blob: c12f27be9f79092324b2c29ea375f960976ad742 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2012 - 2018 Microchip Technology Inc., and its subsidiaries.
* All rights reserved.
*/
#include <linux/if_ether.h>
#include <linux/ip.h>
#include <net/dsfield.h>
#include "cfg80211.h"
#include "wlan_cfg.h"
static inline bool is_wilc1000(u32 id)
{
return (id & (~WILC_CHIP_REV_FIELD)) == WILC_1000_BASE_ID;
}
static inline void acquire_bus(struct wilc *wilc, enum bus_acquire acquire)
{
mutex_lock(&wilc->hif_cs);
if (acquire == WILC_BUS_ACQUIRE_AND_WAKEUP)
chip_wakeup(wilc);
}
static inline void release_bus(struct wilc *wilc, enum bus_release release)
{
if (release == WILC_BUS_RELEASE_ALLOW_SLEEP)
chip_allow_sleep(wilc);
mutex_unlock(&wilc->hif_cs);
}
static void wilc_wlan_txq_remove(struct wilc *wilc, u8 q_num,
struct txq_entry_t *tqe)
{
list_del(&tqe->list);
wilc->txq_entries -= 1;
wilc->txq[q_num].count--;
}
static struct txq_entry_t *
wilc_wlan_txq_remove_from_head(struct wilc *wilc, u8 q_num)
{
struct txq_entry_t *tqe = NULL;
unsigned long flags;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
if (!list_empty(&wilc->txq[q_num].txq_head.list)) {
tqe = list_first_entry(&wilc->txq[q_num].txq_head.list,
struct txq_entry_t, list);
list_del(&tqe->list);
wilc->txq_entries -= 1;
wilc->txq[q_num].count--;
}
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
return tqe;
}
static void wilc_wlan_txq_add_to_tail(struct net_device *dev, u8 q_num,
struct txq_entry_t *tqe)
{
unsigned long flags;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc = vif->wilc;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
list_add_tail(&tqe->list, &wilc->txq[q_num].txq_head.list);
wilc->txq_entries += 1;
wilc->txq[q_num].count++;
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
complete(&wilc->txq_event);
}
static void wilc_wlan_txq_add_to_head(struct wilc_vif *vif, u8 q_num,
struct txq_entry_t *tqe)
{
unsigned long flags;
struct wilc *wilc = vif->wilc;
mutex_lock(&wilc->txq_add_to_head_cs);
spin_lock_irqsave(&wilc->txq_spinlock, flags);
list_add(&tqe->list, &wilc->txq[q_num].txq_head.list);
wilc->txq_entries += 1;
wilc->txq[q_num].count++;
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
mutex_unlock(&wilc->txq_add_to_head_cs);
complete(&wilc->txq_event);
}
#define NOT_TCP_ACK (-1)
static inline void add_tcp_session(struct wilc_vif *vif, u32 src_prt,
u32 dst_prt, u32 seq)
{
struct tcp_ack_filter *f = &vif->ack_filter;
if (f->tcp_session < 2 * MAX_TCP_SESSION) {
f->ack_session_info[f->tcp_session].seq_num = seq;
f->ack_session_info[f->tcp_session].bigger_ack_num = 0;
f->ack_session_info[f->tcp_session].src_port = src_prt;
f->ack_session_info[f->tcp_session].dst_port = dst_prt;
f->tcp_session++;
}
}
static inline void update_tcp_session(struct wilc_vif *vif, u32 index, u32 ack)
{
struct tcp_ack_filter *f = &vif->ack_filter;
if (index < 2 * MAX_TCP_SESSION &&
ack > f->ack_session_info[index].bigger_ack_num)
f->ack_session_info[index].bigger_ack_num = ack;
}
static inline void add_tcp_pending_ack(struct wilc_vif *vif, u32 ack,
u32 session_index,
struct txq_entry_t *txqe)
{
struct tcp_ack_filter *f = &vif->ack_filter;
u32 i = f->pending_base + f->pending_acks_idx;
if (i < MAX_PENDING_ACKS) {
f->pending_acks[i].ack_num = ack;
f->pending_acks[i].txqe = txqe;
f->pending_acks[i].session_index = session_index;
txqe->ack_idx = i;
f->pending_acks_idx++;
}
}
static inline void tcp_process(struct net_device *dev, struct txq_entry_t *tqe)
{
void *buffer = tqe->buffer;
const struct ethhdr *eth_hdr_ptr = buffer;
int i;
unsigned long flags;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc = vif->wilc;
struct tcp_ack_filter *f = &vif->ack_filter;
const struct iphdr *ip_hdr_ptr;
const struct tcphdr *tcp_hdr_ptr;
u32 ihl, total_length, data_offset;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
