr(int irq, void *dev_id)
{
struct ath5k_hw *ah = dev_id;
enum ath5k_int status;
unsigned int counter = 1000;
/*
* If hw is not ready (or detached) and we get an
* interrupt, or if we have no interrupts pending
* (that means it's not for us) skip it.
*
* NOTE: Group 0/1 PCI interface registers are not
* supported on WiSOCs, so we can't check for pending
* interrupts (ISR belongs to another register group
* so we are ok).
*/
if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
((ath5k_get_bus_type(ah) != ATH_AHB) &&
!ath5k_hw_is_intr_pending(ah))))
return IRQ_NONE;
/** Main loop **/
do {
ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
status, ah->imask);
/*
* Fatal hw error -> Log and reset
*
* Fatal errors are unrecoverable so we have to
* reset the card. These errors include bus and
* dma errors.
*/
if (unlikely(status & AR5K_INT_FATAL)) {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"fatal int, resetting\n");
ieee80211_queue_work(ah->hw, &ah->reset_work);
/*
* RX Overrun -> Count and reset if needed
*
* Receive buffers are full. Either the bus is busy or
* the CPU is not fast enough to process all received
* frames.
*/
} else if (unlikely(status & AR5K_INT_RXORN)) {
/*
* Older chipsets need a reset to come out of this
* condition, but we treat it as RX for newer chips.
* We don't know exactly which versions need a reset
* this guess is copied from the HAL.
*/
ah->stats.rxorn_intr++;
if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"rx overrun, resetting\n");
ieee80211_queue_work(ah->hw, &ah->reset_work);
} else
ath5k_schedule_rx(ah);
} else {
/* Software Beacon Alert -> Schedule beacon tasklet */
if (status & AR5K_INT_SWBA)
tasklet_hi_schedule(&ah->beacontq);
/*
* No more RX descriptors -> Just count
*
* NB: the hardware should re-read the link when
* RXE bit is written, but it doesn't work at
* least on older hardware revs.
*/
if (status & AR5K_INT_RXEOL)
ah->stats.rxeol_intr++;
/* TX Underrun -> Bump tx trigger level */
if (status & AR5K_INT_TXURN)
ath5k_hw_update_tx_triglevel(ah, true);
/* RX -> Schedule rx tasklet */
if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
ath5k_schedule_rx(ah);
/* TX -> Schedule tx tasklet */
if (status & (AR5K_INT_TXOK
| AR5K_INT_TXDESC
| AR5K_INT_TXERR
| AR5K_INT_TXEOL))
ath5k_schedule_tx(ah);
/* Missed beacon -> TODO
if (status & AR5K_INT_BMISS)
*/
/* MIB event -> Update counters and notify ANI */
if (status & AR5K_INT_MIB) {
ah->stats.mib_intr++;
ath5k_hw_update_mib_counters(ah);
ath5k_ani_mib_intr(ah);
}
/* GPIO -> Notify RFKill layer */
if (status & AR5K_INT_GPIO)
tasklet_schedule(&ah->rf_kill.toggleq);
}
if (ath5k_get_bus_type(ah) == ATH_AHB)
break;
} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
/*
* Until we handle rx/tx interrupts mask them on IMR
*
* NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
* and unset after we 've handled the interrupts.
*/
if (ah->rx_pending || ah->tx_pending)
ath5k_set_current_imask(ah);
if (unlikely(!counter))
ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
/* Fire up calibration poll */
ath5k_intr_calibration_poll(ah);
return IRQ_HANDLED;
}
/*
* Periodically recalibrate the PHY to account
* for temperature/environment changes.
*/
static void
ath5k_calibrate_work(struct work_struct *work)
{
struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
calib_work);
/* Should we run a full calibration ? */
if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
ah->ah_cal_next_full = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
"running full calibration\n");
if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
/*
* Rfgain is out of bounds, reset the chip
* to load new gain values.
