|  | /* | 
|  | * linux/kernel/posix_timers.c | 
|  | * | 
|  | * | 
|  | * 2002-10-15  Posix Clocks & timers | 
|  | *                           by George Anzinger george@mvista.com | 
|  | * | 
|  | *			     Copyright (C) 2002 2003 by MontaVista Software. | 
|  | * | 
|  | * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. | 
|  | *			     Copyright (C) 2004 Boris Hu | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or (at | 
|  | * your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
|  | * General Public License for more details. | 
|  |  | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA | 
|  | */ | 
|  |  | 
|  | /* These are all the functions necessary to implement | 
|  | * POSIX clocks & timers | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/time.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/semaphore.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #ifndef div_long_long_rem | 
|  | #include <asm/div64.h> | 
|  |  | 
|  | #define div_long_long_rem(dividend,divisor,remainder) ({ \ | 
|  | u64 result = dividend;		\ | 
|  | *remainder = do_div(result,divisor); \ | 
|  | result; }) | 
|  |  | 
|  | #endif | 
|  | #define CLOCK_REALTIME_RES TICK_NSEC  /* In nano seconds. */ | 
|  |  | 
|  | static inline u64  mpy_l_X_l_ll(unsigned long mpy1,unsigned long mpy2) | 
|  | { | 
|  | return (u64)mpy1 * mpy2; | 
|  | } | 
|  | /* | 
|  | * Management arrays for POSIX timers.	 Timers are kept in slab memory | 
|  | * Timer ids are allocated by an external routine that keeps track of the | 
|  | * id and the timer.  The external interface is: | 
|  | * | 
|  | * void *idr_find(struct idr *idp, int id);           to find timer_id <id> | 
|  | * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and | 
|  | *                                                    related it to <ptr> | 
|  | * void idr_remove(struct idr *idp, int id);          to release <id> | 
|  | * void idr_init(struct idr *idp);                    to initialize <idp> | 
|  | *                                                    which we supply. | 
|  | * The idr_get_new *may* call slab for more memory so it must not be | 
|  | * called under a spin lock.  Likewise idr_remore may release memory | 
|  | * (but it may be ok to do this under a lock...). | 
|  | * idr_find is just a memory look up and is quite fast.  A -1 return | 
|  | * indicates that the requested id does not exist. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Lets keep our timers in a slab cache :-) | 
|  | */ | 
|  | static kmem_cache_t *posix_timers_cache; | 
|  | static struct idr posix_timers_id; | 
|  | static DEFINE_SPINLOCK(idr_lock); | 
|  |  | 
|  | /* | 
|  | * we assume that the new SIGEV_THREAD_ID shares no bits with the other | 
|  | * SIGEV values.  Here we put out an error if this assumption fails. | 
|  | */ | 
|  | #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ | 
|  | ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) | 
|  | #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The timer ID is turned into a timer address by idr_find(). | 
|  | * Verifying a valid ID consists of: | 
|  | * | 
|  | * a) checking that idr_find() returns other than -1. | 
|  | * b) checking that the timer id matches the one in the timer itself. | 
|  | * c) that the timer owner is in the callers thread group. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * CLOCKs: The POSIX standard calls for a couple of clocks and allows us | 
|  | *	    to implement others.  This structure defines the various | 
|  | *	    clocks and allows the possibility of adding others.	 We | 
|  | *	    provide an interface to add clocks to the table and expect | 
|  | *	    the "arch" code to add at least one clock that is high | 
|  | *	    resolution.	 Here we define the standard CLOCK_REALTIME as a | 
|  | *	    1/HZ resolution clock. | 
|  | * | 
|  | * RESOLUTION: Clock resolution is used to round up timer and interval | 
|  | *	    times, NOT to report clock times, which are reported with as | 
|  | *	    much resolution as the system can muster.  In some cases this | 
|  | *	    resolution may depend on the underlying clock hardware and | 
|  | *	    may not be quantifiable until run time, and only then is the | 
|  | *	    necessary code is written.	The standard says we should say | 
|  | *	    something about this issue in the documentation... | 
|  | * | 
|  | * FUNCTIONS: The CLOCKs structure defines possible functions to handle | 
|  | *	    various clock functions.  For clocks that use the standard | 
|  | *	    system timer code these entries should be NULL.  This will | 
|  | *	    allow dispatch without the overhead of indirect function | 
|  | *	    calls.  CLOCKS that depend on other sources (e.g. WWV or GPS) | 
|  | *	    must supply functions here, even if the function just returns | 
|  | *	    ENOSYS.  The standard POSIX timer management code assumes the | 
|  | *	    following: 1.) The k_itimer struct (sched.h) is used for the | 
|  | *	    timer.  2.) The list, it_lock, it_clock, it_id and it_process | 
|  | *	    fields are not modified by timer code. | 
|  | * | 
|  | *          At this time all functions EXCEPT clock_nanosleep can be | 
|  | *          redirected by the CLOCKS structure.  Clock_nanosleep is in | 
|  | *          there, but the code ignores it. | 
|  | * | 
|  | * Permissions: It is assumed that the clock_settime() function defined | 
|  | *	    for each clock will take care of permission checks.	 Some | 
|  | *	    clocks may be set able by any user (i.e. local process | 
|  | *	    clocks) others not.	 Currently the only set able clock we | 
|  | *	    have is CLOCK_REALTIME and its high res counter part, both of | 
|  | *	    which we beg off on and pass to do_sys_settimeofday(). | 
|  | */ | 
|  |  | 
|  | static struct k_clock posix_clocks[MAX_CLOCKS]; | 
|  | /* | 
|  | * We only have one real clock that can be set so we need only one abs list, | 
|  | * even if we should want to have several clocks with differing resolutions. | 
|  | */ | 
|  | static struct k_clock_abs abs_list = {.list = LIST_HEAD_INIT(abs_list.list), | 
|  | .lock = SPIN_LOCK_UNLOCKED}; | 
|  |  | 
|  | static void posix_timer_fn(unsigned long); | 
|  | static u64 do_posix_clock_monotonic_gettime_parts( | 
|  | struct timespec *tp, struct timespec *mo); | 
|  | int do_posix_clock_monotonic_gettime(struct timespec *tp); | 
|  | static int do_posix_clock_monotonic_get(clockid_t, struct timespec *tp); | 
|  |  | 
|  | static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags); | 
|  |  | 
|  | static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) | 