if (eth_hdr_ptr->h_proto != htons(ETH_P_IP))
goto out;
ip_hdr_ptr = buffer + ETH_HLEN;
if (ip_hdr_ptr->protocol != IPPROTO_TCP)
goto out;
ihl = ip_hdr_ptr->ihl << 2;
tcp_hdr_ptr = buffer + ETH_HLEN + ihl;
total_length = ntohs(ip_hdr_ptr->tot_len);
data_offset = tcp_hdr_ptr->doff << 2;
if (total_length == (ihl + data_offset)) {
u32 seq_no, ack_no;
seq_no = ntohl(tcp_hdr_ptr->seq);
ack_no = ntohl(tcp_hdr_ptr->ack_seq);
for (i = 0; i < f->tcp_session; i++) {
u32 j = f->ack_session_info[i].seq_num;
if (i < 2 * MAX_TCP_SESSION &&
j == seq_no) {
update_tcp_session(vif, i, ack_no);
break;
}
}
if (i == f->tcp_session)
add_tcp_session(vif, 0, 0, seq_no);
add_tcp_pending_ack(vif, ack_no, i, tqe);
}
out:
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
}
static void wilc_wlan_txq_filter_dup_tcp_ack(struct net_device *dev)
{
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc = vif->wilc;
struct tcp_ack_filter *f = &vif->ack_filter;
u32 i = 0;
u32 dropped = 0;
unsigned long flags;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
for (i = f->pending_base;
i < (f->pending_base + f->pending_acks_idx); i++) {
u32 index;
u32 bigger_ack_num;
if (i >= MAX_PENDING_ACKS)
break;
index = f->pending_acks[i].session_index;
if (index >= 2 * MAX_TCP_SESSION)
break;
bigger_ack_num = f->ack_session_info[index].bigger_ack_num;
if (f->pending_acks[i].ack_num < bigger_ack_num) {
struct txq_entry_t *tqe;
tqe = f->pending_acks[i].txqe;
if (tqe) {
wilc_wlan_txq_remove(wilc, tqe->q_num, tqe);
tqe->status = 1;
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv,
tqe->status);
kfree(tqe);
dropped++;
}
}
}
f->pending_acks_idx = 0;
f->tcp_session = 0;
if (f->pending_base == 0)
f->pending_base = MAX_TCP_SESSION;
else
f->pending_base = 0;
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
while (dropped > 0) {
wait_for_completion_timeout(&wilc->txq_event,
msecs_to_jiffies(1));
dropped--;
}
}
void wilc_enable_tcp_ack_filter(struct wilc_vif *vif, bool value)
{
vif->ack_filter.enabled = value;
}
static int wilc_wlan_txq_add_cfg_pkt(struct wilc_vif *vif, u8 *buffer,
u32 buffer_size)
{
struct txq_entry_t *tqe;
struct wilc *wilc = vif->wilc;
netdev_dbg(vif->ndev, "Adding config packet ...\n");
if (wilc->quit) {
netdev_dbg(vif->ndev, "Return due to clear function\n");
complete(&wilc->cfg_event);
return 0;
}
tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC);
if (!tqe) {
complete(&wilc->cfg_event);
return 0;
}
tqe->type = WILC_CFG_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = NULL;
tqe->priv = NULL;
tqe->q_num = AC_VO_Q;
tqe->ack_idx = NOT_TCP_ACK;
tqe->vif = vif;
wilc_wlan_txq_add_to_head(vif, AC_VO_Q, tqe);
return 1;
}
static bool is_ac_q_limit(struct wilc *wl, u8 q_num)
{
u8 factors[NQUEUES] = {1, 1, 1, 1};
u16 i;
unsigned long flags;
struct wilc_tx_queue_status *q = &wl->tx_q_limit;
u8 end_index;
u8 q_limit;
bool ret = false;
spin_lock_irqsave(&wl->txq_spinlock, flags);
if (!q->initialized) {
for (i = 0; i < AC_BUFFER_SIZE; i++)
q->buffer[i] = i % NQUEUES;
for (i = 0; i < NQUEUES; i++) {
q->cnt[i] = AC_BUFFER_SIZE * factors[i] / NQUEUES;
q->sum += q->cnt[i];
}
q->end_index = AC_BUFFER_SIZE - 1;
q->initialized = 1;
}
end_index = q->end_index;
q->cnt[q->buffer[end_index]] -= factors[q->buffer[end_index]];
q->cnt[q_num] += factors[q_num];
q->sum += (factors[q_num] - factors[q->buffer[end_index]]);
q->buffer[end_index] = q_num;
if (end_index > 0)
q->end_index--;
else
q->end_index = AC_BUFFER_SIZE - 1;
if (!q->sum)
q_limit = 1;
else
q_limit = (q->cnt[q_num] * FLOW_CONTROL_UPPER_THRESHOLD / q->sum) + 1;
if (wl->txq[q_num].count <= q_limit)
ret = true;
spin_unlock_irqrestore(&wl->txq_spinlock, flags);
return ret;
}
static inline u8 ac_classify(struct wilc *wilc, struct sk_buff *skb)
{
u8 q_num = AC_BE_Q;
u8 dscp;
switch (skb->protocol) {
case htons(ETH_P_IP):
dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
break;