*/
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"got new rfgain, resetting\n");
ieee80211_queue_work(ah->hw, &ah->reset_work);
}
} else
ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
ieee80211_frequency_to_channel(ah->curchan->center_freq),
ah->curchan->hw_value);
if (ath5k_hw_phy_calibrate(ah, ah->curchan))
ATH5K_ERR(ah, "calibration of channel %u failed\n",
ieee80211_frequency_to_channel(
ah->curchan->center_freq));
/* Clear calibration flags */
if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
}
static void
ath5k_tasklet_ani(struct tasklet_struct *t)
{
struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
ath5k_ani_calibration(ah);
ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
}
static void
ath5k_tx_complete_poll_work(struct work_struct *work)
{
struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
tx_complete_work.work);
struct ath5k_txq *txq;
int i;
bool needreset = false;
if (!test_bit(ATH_STAT_STARTED, ah->status))
return;
mutex_lock(&ah->lock);
for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
if (ah->txqs[i].setup) {
txq = &ah->txqs[i];
spin_lock_bh(&txq->lock);
if (txq->txq_len > 1) {
if (txq->txq_poll_mark) {
ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
"TX queue stuck %d\n",
txq->qnum);
needreset = true;
txq->txq_stuck++;
spin_unlock_bh(&txq->lock);
break;
} else {
txq->txq_poll_mark = true;
}
}
spin_unlock_bh(&txq->lock);
}
}
if (needreset) {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"TX queues stuck, resetting\n");
ath5k_reset(ah, NULL, true);
}
mutex_unlock(&ah->lock);
ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
}
/*************************\
* Initialization routines *
\*************************/
static const struct ieee80211_iface_limit if_limits[] = {
{ .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
{ .max = 4, .types =
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_AP) },
};
static const struct ieee80211_iface_combination if_comb = {
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = 2048,
.num_different_channels = 1,
};
int
ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
{
struct ieee80211_hw *hw = ah->hw;
struct ath_common *common;
int ret;
int csz;
/* Initialize driver private data */
SET_IEEE80211_DEV(hw, ah->dev);
ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
ieee80211_hw_set(hw, MFP_CAPABLE);
ieee80211_hw_set(hw, SIGNAL_DBM);
ieee80211_hw_set(hw, RX_INCLUDES_FCS);
ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
hw->wiphy->interface_modes =
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT);
hw->wiphy->iface_combinations = &if_comb;
hw->wiphy->n_iface_combinations = 1;
/* SW support for IBSS_RSN is provided by mac80211 */
hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
/* both antennas can be configured as RX or TX */
hw->wiphy->available_antennas_tx = 0x3;
hw->wiphy->available_antennas_rx = 0x3;
hw->extra_tx_headroom = 2;
wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
/*
* Mark the device as detached to avoid processing
* interrupts until setup is complete.
*/
__set_bit(ATH_STAT_INVALID, ah->status);
ah->opmode = NL80211_IFTYPE_STATION;
ah->bintval = 1000;
mutex_init(&ah->lock);
spin_lock_init(&ah->rxbuflock);
spin_lock_init(&ah->txbuflock);
spin_lock_init(&ah->block);
spin_lock_init(&ah->irqlock);
/* Setup interrupt handler */
ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
if (ret) {
ATH5K_ERR(ah, "request_irq failed\n");
goto err;
}
common = ath5k_hw_common(ah);
common->ops = &ath5k_common_ops;
common->bus_ops = bus_ops;
common->ah = ah;
common->hw = hw;
common->priv = ah;
common->clockrate = 40;
/*
* Cache line size is used to size and align various
* structures used to communicate with the hardware.