|  | { | 
|  | spin_unlock_irqrestore(&timr->it_lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call the k_clock hook function if non-null, or the default function. | 
|  | */ | 
|  | #define CLOCK_DISPATCH(clock, call, arglist) \ | 
|  | ((clock) < 0 ? posix_cpu_##call arglist : \ | 
|  | (posix_clocks[clock].call != NULL \ | 
|  | ? (*posix_clocks[clock].call) arglist : common_##call arglist)) | 
|  |  | 
|  | /* | 
|  | * Default clock hook functions when the struct k_clock passed | 
|  | * to register_posix_clock leaves a function pointer null. | 
|  | * | 
|  | * The function common_CALL is the default implementation for | 
|  | * the function pointer CALL in struct k_clock. | 
|  | */ | 
|  |  | 
|  | static inline int common_clock_getres(clockid_t which_clock, | 
|  | struct timespec *tp) | 
|  | { | 
|  | tp->tv_sec = 0; | 
|  | tp->tv_nsec = posix_clocks[which_clock].res; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int common_clock_get(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | getnstimeofday(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int common_clock_set(clockid_t which_clock, struct timespec *tp) | 
|  | { | 
|  | return do_sys_settimeofday(tp, NULL); | 
|  | } | 
|  |  | 
|  | static inline int common_timer_create(struct k_itimer *new_timer) | 
|  | { | 
|  | INIT_LIST_HEAD(&new_timer->it.real.abs_timer_entry); | 
|  | init_timer(&new_timer->it.real.timer); | 
|  | new_timer->it.real.timer.data = (unsigned long) new_timer; | 
|  | new_timer->it.real.timer.function = posix_timer_fn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These ones are defined below. | 
|  | */ | 
|  | static int common_nsleep(clockid_t, int flags, struct timespec *t); | 
|  | static void common_timer_get(struct k_itimer *, struct itimerspec *); | 
|  | static int common_timer_set(struct k_itimer *, int, | 
|  | struct itimerspec *, struct itimerspec *); | 
|  | static int common_timer_del(struct k_itimer *timer); | 
|  |  | 
|  | /* | 
|  | * Return nonzero iff we know a priori this clockid_t value is bogus. | 
|  | */ | 
|  | static inline int invalid_clockid(clockid_t which_clock) | 
|  | { | 
|  | if (which_clock < 0)	/* CPU clock, posix_cpu_* will check it */ | 
|  | return 0; | 
|  | if ((unsigned) which_clock >= MAX_CLOCKS) | 
|  | return 1; | 
|  | if (posix_clocks[which_clock].clock_getres != NULL) | 
|  | return 0; | 
|  | #ifndef CLOCK_DISPATCH_DIRECT | 
|  | if (posix_clocks[which_clock].res != 0) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize everything, well, just everything in Posix clocks/timers ;) | 
|  | */ | 
|  | static __init int init_posix_timers(void) | 
|  | { | 
|  | struct k_clock clock_realtime = {.res = CLOCK_REALTIME_RES, | 
|  | .abs_struct = &abs_list | 
|  | }; | 
|  | struct k_clock clock_monotonic = {.res = CLOCK_REALTIME_RES, | 
|  | .abs_struct = NULL, | 
|  | .clock_get = do_posix_clock_monotonic_get, | 
|  | .clock_set = do_posix_clock_nosettime | 
|  | }; | 
|  |  | 
|  | register_posix_clock(CLOCK_REALTIME, &clock_realtime); | 
|  | register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic); | 
|  |  | 
|  | posix_timers_cache = kmem_cache_create("posix_timers_cache", | 
|  | sizeof (struct k_itimer), 0, 0, NULL, NULL); | 
|  | idr_init(&posix_timers_id); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(init_posix_timers); | 
|  |  | 
|  | static void tstojiffie(struct timespec *tp, int res, u64 *jiff) | 
|  | { | 
|  | long sec = tp->tv_sec; | 
|  | long nsec = tp->tv_nsec + res - 1; | 
|  |  | 
|  | if (nsec > NSEC_PER_SEC) { | 
|  | sec++; | 
|  | nsec -= NSEC_PER_SEC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The scaling constants are defined in <linux/time.h> | 
|  | * The difference between there and here is that we do the | 
|  | * res rounding and compute a 64-bit result (well so does that | 
|  | * but it then throws away the high bits). | 
|  | */ | 
|  | *jiff =  (mpy_l_X_l_ll(sec, SEC_CONVERSION) + | 
|  | (mpy_l_X_l_ll(nsec, NSEC_CONVERSION) >> | 
|  | (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function adjusts the timer as needed as a result of the clock | 
|  | * being set.  It should only be called for absolute timers, and then | 
|  | * under the abs_list lock.  It computes the time difference and sets | 
|  | * the new jiffies value in the timer.  It also updates the timers | 
|  | * reference wall_to_monotonic value.  It is complicated by the fact | 
|  | * that tstojiffies() only handles positive times and it needs to work | 
|  | * with both positive and negative times.  Also, for negative offsets, | 
|  | * we need to defeat the res round up. | 
|  | * | 
|  | * Return is true if there is a new time, else false. | 
|  | */ | 
|  | static long add_clockset_delta(struct k_itimer *timr, | 
|  | struct timespec *new_wall_to) | 
|  | { | 
|  | struct timespec delta; | 
|  | int sign = 0; | 
|  | u64 exp; | 
|  |  | 
|  | set_normalized_timespec(&delta, | 
|  | new_wall_to->tv_sec - | 
|  | timr->it.real.wall_to_prev.tv_sec, | 
|  | new_wall_to->tv_nsec - | 
|  | timr->it.real.wall_to_prev.tv_nsec); | 
|  | if (likely(!(delta.tv_sec | delta.tv_nsec))) | 
|  | return 0; | 
|  | if (delta.tv_sec < 0) { | 
|  | set_normalized_timespec(&delta, | 
|  | -delta.tv_sec, | 
|  | 1 - delta.tv_nsec - | 
|  | posix_clocks[timr->it_clock].res); | 
|  | sign++; | 
|  | } | 
|  | tstojiffie(&delta, posix_clocks[timr->it_clock].res, &exp); | 
|  | timr->it.real.wall_to_prev = *new_wall_to; | 
|  | timr->it.real.timer.expires += (sign ? -exp : exp); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void remove_from_abslist(struct k_itimer *timr) | 
|  | { | 
|  | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | spin_lock(&abs_list.lock); | 
|  | list_del_init(&timr->it.real.abs_timer_entry); | 
|  | spin_unlock(&abs_list.lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void schedule_next_timer(struct k_itimer *timr) | 
|  | { | 
|  | struct timespec new_wall_to; | 
|  | struct now_struct now; | 
|  | unsigned long seq; | 
|  |  | 
|  | /* | 
|  | * Set up the timer for the next interval (if there is one). | 
|  | * Note: this code uses the abs_timer_lock to protect | 
|  | * it.real.wall_to_prev and must hold it until exp is set, not exactly | 
|  | * obvious... | 
|  |  | 
|  | * This function is used for CLOCK_REALTIME* and | 
|  | * CLOCK_MONOTONIC* timers.  If we ever want to handle other | 
|  | * CLOCKs, the calling code (do_schedule_next_timer) would need | 
|  | * to pull the "clock" info from the timer and dispatch the | 
|  | * "other" CLOCKs "next timer" code (which, I suppose should | 
|  | * also be added to the k_clock structure). | 