case htons(ETH_P_IPV6):
dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
break;
default:
return q_num;
}
switch (dscp) {
case 0x08:
case 0x20:
case 0x40:
q_num = AC_BK_Q;
break;
case 0x80:
case 0xA0:
case 0x28:
q_num = AC_VI_Q;
break;
case 0xC0:
case 0xD0:
case 0xE0:
case 0x88:
case 0xB8:
q_num = AC_VO_Q;
break;
}
return q_num;
}
static inline int ac_balance(struct wilc *wl, u8 *ratio)
{
u8 i, max_count = 0;
if (!ratio)
return -EINVAL;
for (i = 0; i < NQUEUES; i++)
if (wl->txq[i].fw.count > max_count)
max_count = wl->txq[i].fw.count;
for (i = 0; i < NQUEUES; i++)
ratio[i] = max_count - wl->txq[i].fw.count;
return 0;
}
static inline void ac_update_fw_ac_pkt_info(struct wilc *wl, u32 reg)
{
wl->txq[AC_BK_Q].fw.count = FIELD_GET(BK_AC_COUNT_FIELD, reg);
wl->txq[AC_BE_Q].fw.count = FIELD_GET(BE_AC_COUNT_FIELD, reg);
wl->txq[AC_VI_Q].fw.count = FIELD_GET(VI_AC_COUNT_FIELD, reg);
wl->txq[AC_VO_Q].fw.count = FIELD_GET(VO_AC_COUNT_FIELD, reg);
wl->txq[AC_BK_Q].fw.acm = FIELD_GET(BK_AC_ACM_STAT_FIELD, reg);
wl->txq[AC_BE_Q].fw.acm = FIELD_GET(BE_AC_ACM_STAT_FIELD, reg);
wl->txq[AC_VI_Q].fw.acm = FIELD_GET(VI_AC_ACM_STAT_FIELD, reg);
wl->txq[AC_VO_Q].fw.acm = FIELD_GET(VO_AC_ACM_STAT_FIELD, reg);
}
static inline u8 ac_change(struct wilc *wilc, u8 *ac)
{
do {
if (wilc->txq[*ac].fw.acm == 0)
return 0;
(*ac)++;
} while (*ac < NQUEUES);
return 1;
}
int wilc_wlan_txq_add_net_pkt(struct net_device *dev, void *priv, u8 *buffer,
u32 buffer_size,
void (*tx_complete_fn)(void *, int))
{
struct txq_entry_t *tqe;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc;
u8 q_num;
wilc = vif->wilc;
if (wilc->quit) {
tx_complete_fn(priv, 0);
return 0;
}
tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC);
if (!tqe) {
tx_complete_fn(priv, 0);
return 0;
}
tqe->type = WILC_NET_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = tx_complete_fn;
tqe->priv = priv;
tqe->vif = vif;
q_num = ac_classify(wilc, priv);
tqe->q_num = q_num;
if (ac_change(wilc, &q_num)) {
tx_complete_fn(priv, 0);
kfree(tqe);
return 0;
}
if (is_ac_q_limit(wilc, q_num)) {
tqe->ack_idx = NOT_TCP_ACK;
if (vif->ack_filter.enabled)
tcp_process(dev, tqe);
wilc_wlan_txq_add_to_tail(dev, q_num, tqe);
} else {
tx_complete_fn(priv, 0);
kfree(tqe);
}
return wilc->txq_entries;
}
int wilc_wlan_txq_add_mgmt_pkt(struct net_device *dev, void *priv, u8 *buffer,
u32 buffer_size,
void (*tx_complete_fn)(void *, int))
{
struct txq_entry_t *tqe;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc;
wilc = vif->wilc;
if (wilc->quit) {
tx_complete_fn(priv, 0);
return 0;
}
tqe = kmalloc(sizeof(*tqe), GFP_ATOMIC);
if (!tqe) {
tx_complete_fn(priv, 0);
return 0;
}
tqe->type = WILC_MGMT_PKT;
tqe->buffer = buffer;
tqe->buffer_size = buffer_size;
tqe->tx_complete_func = tx_complete_fn;
tqe->priv = priv;
tqe->q_num = AC_BE_Q;
tqe->ack_idx = NOT_TCP_ACK;
tqe->vif = vif;
wilc_wlan_txq_add_to_tail(dev, AC_VO_Q, tqe);
return 1;
}
static struct txq_entry_t *wilc_wlan_txq_get_first(struct wilc *wilc, u8 q_num)
{
struct txq_entry_t *tqe = NULL;
unsigned long flags;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
if (!list_empty(&wilc->txq[q_num].txq_head.list))
tqe = list_first_entry(&wilc->txq[q_num].txq_head.list,
struct txq_entry_t, list);
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
return tqe;
}
static struct txq_entry_t *wilc_wlan_txq_get_next(struct wilc *wilc,
struct txq_entry_t *tqe,
u8 q_num)
{
unsigned long flags;
spin_lock_irqsave(&wilc->txq_spinlock, flags);
if (!list_is_last(&tqe->list, &wilc->txq[q_num].txq_head.list))
tqe = list_next_entry(tqe, list);
else
tqe = NULL;
spin_unlock_irqrestore(&wilc->txq_spinlock, flags);
return tqe;
}
static void wilc_wlan_rxq_add(struct wilc *wilc, struct rxq_entry_t *rqe)
{
if (wilc->quit)
return;
mutex_lock(&wilc->rxq_cs);
list_add_tail(&rqe->list, &wilc->rxq_head.list);
mutex_unlock(&wilc->rxq_cs);
}