*/
ath5k_read_cachesize(common, &csz);
common->cachelsz = csz << 2; /* convert to bytes */
spin_lock_init(&common->cc_lock);
/* Initialize device */
ret = ath5k_hw_init(ah);
if (ret)
goto err_irq;
/* Set up multi-rate retry capabilities */
if (ah->ah_capabilities.cap_has_mrr_support) {
hw->max_rates = 4;
hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
AR5K_INIT_RETRY_LONG);
}
hw->vif_data_size = sizeof(struct ath5k_vif);
/* Finish private driver data initialization */
ret = ath5k_init(hw);
if (ret)
goto err_ah;
ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
ah->ah_mac_srev,
ah->ah_phy_revision);
if (!ah->ah_single_chip) {
/* Single chip radio (!RF5111) */
if (ah->ah_radio_5ghz_revision &&
!ah->ah_radio_2ghz_revision) {
/* No 5GHz support -> report 2GHz radio */
if (!test_bit(AR5K_MODE_11A,
ah->ah_capabilities.cap_mode)) {
ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
ah->ah_radio_5ghz_revision),
ah->ah_radio_5ghz_revision);
/* No 2GHz support (5110 and some
* 5GHz only cards) -> report 5GHz radio */
} else if (!test_bit(AR5K_MODE_11B,
ah->ah_capabilities.cap_mode)) {
ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
ah->ah_radio_5ghz_revision),
ah->ah_radio_5ghz_revision);
/* Multiband radio */
} else {
ATH5K_INFO(ah, "RF%s multiband radio found"
" (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
ah->ah_radio_5ghz_revision),
ah->ah_radio_5ghz_revision);
}
}
/* Multi chip radio (RF5111 - RF2111) ->
* report both 2GHz/5GHz radios */
else if (ah->ah_radio_5ghz_revision &&
ah->ah_radio_2ghz_revision) {
ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
ah->ah_radio_5ghz_revision),
ah->ah_radio_5ghz_revision);
ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
ath5k_chip_name(AR5K_VERSION_RAD,
ah->ah_radio_2ghz_revision),
ah->ah_radio_2ghz_revision);
}
}
ath5k_debug_init_device(ah);
/* ready to process interrupts */
__clear_bit(ATH_STAT_INVALID, ah->status);
return 0;
err_ah:
ath5k_hw_deinit(ah);
err_irq:
free_irq(ah->irq, ah);
err:
return ret;
}
static int
ath5k_stop_locked(struct ath5k_hw *ah)
{
ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
test_bit(ATH_STAT_INVALID, ah->status));
/*
* Shutdown the hardware and driver:
* stop output from above
* disable interrupts
* turn off timers
* turn off the radio
* clear transmit machinery
* clear receive machinery
* drain and release tx queues
* reclaim beacon resources
* power down hardware
*
* Note that some of this work is not possible if the
* hardware is gone (invalid).
*/
ieee80211_stop_queues(ah->hw);
if (!test_bit(ATH_STAT_INVALID, ah->status)) {
ath5k_led_off(ah);
ath5k_hw_set_imr(ah, 0);
synchronize_irq(ah->irq);
ath5k_rx_stop(ah);
ath5k_hw_dma_stop(ah);
ath5k_drain_tx_buffs(ah);
ath5k_hw_phy_disable(ah);
}
return 0;
}
int ath5k_start(struct ieee80211_hw *hw)
{
struct ath5k_hw *ah = hw->priv;
struct ath_common *common = ath5k_hw_common(ah);
int ret, i;
mutex_lock(&ah->lock);
ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
/*
* Stop anything previously setup. This is safe
* no matter this is the first time through or not.
*/
ath5k_stop_locked(ah);
/*
* The basic interface to setting the hardware in a good
* state is ``reset''. On return the hardware is known to
* be powered up and with interrupts disabled. This must
* be followed by initialization of the appropriate bits
* and then setup of the interrupt mask.