|  | */ | 
|  | if (!timr->it.real.incr) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | new_wall_to =	wall_to_monotonic; | 
|  | posix_get_now(&now); | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | spin_lock(&abs_list.lock); | 
|  | add_clockset_delta(timr, &new_wall_to); | 
|  |  | 
|  | posix_bump_timer(timr, now); | 
|  |  | 
|  | spin_unlock(&abs_list.lock); | 
|  | } else { | 
|  | posix_bump_timer(timr, now); | 
|  | } | 
|  | timr->it_overrun_last = timr->it_overrun; | 
|  | timr->it_overrun = -1; | 
|  | ++timr->it_requeue_pending; | 
|  | add_timer(&timr->it.real.timer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is exported for use by the signal deliver code.  It is | 
|  | * called just prior to the info block being released and passes that | 
|  | * block to us.  It's function is to update the overrun entry AND to | 
|  | * restart the timer.  It should only be called if the timer is to be | 
|  | * restarted (i.e. we have flagged this in the sys_private entry of the | 
|  | * info block). | 
|  | * | 
|  | * To protect aginst the timer going away while the interrupt is queued, | 
|  | * we require that the it_requeue_pending flag be set. | 
|  | */ | 
|  | void do_schedule_next_timer(struct siginfo *info) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | unsigned long flags; | 
|  |  | 
|  | timr = lock_timer(info->si_tid, &flags); | 
|  |  | 
|  | if (!timr || timr->it_requeue_pending != info->si_sys_private) | 
|  | goto exit; | 
|  |  | 
|  | if (timr->it_clock < 0)	/* CPU clock */ | 
|  | posix_cpu_timer_schedule(timr); | 
|  | else | 
|  | schedule_next_timer(timr); | 
|  | info->si_overrun = timr->it_overrun_last; | 
|  | exit: | 
|  | if (timr) | 
|  | unlock_timer(timr, flags); | 
|  | } | 
|  |  | 
|  | int posix_timer_event(struct k_itimer *timr,int si_private) | 
|  | { | 
|  | memset(&timr->sigq->info, 0, sizeof(siginfo_t)); | 
|  | timr->sigq->info.si_sys_private = si_private; | 
|  | /* | 
|  | * Send signal to the process that owns this timer. | 
|  |  | 
|  | * This code assumes that all the possible abs_lists share the | 
|  | * same lock (there is only one list at this time). If this is | 
|  | * not the case, the CLOCK info would need to be used to find | 
|  | * the proper abs list lock. | 
|  | */ | 
|  |  | 
|  | timr->sigq->info.si_signo = timr->it_sigev_signo; | 
|  | timr->sigq->info.si_errno = 0; | 
|  | timr->sigq->info.si_code = SI_TIMER; | 
|  | timr->sigq->info.si_tid = timr->it_id; | 
|  | timr->sigq->info.si_value = timr->it_sigev_value; | 
|  | if (timr->it_sigev_notify & SIGEV_THREAD_ID) { | 
|  | if (unlikely(timr->it_process->flags & PF_EXITING)) { | 
|  | timr->it_sigev_notify = SIGEV_SIGNAL; | 
|  | put_task_struct(timr->it_process); | 
|  | timr->it_process = timr->it_process->group_leader; | 
|  | goto group; | 
|  | } | 
|  | return send_sigqueue(timr->it_sigev_signo, timr->sigq, | 
|  | timr->it_process); | 
|  | } | 
|  | else { | 
|  | group: | 
|  | return send_group_sigqueue(timr->it_sigev_signo, timr->sigq, | 
|  | timr->it_process); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(posix_timer_event); | 
|  |  | 
|  | /* | 
|  | * This function gets called when a POSIX.1b interval timer expires.  It | 
|  | * is used as a callback from the kernel internal timer.  The | 
|  | * run_timer_list code ALWAYS calls with interrupts on. | 
|  |  | 
|  | * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. | 
|  | */ | 
|  | static void posix_timer_fn(unsigned long __data) | 
|  | { | 
|  | struct k_itimer *timr = (struct k_itimer *) __data; | 
|  | unsigned long flags; | 
|  | unsigned long seq; | 
|  | struct timespec delta, new_wall_to; | 
|  | u64 exp = 0; | 
|  | int do_notify = 1; | 
|  |  | 
|  | spin_lock_irqsave(&timr->it_lock, flags); | 
|  | if (!list_empty(&timr->it.real.abs_timer_entry)) { | 
|  | spin_lock(&abs_list.lock); | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | new_wall_to =	wall_to_monotonic; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  | set_normalized_timespec(&delta, | 
|  | new_wall_to.tv_sec - | 
|  | timr->it.real.wall_to_prev.tv_sec, | 
|  | new_wall_to.tv_nsec - | 
|  | timr->it.real.wall_to_prev.tv_nsec); | 
|  | if (likely((delta.tv_sec | delta.tv_nsec ) == 0)) { | 
|  | /* do nothing, timer is on time */ | 
|  | } else if (delta.tv_sec < 0) { | 
|  | /* do nothing, timer is already late */ | 
|  | } else { | 
|  | /* timer is early due to a clock set */ | 
|  | tstojiffie(&delta, | 
|  | posix_clocks[timr->it_clock].res, | 
|  | &exp); | 
|  | timr->it.real.wall_to_prev = new_wall_to; | 
|  | timr->it.real.timer.expires += exp; | 
|  | add_timer(&timr->it.real.timer); | 
|  | do_notify = 0; | 
|  | } | 
|  | spin_unlock(&abs_list.lock); | 
|  |  | 
|  | } | 
|  | if (do_notify)  { | 
|  | int si_private=0; | 
|  |  | 
|  | if (timr->it.real.incr) | 
|  | si_private = ++timr->it_requeue_pending; | 
|  | else { | 
|  | remove_from_abslist(timr); | 
|  | } | 
|  |  | 
|  | if (posix_timer_event(timr, si_private)) | 
|  | /* | 
|  | * signal was not sent because of sig_ignor | 
|  | * we will not get a call back to restart it AND | 
|  | * it should be restarted. | 
|  | */ | 
|  | schedule_next_timer(timr); | 
|  | } | 
|  | unlock_timer(timr, flags); /* hold thru abs lock to keep irq off */ | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline struct task_struct * good_sigevent(sigevent_t * event) | 
|  | { | 
|  | struct task_struct *rtn = current->group_leader; | 
|  |  | 
|  | if ((event->sigev_notify & SIGEV_THREAD_ID ) && | 
|  | (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) || | 
|  | rtn->tgid != current->tgid || | 
|  | (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL)) | 
|  | return NULL; | 
|  |  | 
|  | if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) && | 
|  | ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX))) | 
|  | return NULL; | 
|  |  | 
|  | return rtn; | 
|  | } | 
|  |  | 
|  | void register_posix_clock(clockid_t clock_id, struct k_clock *new_clock) | 
|  | { | 
|  | if ((unsigned) clock_id >= MAX_CLOCKS) { | 
|  | printk("POSIX clock register failed for clock_id %d\n", | 
|  | clock_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | posix_clocks[clock_id] = *new_clock; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_posix_clock); | 
|  |  | 
|  | static struct k_itimer * alloc_posix_timer(void) | 
|  | { | 
|  | struct k_itimer *tmr; | 
|  | tmr = kmem_cache_alloc(posix_timers_cache, GFP_KERNEL); | 
|  | if (!tmr) | 
|  | return tmr; | 
|  | memset(tmr, 0, sizeof (struct k_itimer)); | 