static struct rxq_entry_t *wilc_wlan_rxq_remove(struct wilc *wilc)
{
struct rxq_entry_t *rqe = NULL;
mutex_lock(&wilc->rxq_cs);
if (!list_empty(&wilc->rxq_head.list)) {
rqe = list_first_entry(&wilc->rxq_head.list, struct rxq_entry_t,
list);
list_del(&rqe->list);
}
mutex_unlock(&wilc->rxq_cs);
return rqe;
}
void chip_allow_sleep(struct wilc *wilc)
{
u32 reg = 0;
wilc->hif_func->hif_read_reg(wilc, WILC_SDIO_WAKEUP_REG, &reg);
wilc->hif_func->hif_write_reg(wilc, WILC_SDIO_WAKEUP_REG,
reg & ~WILC_SDIO_WAKEUP_BIT);
wilc->hif_func->hif_write_reg(wilc, WILC_SDIO_HOST_TO_FW_REG, 0);
}
EXPORT_SYMBOL_GPL(chip_allow_sleep);
void chip_wakeup(struct wilc *wilc)
{
u32 reg, clk_status_reg;
const struct wilc_hif_func *h = wilc->hif_func;
if (wilc->io_type == WILC_HIF_SPI) {
do {
h->hif_read_reg(wilc, WILC_SPI_WAKEUP_REG, &reg);
h->hif_write_reg(wilc, WILC_SPI_WAKEUP_REG,
reg | WILC_SPI_WAKEUP_BIT);
h->hif_write_reg(wilc, WILC_SPI_WAKEUP_REG,
reg & ~WILC_SPI_WAKEUP_BIT);
do {
usleep_range(2000, 2500);
wilc_get_chipid(wilc, true);
} while (wilc_get_chipid(wilc, true) == 0);
} while (wilc_get_chipid(wilc, true) == 0);
} else if (wilc->io_type == WILC_HIF_SDIO) {
h->hif_write_reg(wilc, WILC_SDIO_HOST_TO_FW_REG,
WILC_SDIO_HOST_TO_FW_BIT);
usleep_range(200, 400);
h->hif_read_reg(wilc, WILC_SDIO_WAKEUP_REG, &reg);
do {
h->hif_write_reg(wilc, WILC_SDIO_WAKEUP_REG,
reg | WILC_SDIO_WAKEUP_BIT);
h->hif_read_reg(wilc, WILC_SDIO_CLK_STATUS_REG,
&clk_status_reg);
while (!(clk_status_reg & WILC_SDIO_CLK_STATUS_BIT)) {
usleep_range(2000, 2500);
h->hif_read_reg(wilc, WILC_SDIO_CLK_STATUS_REG,
&clk_status_reg);
}
if (!(clk_status_reg & WILC_SDIO_CLK_STATUS_BIT)) {
h->hif_write_reg(wilc, WILC_SDIO_WAKEUP_REG,
reg & ~WILC_SDIO_WAKEUP_BIT);
}
} while (!(clk_status_reg & WILC_SDIO_CLK_STATUS_BIT));
}
if (wilc->chip_ps_state == WILC_CHIP_SLEEPING_MANUAL) {
if (wilc_get_chipid(wilc, false) < WILC_1000_BASE_ID_2B) {
u32 val32;
h->hif_read_reg(wilc, WILC_REG_4_TO_1_RX, &val32);
val32 |= BIT(6);
h->hif_write_reg(wilc, WILC_REG_4_TO_1_RX, val32);
h->hif_read_reg(wilc, WILC_REG_4_TO_1_TX_BANK0, &val32);
val32 |= BIT(6);
h->hif_write_reg(wilc, WILC_REG_4_TO_1_TX_BANK0, val32);
}
}
wilc->chip_ps_state = WILC_CHIP_WAKEDUP;
}
EXPORT_SYMBOL_GPL(chip_wakeup);
void host_wakeup_notify(struct wilc *wilc)
{
acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY);
wilc->hif_func->hif_write_reg(wilc, WILC_CORTUS_INTERRUPT_2, 1);
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
}
EXPORT_SYMBOL_GPL(host_wakeup_notify);
void host_sleep_notify(struct wilc *wilc)
{
acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY);
wilc->hif_func->hif_write_reg(wilc, WILC_CORTUS_INTERRUPT_1, 1);
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
}
EXPORT_SYMBOL_GPL(host_sleep_notify);
int wilc_wlan_handle_txq(struct wilc *wilc, u32 *txq_count)
{
int i, entries = 0;
u8 k, ac;
u32 sum;
u32 reg;
u8 ac_desired_ratio[NQUEUES] = {0, 0, 0, 0};
u8 ac_preserve_ratio[NQUEUES] = {1, 1, 1, 1};
u8 *num_pkts_to_add;
u8 vmm_entries_ac[WILC_VMM_TBL_SIZE];
u32 offset = 0;
bool max_size_over = 0, ac_exist = 0;
int vmm_sz = 0;
struct txq_entry_t *tqe_q[NQUEUES];
int ret = 0;
int counter;
int timeout;
u32 vmm_table[WILC_VMM_TBL_SIZE];
u8 ac_pkt_num_to_chip[NQUEUES] = {0, 0, 0, 0};
const struct wilc_hif_func *func;
int srcu_idx;
u8 *txb = wilc->tx_buffer;
struct wilc_vif *vif;
if (wilc->quit)
goto out_update_cnt;
if (ac_balance(wilc, ac_desired_ratio))
return -EINVAL;
mutex_lock(&wilc->txq_add_to_head_cs);
srcu_idx = srcu_read_lock(&wilc->srcu);
list_for_each_entry_rcu(vif, &wilc->vif_list, list)
wilc_wlan_txq_filter_dup_tcp_ack(vif->ndev);
srcu_read_unlock(&wilc->srcu, srcu_idx);
for (ac = 0; ac < NQUEUES; ac++)
tqe_q[ac] = wilc_wlan_txq_get_first(wilc, ac);
i = 0;
sum = 0;
max_size_over = 0;
num_pkts_to_add = ac_desired_ratio;
do {
ac_exist = 0;
for (ac = 0; (ac < NQUEUES) && (!max_size_over); ac++) {