*/
ah->curchan = ah->hw->conf.chandef.chan;
ah->imask = AR5K_INT_RXOK
| AR5K_INT_RXERR
| AR5K_INT_RXEOL
| AR5K_INT_RXORN
| AR5K_INT_TXDESC
| AR5K_INT_TXEOL
| AR5K_INT_FATAL
| AR5K_INT_GLOBAL
| AR5K_INT_MIB;
ret = ath5k_reset(ah, NULL, false);
if (ret)
goto done;
if (!ath5k_modparam_no_hw_rfkill_switch)
ath5k_rfkill_hw_start(ah);
/*
* Reset the key cache since some parts do not reset the
* contents on initial power up or resume from suspend.
*/
for (i = 0; i < common->keymax; i++)
ath_hw_keyreset(common, (u16) i);
/* Use higher rates for acks instead of base
* rate */
ah->ah_ack_bitrate_high = true;
for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
ah->bslot[i] = NULL;
ret = 0;
done:
mutex_unlock(&ah->lock);
set_bit(ATH_STAT_STARTED, ah->status);
ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
return ret;
}
static void ath5k_stop_tasklets(struct ath5k_hw *ah)
{
ah->rx_pending = false;
ah->tx_pending = false;
tasklet_kill(&ah->rxtq);
tasklet_kill(&ah->txtq);
tasklet_kill(&ah->beacontq);
tasklet_kill(&ah->ani_tasklet);
}
/*
* Stop the device, grabbing the top-level lock to protect
* against concurrent entry through ath5k_init (which can happen
* if another thread does a system call and the thread doing the
* stop is preempted).
*/
void ath5k_stop(struct ieee80211_hw *hw)
{
struct ath5k_hw *ah = hw->priv;
int ret;
mutex_lock(&ah->lock);
ret = ath5k_stop_locked(ah);
if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
/*
* Don't set the card in full sleep mode!
*
* a) When the device is in this state it must be carefully
* woken up or references to registers in the PCI clock
* domain may freeze the bus (and system). This varies
* by chip and is mostly an issue with newer parts
* (madwifi sources mentioned srev >= 0x78) that go to
* sleep more quickly.
*
* b) On older chips full sleep results a weird behaviour
* during wakeup. I tested various cards with srev < 0x78
* and they don't wake up after module reload, a second
* module reload is needed to bring the card up again.
*
* Until we figure out what's going on don't enable
* full chip reset on any chip (this is what Legacy HAL
* and Sam's HAL do anyway). Instead Perform a full reset
* on the device (same as initial state after attach) and
* leave it idle (keep MAC/BB on warm reset) */
ret = ath5k_hw_on_hold(ah);
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"putting device to sleep\n");
}
mutex_unlock(&ah->lock);
ath5k_stop_tasklets(ah);
clear_bit(ATH_STAT_STARTED, ah->status);
cancel_delayed_work_sync(&ah->tx_complete_work);
if (!ath5k_modparam_no_hw_rfkill_switch)
ath5k_rfkill_hw_stop(ah);
}
/*
* Reset the hardware. If chan is not NULL, then also pause rx/tx
* and change to the given channel.
*
* This should be called with ah->lock.
*/
static int
ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
bool skip_pcu)
{
struct ath_common *common = ath5k_hw_common(ah);
int ret, ani_mode;
bool fast = chan && modparam_fastchanswitch ? 1 : 0;
ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
__set_bit(ATH_STAT_RESET, ah->status);
ath5k_hw_set_imr(ah, 0);
synchronize_irq(ah->irq);
ath5k_stop_tasklets(ah);
/* Save ani mode and disable ANI during
* reset. If we don't we might get false
* PHY error interrupts. */
ani_mode = ah->ani_state.ani_mode;
ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
/* We are going to empty hw queues
* so we should also free any remaining
* tx buffers */
ath5k_drain_tx_buffs(ah);
/* Stop PCU */
ath5k_hw_stop_rx_pcu(ah);
/* Stop DMA
*
* Note: If DMA didn't stop continue
* since only a reset will fix it.