|  | if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { | 
|  | kmem_cache_free(posix_timers_cache, tmr); | 
|  | tmr = NULL; | 
|  | } | 
|  | return tmr; | 
|  | } | 
|  |  | 
|  | #define IT_ID_SET	1 | 
|  | #define IT_ID_NOT_SET	0 | 
|  | static void release_posix_timer(struct k_itimer *tmr, int it_id_set) | 
|  | { | 
|  | if (it_id_set) { | 
|  | unsigned long flags; | 
|  | spin_lock_irqsave(&idr_lock, flags); | 
|  | idr_remove(&posix_timers_id, tmr->it_id); | 
|  | spin_unlock_irqrestore(&idr_lock, flags); | 
|  | } | 
|  | sigqueue_free(tmr->sigq); | 
|  | if (unlikely(tmr->it_process) && | 
|  | tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | put_task_struct(tmr->it_process); | 
|  | kmem_cache_free(posix_timers_cache, tmr); | 
|  | } | 
|  |  | 
|  | /* Create a POSIX.1b interval timer. */ | 
|  |  | 
|  | asmlinkage long | 
|  | sys_timer_create(clockid_t which_clock, | 
|  | struct sigevent __user *timer_event_spec, | 
|  | timer_t __user * created_timer_id) | 
|  | { | 
|  | int error = 0; | 
|  | struct k_itimer *new_timer = NULL; | 
|  | int new_timer_id; | 
|  | struct task_struct *process = NULL; | 
|  | unsigned long flags; | 
|  | sigevent_t event; | 
|  | int it_id_set = IT_ID_NOT_SET; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | new_timer = alloc_posix_timer(); | 
|  | if (unlikely(!new_timer)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | spin_lock_init(&new_timer->it_lock); | 
|  | retry: | 
|  | if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) { | 
|  | error = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | spin_lock_irq(&idr_lock); | 
|  | error = idr_get_new(&posix_timers_id, | 
|  | (void *) new_timer, | 
|  | &new_timer_id); | 
|  | spin_unlock_irq(&idr_lock); | 
|  | if (error == -EAGAIN) | 
|  | goto retry; | 
|  | else if (error) { | 
|  | /* | 
|  | * Wierd looking, but we return EAGAIN if the IDR is | 
|  | * full (proper POSIX return value for this) | 
|  | */ | 
|  | error = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | it_id_set = IT_ID_SET; | 
|  | new_timer->it_id = (timer_t) new_timer_id; | 
|  | new_timer->it_clock = which_clock; | 
|  | new_timer->it_overrun = -1; | 
|  | error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer)); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * return the timer_id now.  The next step is hard to | 
|  | * back out if there is an error. | 
|  | */ | 
|  | if (copy_to_user(created_timer_id, | 
|  | &new_timer_id, sizeof (new_timer_id))) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | if (timer_event_spec) { | 
|  | if (copy_from_user(&event, timer_event_spec, sizeof (event))) { | 
|  | error = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | new_timer->it_sigev_notify = event.sigev_notify; | 
|  | new_timer->it_sigev_signo = event.sigev_signo; | 
|  | new_timer->it_sigev_value = event.sigev_value; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | if ((process = good_sigevent(&event))) { | 
|  | /* | 
|  | * We may be setting up this process for another | 
|  | * thread.  It may be exiting.  To catch this | 
|  | * case the we check the PF_EXITING flag.  If | 
|  | * the flag is not set, the siglock will catch | 
|  | * him before it is too late (in exit_itimers). | 
|  | * | 
|  | * The exec case is a bit more invloved but easy | 
|  | * to code.  If the process is in our thread | 
|  | * group (and it must be or we would not allow | 
|  | * it here) and is doing an exec, it will cause | 
|  | * us to be killed.  In this case it will wait | 
|  | * for us to die which means we can finish this | 
|  | * linkage with our last gasp. I.e. no code :) | 
|  | */ | 
|  | spin_lock_irqsave(&process->sighand->siglock, flags); | 
|  | if (!(process->flags & PF_EXITING)) { | 
|  | new_timer->it_process = process; | 
|  | list_add(&new_timer->list, | 
|  | &process->signal->posix_timers); | 
|  | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | get_task_struct(process); | 
|  | } else { | 
|  | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | process = NULL; | 
|  | } | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | if (!process) { | 
|  | error = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | new_timer->it_sigev_notify = SIGEV_SIGNAL; | 
|  | new_timer->it_sigev_signo = SIGALRM; | 
|  | new_timer->it_sigev_value.sival_int = new_timer->it_id; | 
|  | process = current->group_leader; | 
|  | spin_lock_irqsave(&process->sighand->siglock, flags); | 
|  | new_timer->it_process = process; | 
|  | list_add(&new_timer->list, &process->signal->posix_timers); | 
|  | spin_unlock_irqrestore(&process->sighand->siglock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the case of the timer belonging to another task, after | 
|  | * the task is unlocked, the timer is owned by the other task | 
|  | * and may cease to exist at any time.  Don't use or modify | 
|  | * new_timer after the unlock call. | 
|  | */ | 
|  |  | 
|  | out: | 
|  | if (error) | 
|  | release_posix_timer(new_timer, it_id_set); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * good_timespec | 
|  | * | 
|  | * This function checks the elements of a timespec structure. | 
|  | * | 
|  | * Arguments: | 
|  | * ts	     : Pointer to the timespec structure to check | 
|  | * | 
|  | * Return value: | 
|  | * If a NULL pointer was passed in, or the tv_nsec field was less than 0 | 
|  | * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0, | 
|  | * this function returns 0. Otherwise it returns 1. | 
|  | */ | 
|  | static int good_timespec(const struct timespec *ts) | 
|  | { | 
|  | if ((!ts) || (ts->tv_sec < 0) || | 
|  | ((unsigned) ts->tv_nsec >= NSEC_PER_SEC)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Locking issues: We need to protect the result of the id look up until | 
|  | * we get the timer locked down so it is not deleted under us.  The | 
|  | * removal is done under the idr spinlock so we use that here to bridge | 
|  | * the find to the timer lock.  To avoid a dead lock, the timer id MUST | 
|  | * be release with out holding the timer lock. | 
|  | */ | 
|  | static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | /* | 
|  | * Watch out here.  We do a irqsave on the idr_lock and pass the | 
|  | * flags part over to the timer lock.  Must not let interrupts in | 
|  | * while we are moving the lock. | 
|  | */ | 
|  |  | 
|  | spin_lock_irqsave(&idr_lock, *flags); | 
|  | timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id); | 
|  | if (timr) { | 
|  | spin_lock(&timr->it_lock); | 
|  | spin_unlock(&idr_lock); | 
|  |  | 
|  | if ((timr->it_id != timer_id) || !(timr->it_process) || | 