if (!tqe_q[ac])
continue;
ac_exist = 1;
for (k = 0; (k < num_pkts_to_add[ac]) &&
(!max_size_over) && tqe_q[ac]; k++) {
if (i >= (WILC_VMM_TBL_SIZE - 1)) {
max_size_over = 1;
break;
}
if (tqe_q[ac]->type == WILC_CFG_PKT)
vmm_sz = ETH_CONFIG_PKT_HDR_OFFSET;
else if (tqe_q[ac]->type == WILC_NET_PKT)
vmm_sz = ETH_ETHERNET_HDR_OFFSET;
else
vmm_sz = HOST_HDR_OFFSET;
vmm_sz += tqe_q[ac]->buffer_size;
vmm_sz = ALIGN(vmm_sz, 4);
if ((sum + vmm_sz) > WILC_TX_BUFF_SIZE) {
max_size_over = 1;
break;
}
vmm_table[i] = vmm_sz / 4;
if (tqe_q[ac]->type == WILC_CFG_PKT)
vmm_table[i] |= BIT(10);
cpu_to_le32s(&vmm_table[i]);
vmm_entries_ac[i] = ac;
i++;
sum += vmm_sz;
tqe_q[ac] = wilc_wlan_txq_get_next(wilc,
tqe_q[ac],
ac);
}
}
num_pkts_to_add = ac_preserve_ratio;
} while (!max_size_over && ac_exist);
if (i == 0)
goto out_unlock;
vmm_table[i] = 0x0;
acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP);
counter = 0;
func = wilc->hif_func;
do {
ret = func->hif_read_reg(wilc, WILC_HOST_TX_CTRL, &reg);
if (ret)
break;
if ((reg & 0x1) == 0) {
ac_update_fw_ac_pkt_info(wilc, reg);
break;
}
counter++;
if (counter > 200) {
counter = 0;
ret = func->hif_write_reg(wilc, WILC_HOST_TX_CTRL, 0);
break;
}
} while (!wilc->quit);
if (ret)
goto out_release_bus;
timeout = 200;
do {
ret = func->hif_block_tx(wilc,
WILC_VMM_TBL_RX_SHADOW_BASE,
(u8 *)vmm_table,
((i + 1) * 4));
if (ret)
break;
ret = func->hif_write_reg(wilc, WILC_HOST_VMM_CTL, 0x2);
if (ret)
break;
do {
ret = func->hif_read_reg(wilc, WILC_HOST_VMM_CTL, &reg);
if (ret)
break;
if (FIELD_GET(WILC_VMM_ENTRY_AVAILABLE, reg)) {
entries = FIELD_GET(WILC_VMM_ENTRY_COUNT, reg);
break;
}
} while (--timeout);
if (timeout <= 0) {
ret = func->hif_write_reg(wilc, WILC_HOST_VMM_CTL, 0x0);
break;
}
if (ret)
break;
if (entries == 0) {
ret = func->hif_read_reg(wilc, WILC_HOST_TX_CTRL, &reg);
if (ret)
break;
reg &= ~BIT(0);
ret = func->hif_write_reg(wilc, WILC_HOST_TX_CTRL, reg);
}
} while (0);
if (ret)
goto out_release_bus;
if (entries == 0) {
/*
* No VMM space available in firmware so retry to transmit
* the packet from tx queue.
*/
ret = WILC_VMM_ENTRY_FULL_RETRY;
goto out_release_bus;
}
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
offset = 0;
i = 0;
do {
struct txq_entry_t *tqe;
u32 header, buffer_offset;
char *bssid;
u8 mgmt_ptk = 0;
tqe = wilc_wlan_txq_remove_from_head(wilc, vmm_entries_ac[i]);
ac_pkt_num_to_chip[vmm_entries_ac[i]]++;
if (!tqe)
break;
vif = tqe->vif;
if (vmm_table[i] == 0)
break;
le32_to_cpus(&vmm_table[i]);
vmm_sz = FIELD_GET(WILC_VMM_BUFFER_SIZE, vmm_table[i]);
vmm_sz *= 4;
if (tqe->type == WILC_MGMT_PKT)
mgmt_ptk = 1;
header = (FIELD_PREP(WILC_VMM_HDR_TYPE, tqe->type) |
FIELD_PREP(WILC_VMM_HDR_MGMT_FIELD, mgmt_ptk) |
FIELD_PREP(WILC_VMM_HDR_PKT_SIZE, tqe->buffer_size) |
FIELD_PREP(WILC_VMM_HDR_BUFF_SIZE, vmm_sz));
cpu_to_le32s(&header);
memcpy(&txb[offset], &header, 4);
if (tqe->type == WILC_CFG_PKT) {
buffer_offset = ETH_CONFIG_PKT_HDR_OFFSET;
} else if (tqe->type == WILC_NET_PKT) {
int prio = tqe->q_num;
bssid = tqe->vif->bssid;
buffer_offset = ETH_ETHERNET_HDR_OFFSET;
memcpy(&txb[offset + 4], &prio, sizeof(prio));
memcpy(&txb[offset + 8], bssid, 6);
} else {
buffer_offset = HOST_HDR_OFFSET;
}
memcpy(&txb[offset + buffer_offset],
tqe->buffer, tqe->buffer_size);
offset += vmm_sz;
i++;
tqe->status = 1;
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv, tqe->status);
if (tqe->ack_idx != NOT_TCP_ACK &&
tqe->ack_idx < MAX_PENDING_ACKS)
vif->ack_filter.pending_acks[tqe->ack_idx].txqe = NULL;
kfree(tqe);
} while (--entries);
for (i = 0; i < NQUEUES; i++)
wilc->txq[i].fw.count += ac_pkt_num_to_chip[i];
acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP);
ret = func->hif_clear_int_ext(wilc, ENABLE_TX_VMM);
if (ret)
goto out_release_bus;
ret = func->hif_block_tx_ext(wilc, 0, txb, offset);
out_release_bus:
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
out_unlock:
mutex_unlock(&wilc->txq_add_to_head_cs);
out_update_cnt:
*txq_count = wilc->txq_entries;
return ret;
}
static void wilc_wlan_handle_rx_buff(struct wilc *wilc, u8 *buffer, int size)
{
int offset = 0;
u32 header;
u32 pkt_len, pkt_offset, tp_len;
int is_cfg_packet;
u8 *buff_ptr;
do {
buff_ptr = buffer + offset;
header = get_unaligned_le32(buff_ptr);
is_cfg_packet = FIELD_GET(WILC_PKT_HDR_CONFIG_FIELD, header);
pkt_offset = FIELD_GET(WILC_PKT_HDR_OFFSET_FIELD, header);
tp_len = FIELD_GET(WILC_PKT_HDR_TOTAL_LEN_FIELD, header);
pkt_len = FIELD_GET(WILC_PKT_HDR_LEN_FIELD, header);
if (pkt_len == 0 || tp_len == 0)
break;
if (pkt_offset & IS_MANAGMEMENT) {
buff_ptr += HOST_HDR_OFFSET;
wilc_wfi_mgmt_rx(wilc, buff_ptr, pkt_len);
} else {
if (!is_cfg_packet) {
wilc_frmw_to_host(wilc, buff_ptr, pkt_len,
pkt_offset);
} else {
struct wilc_cfg_rsp rsp;
buff_ptr += pkt_offset;
wilc_wlan_cfg_indicate_rx(wilc, buff_ptr,
pkt_len,
&rsp);
if (rsp.type == WILC_CFG_RSP) {
if (wilc->cfg_seq_no == rsp.seq_no)
complete(&wilc->cfg_event);
} else if (rsp.type == WILC_CFG_RSP_STATUS) {
wilc_mac_indicate(wilc);
}
}
}
offset += tp_len;
} while (offset < size);
}
static void wilc_wlan_handle_rxq(struct wilc *wilc)
{
int size;
u8 *buffer;
struct rxq_entry_t *rqe;
while (!wilc->quit) {
rqe = wilc_wlan_rxq_remove(wilc);
if (!rqe)
break;
buffer = rqe->buffer;
size = rqe->buffer_size;
wilc_wlan_handle_rx_buff(wilc, buffer, size);
kfree(rqe);
}
if (wilc->quit)
complete(&wilc->cfg_event);
}
static void wilc_unknown_isr_ext(struct wilc *wilc)
{
wilc->hif_func->hif_clear_int_ext(wilc, 0);
}
static void wilc_wlan_handle_isr_ext(struct wilc *wilc, u32 int_status)
{
u32 offset = wilc->rx_buffer_offset;
u8 *buffer = NULL;
u32 size;
u32 retries = 0;
int ret = 0;
struct rxq_entry_t *rqe;
size = FIELD_GET(WILC_INTERRUPT_DATA_SIZE, int_status) << 2;
while (!size && retries < 10) {
wilc->hif_func->hif_read_size(wilc, &size);
size = FIELD_GET(WILC_INTERRUPT_DATA_SIZE, size) << 2;
retries++;
}
if (size <= 0)
return;
if (WILC_RX_BUFF_SIZE - offset < size)
offset = 0;
buffer = &wilc->rx_buffer[offset];
wilc->hif_func->hif_clear_int_ext(wilc, DATA_INT_CLR | ENABLE_RX_VMM);
ret = wilc->hif_func->hif_block_rx_ext(wilc, 0, buffer, size);
if (ret)
return;
offset += size;
wilc->rx_buffer_offset = offset;
rqe = kmalloc(sizeof(*rqe), GFP_KERNEL);
if (!rqe)
return;
rqe->buffer = buffer;
rqe->buffer_size = size;
wilc_wlan_rxq_add(wilc, rqe);
wilc_wlan_handle_rxq(wilc);
}
void wilc_handle_isr(struct wilc *wilc)
{
u32 int_status;
acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP);
wilc->hif_func->hif_read_int(wilc, &int_status);
if (int_status & DATA_INT_EXT)
wilc_wlan_handle_isr_ext(wilc, int_status);
if (!(int_status & (ALL_INT_EXT)))
wilc_unknown_isr_ext(wilc);
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
}
EXPORT_SYMBOL_GPL(wilc_handle_isr);
int wilc_wlan_firmware_download(struct wilc *wilc, const u8 *buffer,
u32 buffer_size)
{
u32 offset;
u32 addr, size, size2, blksz;
u8 *dma_buffer;
int ret = 0;
blksz = BIT(12);
dma_buffer = kmalloc(blksz, GFP_KERNEL);
if (!dma_buffer)
return -EIO;
offset = 0;
do {
addr = get_unaligned_le32(&buffer[offset]);
size = get_unaligned_le32(&buffer[offset + 4]);
acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY);
offset += 8;
while (((int)size) && (offset < buffer_size)) {
if (size <= blksz)
size2 = size;
else
size2 = blksz;
memcpy(dma_buffer, &buffer[offset], size2);
ret = wilc->hif_func->hif_block_tx(wilc, addr,
dma_buffer, size2);
if (ret)
break;
addr += size2;
offset += size2;
size -= size2;
}
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
if (ret)
goto fail;
} while (offset < buffer_size);
fail:
kfree(dma_buffer);
return ret;
}
int wilc_wlan_start(struct wilc *wilc)
{
u32 reg = 0;
int ret;
u32 chipid;
if (wilc->io_type == WILC_HIF_SDIO) {