*/
ret = ath5k_hw_dma_stop(ah);
/* RF Bus grant won't work if we have pending
* frames
*/
if (ret && fast) {
ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
"DMA didn't stop, falling back to normal reset\n");
fast = false;
}
if (chan)
ah->curchan = chan;
ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
if (ret) {
ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
goto err;
}
ret = ath5k_rx_start(ah);
if (ret) {
ATH5K_ERR(ah, "can't start recv logic\n");
goto err;
}
ath5k_ani_init(ah, ani_mode);
/*
* Set calibration intervals
*
* Note: We don't need to run calibration imediately
* since some initial calibration is done on reset
* even for fast channel switching. Also on scanning
* this will get set again and again and it won't get
* executed unless we connect somewhere and spend some
* time on the channel (that's what calibration needs
* anyway to be accurate).
*/
ah->ah_cal_next_full = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
ah->ah_cal_next_ani = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
ah->ah_cal_next_short = jiffies +
msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
/* clear survey data and cycle counters */
memset(&ah->survey, 0, sizeof(ah->survey));
spin_lock_bh(&common->cc_lock);
ath_hw_cycle_counters_update(common);
memset(&common->cc_survey, 0, sizeof(common->cc_survey));
memset(&common->cc_ani, 0, sizeof(common->cc_ani));
spin_unlock_bh(&common->cc_lock);
/*
* Change channels and update the h/w rate map if we're switching;
* e.g. 11a to 11b/g.
*
* We may be doing a reset in response to an ioctl that changes the
* channel so update any state that might change as a result.
*
* XXX needed?
*/
/* ath5k_chan_change(ah, c); */
__clear_bit(ATH_STAT_RESET, ah->status);
ath5k_beacon_config(ah);
/* intrs are enabled by ath5k_beacon_config */
ieee80211_wake_queues(ah->hw);
return 0;
err:
return ret;
}
static void ath5k_reset_work(struct work_struct *work)
{
struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
reset_work);
mutex_lock(&ah->lock);
ath5k_reset(ah, NULL, true);
mutex_unlock(&ah->lock);
}
static int
ath5k_init(struct ieee80211_hw *hw)
{
struct ath5k_hw *ah = hw->priv;
struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
struct ath5k_txq *txq;
u8 mac[ETH_ALEN] = {};
int ret;
/*
* Collect the channel list. The 802.11 layer
* is responsible for filtering this list based
* on settings like the phy mode and regulatory
* domain restrictions.
*/
ret = ath5k_setup_bands(hw);
if (ret) {
ATH5K_ERR(ah, "can't get channels\n");
goto err;
}
/*
* Allocate tx+rx descriptors and populate the lists.
*/
ret = ath5k_desc_alloc(ah);
if (ret) {
ATH5K_ERR(ah, "can't allocate descriptors\n");
goto err;
}
/*
* Allocate hardware transmit queues: one queue for
* beacon frames and one data queue for each QoS
* priority. Note that hw functions handle resetting
* these queues at the needed time.