|  | timr->it_process->tgid != current->tgid) { | 
|  | unlock_timer(timr, *flags); | 
|  | timr = NULL; | 
|  | } | 
|  | } else | 
|  | spin_unlock_irqrestore(&idr_lock, *flags); | 
|  |  | 
|  | return timr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the time remaining on a POSIX.1b interval timer.  This function | 
|  | * is ALWAYS called with spin_lock_irq on the timer, thus it must not | 
|  | * mess with irq. | 
|  | * | 
|  | * We have a couple of messes to clean up here.  First there is the case | 
|  | * of a timer that has a requeue pending.  These timers should appear to | 
|  | * be in the timer list with an expiry as if we were to requeue them | 
|  | * now. | 
|  | * | 
|  | * The second issue is the SIGEV_NONE timer which may be active but is | 
|  | * not really ever put in the timer list (to save system resources). | 
|  | * This timer may be expired, and if so, we will do it here.  Otherwise | 
|  | * it is the same as a requeue pending timer WRT to what we should | 
|  | * report. | 
|  | */ | 
|  | static void | 
|  | common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting) | 
|  | { | 
|  | unsigned long expires; | 
|  | struct now_struct now; | 
|  |  | 
|  | do | 
|  | expires = timr->it.real.timer.expires; | 
|  | while ((volatile long) (timr->it.real.timer.expires) != expires); | 
|  |  | 
|  | posix_get_now(&now); | 
|  |  | 
|  | if (expires && | 
|  | ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) && | 
|  | !timr->it.real.incr && | 
|  | posix_time_before(&timr->it.real.timer, &now)) | 
|  | timr->it.real.timer.expires = expires = 0; | 
|  | if (expires) { | 
|  | if (timr->it_requeue_pending & REQUEUE_PENDING || | 
|  | (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) { | 
|  | posix_bump_timer(timr, now); | 
|  | expires = timr->it.real.timer.expires; | 
|  | } | 
|  | else | 
|  | if (!timer_pending(&timr->it.real.timer)) | 
|  | expires = 0; | 
|  | if (expires) | 
|  | expires -= now.jiffies; | 
|  | } | 
|  | jiffies_to_timespec(expires, &cur_setting->it_value); | 
|  | jiffies_to_timespec(timr->it.real.incr, &cur_setting->it_interval); | 
|  |  | 
|  | if (cur_setting->it_value.tv_sec < 0) { | 
|  | cur_setting->it_value.tv_nsec = 1; | 
|  | cur_setting->it_value.tv_sec = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Get the time remaining on a POSIX.1b interval timer. */ | 
|  | asmlinkage long | 
|  | sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | struct itimerspec cur_setting; | 
|  | unsigned long flags; | 
|  |  | 
|  | timr = lock_timer(timer_id, &flags); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting)); | 
|  |  | 
|  | unlock_timer(timr, flags); | 
|  |  | 
|  | if (copy_to_user(setting, &cur_setting, sizeof (cur_setting))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Get the number of overruns of a POSIX.1b interval timer.  This is to | 
|  | * be the overrun of the timer last delivered.  At the same time we are | 
|  | * accumulating overruns on the next timer.  The overrun is frozen when | 
|  | * the signal is delivered, either at the notify time (if the info block | 
|  | * is not queued) or at the actual delivery time (as we are informed by | 
|  | * the call back to do_schedule_next_timer().  So all we need to do is | 
|  | * to pick up the frozen overrun. | 
|  | */ | 
|  |  | 
|  | asmlinkage long | 
|  | sys_timer_getoverrun(timer_t timer_id) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | int overrun; | 
|  | long flags; | 
|  |  | 
|  | timr = lock_timer(timer_id, &flags); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | overrun = timr->it_overrun_last; | 
|  | unlock_timer(timr, flags); | 
|  |  | 
|  | return overrun; | 
|  | } | 
|  | /* | 
|  | * Adjust for absolute time | 
|  | * | 
|  | * If absolute time is given and it is not CLOCK_MONOTONIC, we need to | 
|  | * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and | 
|  | * what ever clock he is using. | 
|  | * | 
|  | * If it is relative time, we need to add the current (CLOCK_MONOTONIC) | 
|  | * time to it to get the proper time for the timer. | 
|  | */ | 
|  | static int adjust_abs_time(struct k_clock *clock, struct timespec *tp, | 
|  | int abs, u64 *exp, struct timespec *wall_to) | 
|  | { | 
|  | struct timespec now; | 
|  | struct timespec oc = *tp; | 
|  | u64 jiffies_64_f; | 
|  | int rtn =0; | 
|  |  | 
|  | if (abs) { | 
|  | /* | 
|  | * The mask pick up the 4 basic clocks | 
|  | */ | 
|  | if (!((clock - &posix_clocks[0]) & ~CLOCKS_MASK)) { | 
|  | jiffies_64_f = do_posix_clock_monotonic_gettime_parts( | 
|  | &now,  wall_to); | 
|  | /* | 
|  | * If we are doing a MONOTONIC clock | 
|  | */ | 
|  | if((clock - &posix_clocks[0]) & CLOCKS_MONO){ | 
|  | now.tv_sec += wall_to->tv_sec; | 
|  | now.tv_nsec += wall_to->tv_nsec; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Not one of the basic clocks | 
|  | */ | 
|  | clock->clock_get(clock - posix_clocks, &now); | 
|  | jiffies_64_f = get_jiffies_64(); | 
|  | } | 
|  | /* | 
|  | * Take away now to get delta and normalize | 
|  | */ | 
|  | set_normalized_timespec(&oc, oc.tv_sec - now.tv_sec, | 
|  | oc.tv_nsec - now.tv_nsec); | 
|  | }else{ | 
|  | jiffies_64_f = get_jiffies_64(); | 
|  | } | 
|  | /* | 
|  | * Check if the requested time is prior to now (if so set now) | 
|  | */ | 
|  | if (oc.tv_sec < 0) | 
|  | oc.tv_sec = oc.tv_nsec = 0; | 
|  |  | 
|  | if (oc.tv_sec | oc.tv_nsec) | 
|  | set_normalized_timespec(&oc, oc.tv_sec, | 
|  | oc.tv_nsec + clock->res); | 
|  | tstojiffie(&oc, clock->res, exp); | 
|  |  | 
|  | /* | 
|  | * Check if the requested time is more than the timer code | 
|  | * can handle (if so we error out but return the value too). | 
|  | */ | 
|  | if (*exp > ((u64)MAX_JIFFY_OFFSET)) | 
|  | /* | 
|  | * This is a considered response, not exactly in | 
|  | * line with the standard (in fact it is silent on | 
|  | * possible overflows).  We assume such a large | 
|  | * value is ALMOST always a programming error and | 
|  | * try not to compound it by setting a really dumb | 
|  | * value. | 
|  | */ | 
|  | rtn = -EINVAL; | 
|  | /* | 
|  | * return the actual jiffies expire time, full 64 bits | 
|  | */ | 
|  | *exp += jiffies_64_f; | 
|  | return rtn; | 
|  | } | 
|  |  | 
|  | /* Set a POSIX.1b interval timer. */ | 
|  | /* timr->it_lock is taken. */ | 
|  | static inline int | 
|  | common_timer_set(struct k_itimer *timr, int flags, | 
|  | struct itimerspec *new_setting, struct itimerspec *old_setting) | 
|  | { | 
|  | struct k_clock *clock = &posix_clocks[timr->it_clock]; | 
|  | u64 expire_64; | 
|  |  | 
|  | if (old_setting) | 
|  | common_timer_get(timr, old_setting); | 