reg = 0;
reg |= BIT(3);
} else if (wilc->io_type == WILC_HIF_SPI) {
reg = 1;
}
acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY);
ret = wilc->hif_func->hif_write_reg(wilc, WILC_VMM_CORE_CFG, reg);
if (ret) {
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
return ret;
}
reg = 0;
if (wilc->io_type == WILC_HIF_SDIO && wilc->dev_irq_num)
reg |= WILC_HAVE_SDIO_IRQ_GPIO;
ret = wilc->hif_func->hif_write_reg(wilc, WILC_GP_REG_1, reg);
if (ret) {
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
return ret;
}
wilc->hif_func->hif_sync_ext(wilc, NUM_INT_EXT);
ret = wilc->hif_func->hif_read_reg(wilc, WILC_CHIPID, &chipid);
if (ret) {
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
return ret;
}
wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, &reg);
if ((reg & BIT(10)) == BIT(10)) {
reg &= ~BIT(10);
wilc->hif_func->hif_write_reg(wilc, WILC_GLB_RESET_0, reg);
wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, &reg);
}
reg |= BIT(10);
ret = wilc->hif_func->hif_write_reg(wilc, WILC_GLB_RESET_0, reg);
wilc->hif_func->hif_read_reg(wilc, WILC_GLB_RESET_0, &reg);
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
return ret;
}
int wilc_wlan_stop(struct wilc *wilc, struct wilc_vif *vif)
{
u32 reg = 0;
int ret;
acquire_bus(wilc, WILC_BUS_ACQUIRE_AND_WAKEUP);
ret = wilc->hif_func->hif_read_reg(wilc, WILC_GP_REG_0, &reg);
if (ret) {
netdev_err(vif->ndev, "Error while reading reg\n");
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
return ret;
}
ret = wilc->hif_func->hif_write_reg(wilc, WILC_GP_REG_0,
(reg | WILC_ABORT_REQ_BIT));
if (ret) {
netdev_err(vif->ndev, "Error while writing reg\n");
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
return ret;
}
ret = wilc->hif_func->hif_read_reg(wilc, WILC_FW_HOST_COMM, &reg);
if (ret) {
netdev_err(vif->ndev, "Error while reading reg\n");
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
return ret;
}
reg = BIT(0);
ret = wilc->hif_func->hif_write_reg(wilc, WILC_FW_HOST_COMM, reg);
if (ret) {
netdev_err(vif->ndev, "Error while writing reg\n");
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
return ret;
}
release_bus(wilc, WILC_BUS_RELEASE_ALLOW_SLEEP);
return 0;
}
void wilc_wlan_cleanup(struct net_device *dev)
{
struct txq_entry_t *tqe;
struct rxq_entry_t *rqe;
u8 ac;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc = vif->wilc;
wilc->quit = 1;
for (ac = 0; ac < NQUEUES; ac++) {
while ((tqe = wilc_wlan_txq_remove_from_head(wilc, ac))) {
if (tqe->tx_complete_func)
tqe->tx_complete_func(tqe->priv, 0);
kfree(tqe);
}
}
while ((rqe = wilc_wlan_rxq_remove(wilc)))
kfree(rqe);
kfree(wilc->rx_buffer);
wilc->rx_buffer = NULL;
kfree(wilc->tx_buffer);
wilc->tx_buffer = NULL;
wilc->hif_func->hif_deinit(NULL);
}
static int wilc_wlan_cfg_commit(struct wilc_vif *vif, int type,
u32 drv_handler)
{
struct wilc *wilc = vif->wilc;
struct wilc_cfg_frame *cfg = &wilc->cfg_frame;
int t_len = wilc->cfg_frame_offset + sizeof(struct wilc_cfg_cmd_hdr);
if (type == WILC_CFG_SET)
cfg->hdr.cmd_type = 'W';
else
cfg->hdr.cmd_type = 'Q';
cfg->hdr.seq_no = wilc->cfg_seq_no % 256;
cfg->hdr.total_len = cpu_to_le16(t_len);
cfg->hdr.driver_handler = cpu_to_le32(drv_handler);
wilc->cfg_seq_no = cfg->hdr.seq_no;
if (!wilc_wlan_txq_add_cfg_pkt(vif, (u8 *)&cfg->hdr, t_len))
return -1;
return 0;
}
int wilc_wlan_cfg_set(struct wilc_vif *vif, int start, u16 wid, u8 *buffer,
u32 buffer_size, int commit, u32 drv_handler)
{
u32 offset;
int ret_size;
struct wilc *wilc = vif->wilc;
mutex_lock(&wilc->cfg_cmd_lock);
if (start)
wilc->cfg_frame_offset = 0;
offset = wilc->cfg_frame_offset;
ret_size = wilc_wlan_cfg_set_wid(wilc->cfg_frame.frame, offset,
wid, buffer, buffer_size);
offset += ret_size;
wilc->cfg_frame_offset = offset;
if (!commit) {
mutex_unlock(&wilc->cfg_cmd_lock);
return ret_size;
}
netdev_dbg(vif->ndev, "%s: seqno[%d]\n", __func__, wilc->cfg_seq_no);