*/
ret = ath5k_beaconq_setup(ah);
if (ret < 0) {
ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
goto err_desc;
}
ah->bhalq = ret;
ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
if (IS_ERR(ah->cabq)) {
ATH5K_ERR(ah, "can't setup cab queue\n");
ret = PTR_ERR(ah->cabq);
goto err_bhal;
}
/* 5211 and 5212 usually support 10 queues but we better rely on the
* capability information */
if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
/* This order matches mac80211's queue priority, so we can
* directly use the mac80211 queue number without any mapping */
txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
if (IS_ERR(txq)) {
ATH5K_ERR(ah, "can't setup xmit queue\n");
ret = PTR_ERR(txq);
goto err_queues;
}
txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
if (IS_ERR(txq)) {
ATH5K_ERR(ah, "can't setup xmit queue\n");
ret = PTR_ERR(txq);
goto err_queues;
}
txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
if (IS_ERR(txq)) {
ATH5K_ERR(ah, "can't setup xmit queue\n");
ret = PTR_ERR(txq);
goto err_queues;
}
txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
if (IS_ERR(txq)) {
ATH5K_ERR(ah, "can't setup xmit queue\n");
ret = PTR_ERR(txq);
goto err_queues;
}
hw->queues = 4;
} else {
/* older hardware (5210) can only support one data queue */
txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
if (IS_ERR(txq)) {
ATH5K_ERR(ah, "can't setup xmit queue\n");
ret = PTR_ERR(txq);
goto err_queues;
}
hw->queues = 1;
}
tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
INIT_WORK(&ah->reset_work, ath5k_reset_work);
INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
if (ret) {
ATH5K_ERR(ah, "unable to read address from EEPROM\n");
goto err_queues;
}
SET_IEEE80211_PERM_ADDR(hw, mac);
/* All MAC address bits matter for ACKs */
ath5k_update_bssid_mask_and_opmode(ah, NULL);
regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
if (ret) {
ATH5K_ERR(ah, "can't initialize regulatory system\n");
goto err_queues;
}
ret = ieee80211_register_hw(hw);
if (ret) {
ATH5K_ERR(ah, "can't register ieee80211 hw\n");
goto err_queues;
}
if (!ath_is_world_regd(regulatory))
regulatory_hint(hw->wiphy, regulatory->alpha2);
ath5k_init_leds(ah);
ath5k_sysfs_register(ah);
return 0;
err_queues:
ath5k_txq_release(ah);
err_bhal:
ath5k_hw_release_tx_queue(ah, ah->bhalq);
err_desc:
ath5k_desc_free(ah);
err:
return ret;
}
void
ath5k_deinit_ah(struct ath5k_hw *ah)
{
struct ieee80211_hw *hw = ah->hw;
/*
* NB: the order of these is important:
* o call the 802.11 layer before detaching ath5k_hw to
* ensure callbacks into the driver to delete global
* key cache entries can be handled
* o reclaim the tx queue data structures after calling
* the 802.11 layer as we'll get called back to reclaim
* node state and potentially want to use them
* o to cleanup the tx queues the hal is called, so detach
* it last
* XXX: ??? detach ath5k_hw ???
* Other than that, it's straightforward...
*/
ieee80211_unregister_hw(hw);
ath5k_desc_free(ah);
ath5k_txq_release(ah);
ath5k_hw_release_tx_queue(ah, ah->bhalq);
ath5k_unregister_leds(ah);
ath5k_sysfs_unregister(ah);
/*
* NB: can't reclaim these until after ieee80211_ifdetach
* returns because we'll get called back to reclaim node
* state and potentially want to use them.
*/
ath5k_hw_deinit(ah);
free_irq(ah->irq, ah);
}
bool
ath5k_any_vif_assoc(struct ath5k_hw *ah)
{
struct ath5k_vif_iter_data iter_data;
iter_data.hw_macaddr = NULL;
iter_data.any_assoc = false;
iter_data.need_set_hw_addr = false;
iter_data.found_active = true;
ieee80211_iterate_active_interfaces_atomic(
ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
ath5k_vif_iter, &iter_data);
return iter_data.any_assoc;
}
void
ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
{
struct ath5k_hw *ah = hw->priv;
u32 rfilt;
rfilt = ath5k_hw_get_rx_filter(ah);
if (enable)
rfilt |= AR5K_RX_FILTER_BEACON;
else
rfilt &= ~AR5K_RX_FILTER_BEACON;
ath5k_hw_set_rx_filter(ah, rfilt);
ah->filter_flags = rfilt;
}
void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (ah && ah->hw)
printk("%s" pr_fmt("%s: %pV"),
level, wiphy_name(ah->hw->wiphy), &vaf);
else
printk("%s" pr_fmt("%pV"), level, &vaf);
va_end(args);
}