|  |  | 
|  | /* disable the timer */ | 
|  | timr->it.real.incr = 0; | 
|  | /* | 
|  | * careful here.  If smp we could be in the "fire" routine which will | 
|  | * be spinning as we hold the lock.  But this is ONLY an SMP issue. | 
|  | */ | 
|  | if (try_to_del_timer_sync(&timr->it.real.timer) < 0) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * It can only be active if on an other cpu.  Since | 
|  | * we have cleared the interval stuff above, it should | 
|  | * clear once we release the spin lock.  Of course once | 
|  | * we do that anything could happen, including the | 
|  | * complete melt down of the timer.  So return with | 
|  | * a "retry" exit status. | 
|  | */ | 
|  | return TIMER_RETRY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | remove_from_abslist(timr); | 
|  |  | 
|  | timr->it_requeue_pending = (timr->it_requeue_pending + 2) & | 
|  | ~REQUEUE_PENDING; | 
|  | timr->it_overrun_last = 0; | 
|  | timr->it_overrun = -1; | 
|  | /* | 
|  | *switch off the timer when it_value is zero | 
|  | */ | 
|  | if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) { | 
|  | timr->it.real.timer.expires = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (adjust_abs_time(clock, | 
|  | &new_setting->it_value, flags & TIMER_ABSTIME, | 
|  | &expire_64, &(timr->it.real.wall_to_prev))) { | 
|  | return -EINVAL; | 
|  | } | 
|  | timr->it.real.timer.expires = (unsigned long)expire_64; | 
|  | tstojiffie(&new_setting->it_interval, clock->res, &expire_64); | 
|  | timr->it.real.incr = (unsigned long)expire_64; | 
|  |  | 
|  | /* | 
|  | * We do not even queue SIGEV_NONE timers!  But we do put them | 
|  | * in the abs list so we can do that right. | 
|  | */ | 
|  | if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)) | 
|  | add_timer(&timr->it.real.timer); | 
|  |  | 
|  | if (flags & TIMER_ABSTIME && clock->abs_struct) { | 
|  | spin_lock(&clock->abs_struct->lock); | 
|  | list_add_tail(&(timr->it.real.abs_timer_entry), | 
|  | &(clock->abs_struct->list)); | 
|  | spin_unlock(&clock->abs_struct->lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Set a POSIX.1b interval timer */ | 
|  | asmlinkage long | 
|  | sys_timer_settime(timer_t timer_id, int flags, | 
|  | const struct itimerspec __user *new_setting, | 
|  | struct itimerspec __user *old_setting) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | struct itimerspec new_spec, old_spec; | 
|  | int error = 0; | 
|  | long flag; | 
|  | struct itimerspec *rtn = old_setting ? &old_spec : NULL; | 
|  |  | 
|  | if (!new_setting) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&new_spec, new_setting, sizeof (new_spec))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((!good_timespec(&new_spec.it_interval)) || | 
|  | (!good_timespec(&new_spec.it_value))) | 
|  | return -EINVAL; | 
|  | retry: | 
|  | timr = lock_timer(timer_id, &flag); | 
|  | if (!timr) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = CLOCK_DISPATCH(timr->it_clock, timer_set, | 
|  | (timr, flags, &new_spec, rtn)); | 
|  |  | 
|  | unlock_timer(timr, flag); | 
|  | if (error == TIMER_RETRY) { | 
|  | rtn = NULL;	// We already got the old time... | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (old_setting && !error && copy_to_user(old_setting, | 
|  | &old_spec, sizeof (old_spec))) | 
|  | error = -EFAULT; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static inline int common_timer_del(struct k_itimer *timer) | 
|  | { | 
|  | timer->it.real.incr = 0; | 
|  |  | 
|  | if (try_to_del_timer_sync(&timer->it.real.timer) < 0) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * It can only be active if on an other cpu.  Since | 
|  | * we have cleared the interval stuff above, it should | 
|  | * clear once we release the spin lock.  Of course once | 
|  | * we do that anything could happen, including the | 
|  | * complete melt down of the timer.  So return with | 
|  | * a "retry" exit status. | 
|  | */ | 
|  | return TIMER_RETRY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | remove_from_abslist(timer); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int timer_delete_hook(struct k_itimer *timer) | 
|  | { | 
|  | return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer)); | 
|  | } | 
|  |  | 
|  | /* Delete a POSIX.1b interval timer. */ | 
|  | asmlinkage long | 
|  | sys_timer_delete(timer_t timer_id) | 
|  | { | 
|  | struct k_itimer *timer; | 
|  | long flags; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | int error; | 
|  | retry_delete: | 
|  | #endif | 
|  | timer = lock_timer(timer_id, &flags); | 
|  | if (!timer) | 
|  | return -EINVAL; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | error = timer_delete_hook(timer); | 
|  |  | 
|  | if (error == TIMER_RETRY) { | 
|  | unlock_timer(timer, flags); | 
|  | goto retry_delete; | 
|  | } | 
|  | #else | 
|  | timer_delete_hook(timer); | 
|  | #endif | 
|  | spin_lock(¤t->sighand->siglock); | 
|  | list_del(&timer->list); | 
|  | spin_unlock(¤t->sighand->siglock); | 
|  | /* | 
|  | * This keeps any tasks waiting on the spin lock from thinking | 
|  | * they got something (see the lock code above). | 
|  | */ | 
|  | if (timer->it_process) { | 
|  | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | put_task_struct(timer->it_process); | 
|  | timer->it_process = NULL; | 
|  | } | 
|  | unlock_timer(timer, flags); | 
|  | release_posix_timer(timer, IT_ID_SET); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * return timer owned by the process, used by exit_itimers | 
|  | */ | 
|  | static inline void itimer_delete(struct k_itimer *timer) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | int error; | 
|  | retry_delete: | 
|  | #endif | 
|  | spin_lock_irqsave(&timer->it_lock, flags); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | error = timer_delete_hook(timer); | 
|  |  | 
|  | if (error == TIMER_RETRY) { | 
|  | unlock_timer(timer, flags); | 
|  | goto retry_delete; | 
|  | } | 
|  | #else | 
|  | timer_delete_hook(timer); | 
|  | #endif | 
|  | list_del(&timer->list); | 
|  | /* | 
|  | * This keeps any tasks waiting on the spin lock from thinking | 
|  | * they got something (see the lock code above). | 
|  | */ | 
|  | if (timer->it_process) { | 
|  | if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID)) | 
|  | put_task_struct(timer->it_process); | 
|  | timer->it_process = NULL; | 
|  | } | 
|  | unlock_timer(timer, flags); | 
|  | release_posix_timer(timer, IT_ID_SET); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called by __exit_signal, only when there are no more | 
|  | * references to the shared signal_struct. | 
|  | */ | 