if (wilc_wlan_cfg_commit(vif, WILC_CFG_SET, drv_handler))
ret_size = 0;
if (!wait_for_completion_timeout(&wilc->cfg_event,
WILC_CFG_PKTS_TIMEOUT)) {
netdev_dbg(vif->ndev, "%s: Timed Out\n", __func__);
ret_size = 0;
}
wilc->cfg_frame_offset = 0;
wilc->cfg_seq_no += 1;
mutex_unlock(&wilc->cfg_cmd_lock);
return ret_size;
}
int wilc_wlan_cfg_get(struct wilc_vif *vif, int start, u16 wid, int commit,
u32 drv_handler)
{
u32 offset;
int ret_size;
struct wilc *wilc = vif->wilc;
mutex_lock(&wilc->cfg_cmd_lock);
if (start)
wilc->cfg_frame_offset = 0;
offset = wilc->cfg_frame_offset;
ret_size = wilc_wlan_cfg_get_wid(wilc->cfg_frame.frame, offset, wid);
offset += ret_size;
wilc->cfg_frame_offset = offset;
if (!commit) {
mutex_unlock(&wilc->cfg_cmd_lock);
return ret_size;
}
if (wilc_wlan_cfg_commit(vif, WILC_CFG_QUERY, drv_handler))
ret_size = 0;
if (!wait_for_completion_timeout(&wilc->cfg_event,
WILC_CFG_PKTS_TIMEOUT)) {
netdev_dbg(vif->ndev, "%s: Timed Out\n", __func__);
ret_size = 0;
}
wilc->cfg_frame_offset = 0;
wilc->cfg_seq_no += 1;
mutex_unlock(&wilc->cfg_cmd_lock);
return ret_size;
}
int wilc_send_config_pkt(struct wilc_vif *vif, u8 mode, struct wid *wids,
u32 count)
{
int i;
int ret = 0;
u32 drv = wilc_get_vif_idx(vif);
if (mode == WILC_GET_CFG) {
for (i = 0; i < count; i++) {
if (!wilc_wlan_cfg_get(vif, !i,
wids[i].id,
(i == count - 1),
drv)) {
ret = -ETIMEDOUT;
break;
}
}
for (i = 0; i < count; i++) {
wids[i].size = wilc_wlan_cfg_get_val(vif->wilc,
wids[i].id,
wids[i].val,
wids[i].size);
}
} else if (mode == WILC_SET_CFG) {
for (i = 0; i < count; i++) {
if (!wilc_wlan_cfg_set(vif, !i,
wids[i].id,
wids[i].val,
wids[i].size,
(i == count - 1),
drv)) {
ret = -ETIMEDOUT;
break;
}
}
}
return ret;
}
static int init_chip(struct net_device *dev)
{
u32 chipid;
u32 reg;
int ret = 0;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc = vif->wilc;
acquire_bus(wilc, WILC_BUS_ACQUIRE_ONLY);
chipid = wilc_get_chipid(wilc, true);
if ((chipid & 0xfff) != 0xa0) {
ret = wilc->hif_func->hif_read_reg(wilc,
WILC_CORTUS_RESET_MUX_SEL,
&reg);
if (ret) {
netdev_err(dev, "fail read reg 0x1118\n");
goto release;
}
reg |= BIT(0);
ret = wilc->hif_func->hif_write_reg(wilc,
WILC_CORTUS_RESET_MUX_SEL,
reg);
if (ret) {
netdev_err(dev, "fail write reg 0x1118\n");
goto release;
}
ret = wilc->hif_func->hif_write_reg(wilc,
WILC_CORTUS_BOOT_REGISTER,
WILC_CORTUS_BOOT_FROM_IRAM);
if (ret) {
netdev_err(dev, "fail write reg 0xc0000\n");
goto release;
}
}
release:
release_bus(wilc, WILC_BUS_RELEASE_ONLY);
return ret;
}
u32 wilc_get_chipid(struct wilc *wilc, bool update)
{
static u32 chipid;
u32 tempchipid = 0;
u32 rfrevid = 0;
if (chipid == 0 || update) {
wilc->hif_func->hif_read_reg(wilc, WILC_CHIPID, &tempchipid);
wilc->hif_func->hif_read_reg(wilc, WILC_RF_REVISION_ID,
&rfrevid);
if (!is_wilc1000(tempchipid)) {
chipid = 0;
return chipid;
}
if (tempchipid == WILC_1000_BASE_ID_2A) { /* 0x1002A0 */
if (rfrevid != 0x1)
tempchipid = WILC_1000_BASE_ID_2A_REV1;
} else if (tempchipid == WILC_1000_BASE_ID_2B) { /* 0x1002B0 */
if (rfrevid == 0x4)
tempchipid = WILC_1000_BASE_ID_2B_REV1;
else if (rfrevid != 0x3)
tempchipid = WILC_1000_BASE_ID_2B_REV2;
}
chipid = tempchipid;
}
return chipid;
}
int wilc_wlan_init(struct net_device *dev)
{
int ret = 0;
struct wilc_vif *vif = netdev_priv(dev);
struct wilc *wilc;
wilc = vif->wilc;
wilc->quit = 0;
if (wilc->hif_func->hif_init(wilc, false)) {
ret = -EIO;
goto fail;
}
if (!wilc->tx_buffer)
wilc->tx_buffer = kmalloc(WILC_TX_BUFF_SIZE, GFP_KERNEL);
if (!wilc->tx_buffer) {
ret = -ENOBUFS;
goto fail;
}
if (!wilc->rx_buffer)
wilc->rx_buffer = kmalloc(WILC_RX_BUFF_SIZE, GFP_KERNEL);
if (!wilc->rx_buffer) {
ret = -ENOBUFS;
goto fail;
}
if (init_chip(dev)) {
ret = -EIO;
goto fail;
}
return 0;
fail:
kfree(wilc->rx_buffer);
wilc->rx_buffer = NULL;
kfree(wilc->tx_buffer);
wilc->tx_buffer = NULL;
return ret;
}