|  | void exit_itimers(struct signal_struct *sig) | 
|  | { | 
|  | struct k_itimer *tmr; | 
|  |  | 
|  | while (!list_empty(&sig->posix_timers)) { | 
|  | tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); | 
|  | itimer_delete(tmr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * And now for the "clock" calls | 
|  | * | 
|  | * These functions are called both from timer functions (with the timer | 
|  | * spin_lock_irq() held and from clock calls with no locking.	They must | 
|  | * use the save flags versions of locks. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * We do ticks here to avoid the irq lock ( they take sooo long). | 
|  | * The seqlock is great here.  Since we a reader, we don't really care | 
|  | * if we are interrupted since we don't take lock that will stall us or | 
|  | * any other cpu. Voila, no irq lock is needed. | 
|  | * | 
|  | */ | 
|  |  | 
|  | static u64 do_posix_clock_monotonic_gettime_parts( | 
|  | struct timespec *tp, struct timespec *mo) | 
|  | { | 
|  | u64 jiff; | 
|  | unsigned int seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | getnstimeofday(tp); | 
|  | *mo = wall_to_monotonic; | 
|  | jiff = jiffies_64; | 
|  |  | 
|  | } while(read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | return jiff; | 
|  | } | 
|  |  | 
|  | static int do_posix_clock_monotonic_get(clockid_t clock, struct timespec *tp) | 
|  | { | 
|  | struct timespec wall_to_mono; | 
|  |  | 
|  | do_posix_clock_monotonic_gettime_parts(tp, &wall_to_mono); | 
|  |  | 
|  | tp->tv_sec += wall_to_mono.tv_sec; | 
|  | tp->tv_nsec += wall_to_mono.tv_nsec; | 
|  |  | 
|  | if ((tp->tv_nsec - NSEC_PER_SEC) > 0) { | 
|  | tp->tv_nsec -= NSEC_PER_SEC; | 
|  | tp->tv_sec++; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int do_posix_clock_monotonic_gettime(struct timespec *tp) | 
|  | { | 
|  | return do_posix_clock_monotonic_get(CLOCK_MONOTONIC, tp); | 
|  | } | 
|  |  | 
|  | int do_posix_clock_nosettime(clockid_t clockid, struct timespec *tp) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_posix_clock_nosettime); | 
|  |  | 
|  | int do_posix_clock_notimer_create(struct k_itimer *timer) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create); | 
|  |  | 
|  | int do_posix_clock_nonanosleep(clockid_t clock, int flags, struct timespec *t) | 
|  | { | 
|  | #ifndef ENOTSUP | 
|  | return -EOPNOTSUPP;	/* aka ENOTSUP in userland for POSIX */ | 
|  | #else  /*  parisc does define it separately.  */ | 
|  | return -ENOTSUP; | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep); | 
|  |  | 
|  | asmlinkage long | 
|  | sys_clock_settime(clockid_t which_clock, const struct timespec __user *tp) | 
|  | { | 
|  | struct timespec new_tp; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&new_tp, tp, sizeof (*tp))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp)); | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_clock_gettime(clockid_t which_clock, struct timespec __user *tp) | 
|  | { | 
|  | struct timespec kernel_tp; | 
|  | int error; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  | error = CLOCK_DISPATCH(which_clock, clock_get, | 
|  | (which_clock, &kernel_tp)); | 
|  | if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp))) | 
|  | error = -EFAULT; | 
|  |  | 
|  | return error; | 
|  |  | 
|  | } | 
|  |  | 
|  | asmlinkage long | 
|  | sys_clock_getres(clockid_t which_clock, struct timespec __user *tp) | 
|  | { | 
|  | struct timespec rtn_tp; | 
|  | int error; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = CLOCK_DISPATCH(which_clock, clock_getres, | 
|  | (which_clock, &rtn_tp)); | 
|  |  | 
|  | if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) { | 
|  | error = -EFAULT; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void nanosleep_wake_up(unsigned long __data) | 
|  | { | 
|  | struct task_struct *p = (struct task_struct *) __data; | 
|  |  | 
|  | wake_up_process(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The standard says that an absolute nanosleep call MUST wake up at | 
|  | * the requested time in spite of clock settings.  Here is what we do: | 
|  | * For each nanosleep call that needs it (only absolute and not on | 
|  | * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure | 
|  | * into the "nanosleep_abs_list".  All we need is the task_struct pointer. | 
|  | * When ever the clock is set we just wake up all those tasks.	 The rest | 
|  | * is done by the while loop in clock_nanosleep(). | 
|  | * | 
|  | * On locking, clock_was_set() is called from update_wall_clock which | 
|  | * holds (or has held for it) a write_lock_irq( xtime_lock) and is | 
|  | * called from the timer bh code.  Thus we need the irq save locks. | 
|  | * | 
|  | * Also, on the call from update_wall_clock, that is done as part of a | 
|  | * softirq thing.  We don't want to delay the system that much (possibly | 
|  | * long list of timers to fix), so we defer that work to keventd. | 
|  | */ | 
|  |  | 
|  | static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue); | 
|  | static DECLARE_WORK(clock_was_set_work, (void(*)(void*))clock_was_set, NULL); | 
|  |  | 
|  | static DECLARE_MUTEX(clock_was_set_lock); | 
|  |  | 
|  | void clock_was_set(void) | 
|  | { | 
|  | struct k_itimer *timr; | 
|  | struct timespec new_wall_to; | 
|  | LIST_HEAD(cws_list); | 
|  | unsigned long seq; | 
|  |  | 
|  |  | 
|  | if (unlikely(in_interrupt())) { | 
|  | schedule_work(&clock_was_set_work); | 
|  | return; | 
|  | } | 
|  | wake_up_all(&nanosleep_abs_wqueue); | 
|  |  | 
|  | /* | 
|  | * Check if there exist TIMER_ABSTIME timers to correct. | 
|  | * | 
|  | * Notes on locking: This code is run in task context with irq | 
|  | * on.  We CAN be interrupted!  All other usage of the abs list | 
|  | * lock is under the timer lock which holds the irq lock as | 
|  | * well.  We REALLY don't want to scan the whole list with the | 
|  | * interrupt system off, AND we would like a sequence lock on | 
|  | * this code as well.  Since we assume that the clock will not | 
|  | * be set often, it seems ok to take and release the irq lock | 
|  | * for each timer.  In fact add_timer will do this, so this is | 
|  | * not an issue.  So we know when we are done, we will move the | 
|  | * whole list to a new location.  Then as we process each entry, | 
|  | * we will move it to the actual list again.  This way, when our | 
|  | * copy is empty, we are done.  We are not all that concerned | 
|  | * about preemption so we will use a semaphore lock to protect | 
|  | * aginst reentry.  This way we will not stall another | 
|  | * processor.  It is possible that this may delay some timers | 
|  | * that should have expired, given the new clock, but even this | 
|  | * will be minimal as we will always update to the current time, | 
|  | * even if it was set by a task that is waiting for entry to | 
|  | * this code.  Timers that expire too early will be caught by | 
|  | * the expire code and restarted. | 
|  |  | 
|  | * Absolute timers that repeat are left in the abs list while | 
|  | * waiting for the task to pick up the signal.  This means we | 
|  | * may find timers that are not in the "add_timer" list, but are | 
|  | * in the abs list.  We do the same thing for these, save | 
|  | * putting them back in the "add_timer" list.  (Note, these are | 
|  | * left in the abs list mainly to indicate that they are | 
|  | * ABSOLUTE timers, a fact that is used by the re-arm code, and | 
|  | * for which we have no other flag.) | 
|  |  | 
|  | */ | 
|  |  | 
|  | down(&clock_was_set_lock); | 
|  | spin_lock_irq(&abs_list.lock); | 
|  | list_splice_init(&abs_list.list, &cws_list); | 
|  | spin_unlock_irq(&abs_list.lock); | 
|  | do { | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | new_wall_to =	wall_to_monotonic; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | spin_lock_irq(&abs_list.lock); | 
|  | if (list_empty(&cws_list)) { | 
|  | spin_unlock_irq(&abs_list.lock); | 
|  | break; | 
|  | } | 
|  | timr = list_entry(cws_list.next, struct k_itimer, | 
|  | it.real.abs_timer_entry); | 
|  |  | 
|  | list_del_init(&timr->it.real.abs_timer_entry); | 
|  | if (add_clockset_delta(timr, &new_wall_to) && | 
|  | del_timer(&timr->it.real.timer))  /* timer run yet? */ | 
|  | add_timer(&timr->it.real.timer); | 
|  | list_add(&timr->it.real.abs_timer_entry, &abs_list.list); | 
|  | spin_unlock_irq(&abs_list.lock); | 
|  | } while (1); | 
|  |  | 
|  | up(&clock_was_set_lock); | 
|  | } | 
|  |  | 
|  | long clock_nanosleep_restart(struct restart_block *restart_block); | 
|  |  | 
|  | asmlinkage long | 
|  | sys_clock_nanosleep(clockid_t which_clock, int flags, | 
|  | const struct timespec __user *rqtp, | 
|  | struct timespec __user *rmtp) | 
|  | { | 
|  | struct timespec t; | 
|  | struct restart_block *restart_block = | 
|  | &(current_thread_info()->restart_block); | 
|  | int ret; | 
|  |  | 
|  | if (invalid_clockid(which_clock)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (copy_from_user(&t, rqtp, sizeof (struct timespec))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if ((unsigned) t.tv_nsec >= NSEC_PER_SEC || t.tv_sec < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Do this here as nsleep function does not have the real address. | 
|  | */ | 
|  | restart_block->arg1 = (unsigned long)rmtp; | 
|  |  | 
|  | ret = CLOCK_DISPATCH(which_clock, nsleep, (which_clock, flags, &t)); | 
|  |  | 
|  | if ((ret == -ERESTART_RESTARTBLOCK) && rmtp && | 
|  | copy_to_user(rmtp, &t, sizeof (t))) | 
|  | return -EFAULT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int common_nsleep(clockid_t which_clock, | 
|  | int flags, struct timespec *tsave) | 
|  | { | 
|  | struct timespec t, dum; | 
|  | struct timer_list new_timer; | 
|  | DECLARE_WAITQUEUE(abs_wqueue, current); | 
|  | u64 rq_time = (u64)0; | 
|  | s64 left; | 
|  | int abs; | 
|  | struct restart_block *restart_block = | 
|  | ¤t_thread_info()->restart_block; | 
|  |  | 
|  | abs_wqueue.flags = 0; | 
|  | init_timer(&new_timer); | 
|  | new_timer.expires = 0; | 
|  | new_timer.data = (unsigned long) current; | 
|  | new_timer.function = nanosleep_wake_up; | 
|  | abs = flags & TIMER_ABSTIME; | 
|  |  | 
|  | if (restart_block->fn == clock_nanosleep_restart) { | 
|  | /* | 
|  | * Interrupted by a non-delivered signal, pick up remaining | 
|  | * time and continue.  Remaining time is in arg2 & 3. | 
|  | */ | 
|  | restart_block->fn = do_no_restart_syscall; | 
|  |  | 
|  | rq_time = restart_block->arg3; | 
|  | rq_time = (rq_time << 32) + restart_block->arg2; | 
|  | if (!rq_time) | 
|  | return -EINTR; | 
|  | left = rq_time - get_jiffies_64(); | 
|  | if (left <= (s64)0) | 
|  | return 0;	/* Already passed */ | 
|  | } | 
|  |  | 
|  | if (abs && (posix_clocks[which_clock].clock_get != | 
|  | posix_clocks[CLOCK_MONOTONIC].clock_get)) | 
|  | add_wait_queue(&nanosleep_abs_wqueue, &abs_wqueue); | 
|  |  | 
|  | do { | 
|  | t = *tsave; | 
|  | if (abs || !rq_time) { | 
|  | adjust_abs_time(&posix_clocks[which_clock], &t, abs, | 
|  | &rq_time, &dum); | 
|  | } | 
|  |  | 
|  | left = rq_time - get_jiffies_64(); | 
|  | if (left >= (s64)MAX_JIFFY_OFFSET) | 
|  | left = (s64)MAX_JIFFY_OFFSET; | 
|  | if (left < (s64)0) | 
|  | break; | 
|  |  | 
|  | new_timer.expires = jiffies + left; | 
|  | __set_current_state(TASK_INTERRUPTIBLE); | 
|  | add_timer(&new_timer); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | del_timer_sync(&new_timer); | 
|  | left = rq_time - get_jiffies_64(); | 
|  | } while (left > (s64)0 && !test_thread_flag(TIF_SIGPENDING)); | 
|  |  | 
|  | if (abs_wqueue.task_list.next) | 
|  | finish_wait(&nanosleep_abs_wqueue, &abs_wqueue); | 
|  |  | 
|  | if (left > (s64)0) { | 
|  |  | 
|  | /* | 
|  | * Always restart abs calls from scratch to pick up any | 
|  | * clock shifting that happened while we are away. | 
|  | */ | 
|  | if (abs) | 
|  | return -ERESTARTNOHAND; | 
|  |  | 
|  | left *= TICK_NSEC; | 
|  | tsave->tv_sec = div_long_long_rem(left, | 
|  | NSEC_PER_SEC, | 
|  | &tsave->tv_nsec); | 
|  | /* | 
|  | * Restart works by saving the time remaing in | 
|  | * arg2 & 3 (it is 64-bits of jiffies).  The other | 
|  | * info we need is the clock_id (saved in arg0). | 
|  | * The sys_call interface needs the users | 
|  | * timespec return address which _it_ saves in arg1. | 
|  | * Since we have cast the nanosleep call to a clock_nanosleep | 
|  | * both can be restarted with the same code. | 
|  | */ | 
|  | restart_block->fn = clock_nanosleep_restart; | 
|  | restart_block->arg0 = which_clock; | 
|  | /* | 
|  | * Caller sets arg1 | 
|  | */ | 
|  | restart_block->arg2 = rq_time & 0xffffffffLL; | 
|  | restart_block->arg3 = rq_time >> 32; | 
|  |  | 
|  | return -ERESTART_RESTARTBLOCK; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * This will restart clock_nanosleep. | 
|  | */ | 
|  | long | 
|  | clock_nanosleep_restart(struct restart_block *restart_block) | 
|  | { | 
|  | struct timespec t; | 
|  | int ret = common_nsleep(restart_block->arg0, 0, &t); | 
|  |  | 
|  | if ((ret == -ERESTART_RESTARTBLOCK) && restart_block->arg1 && | 
|  | copy_to_user((struct timespec __user *)(restart_block->arg1), &t, | 
|  | sizeof (t))) | 
|  | return -EFAULT; | 
|  | return ret; | 
|  | } |