blob: d88bc093588640d735cb55e1d91997020e393fa1 [file] [log] [blame]
/*
* bpf_jit_comp.c: BPF JIT compiler
*
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
* Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <linux/bpf.h>
#include <asm/set_memory.h>
#include <asm/nospec-branch.h>
static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
{
if (len == 1)
*ptr = bytes;
else if (len == 2)
*(u16 *)ptr = bytes;
else {
*(u32 *)ptr = bytes;
barrier();
}
return ptr + len;
}
#define EMIT(bytes, len) \
do { prog = emit_code(prog, bytes, len); cnt += len; } while (0)
#define EMIT1(b1) EMIT(b1, 1)
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
#define EMIT1_off32(b1, off) \
do { EMIT1(b1); EMIT(off, 4); } while (0)
#define EMIT2_off32(b1, b2, off) \
do { EMIT2(b1, b2); EMIT(off, 4); } while (0)
#define EMIT3_off32(b1, b2, b3, off) \
do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0)
#define EMIT4_off32(b1, b2, b3, b4, off) \
do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0)
static bool is_imm8(int value)
{
return value <= 127 && value >= -128;
}
static bool is_simm32(s64 value)
{
return value == (s64)(s32)value;
}
static bool is_uimm32(u64 value)
{
return value == (u64)(u32)value;
}
/* mov dst, src */
#define EMIT_mov(DST, SRC) \
do { \
if (DST != SRC) \
EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \
} while (0)
static int bpf_size_to_x86_bytes(int bpf_size)
{
if (bpf_size == BPF_W)
return 4;
else if (bpf_size == BPF_H)
return 2;
else if (bpf_size == BPF_B)
return 1;
else if (bpf_size == BPF_DW)
return 4; /* imm32 */
else
return 0;
}
/*
* List of x86 cond jumps opcodes (. + s8)
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
*/
#define X86_JB 0x72
#define X86_JAE 0x73
#define X86_JE 0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA 0x77
#define X86_JL 0x7C
#define X86_JGE 0x7D
#define X86_JLE 0x7E
#define X86_JG 0x7F
/* Pick a register outside of BPF range for JIT internal work */
#define AUX_REG (MAX_BPF_JIT_REG + 1)
/*
* The following table maps BPF registers to x86-64 registers.
*
* x86-64 register R12 is unused, since if used as base address
* register in load/store instructions, it always needs an
* extra byte of encoding and is callee saved.
*
* Also x86-64 register R9 is unused. x86-64 register R10 is
* used for blinding (if enabled).
*/
static const int reg2hex[] = {
[BPF_REG_0] = 0, /* RAX */
[BPF_REG_1] = 7, /* RDI */
[BPF_REG_2] = 6, /* RSI */
[BPF_REG_3] = 2, /* RDX */
[BPF_REG_4] = 1, /* RCX */
[BPF_REG_5] = 0, /* R8 */
[BPF_REG_6] = 3, /* RBX callee saved */
[BPF_REG_7] = 5, /* R13 callee saved */
[BPF_REG_8] = 6, /* R14 callee saved */
[BPF_REG_9] = 7, /* R15 callee saved */
[BPF_REG_FP] = 5, /* RBP readonly */
[BPF_REG_AX] = 2, /* R10 temp register */
[AUX_REG] = 3, /* R11 temp register */
};
/*
* is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15
* which need extra byte of encoding.
* rax,rcx,...,rbp have simpler encoding
*/
static bool is_ereg(u32 reg)
{
return (1 << reg) & (BIT(BPF_REG_5) |
BIT(AUX_REG) |
BIT(BPF_REG_7) |
BIT(BPF_REG_8) |
BIT(BPF_REG_9) |
BIT(BPF_REG_AX));
}
static bool is_axreg(u32 reg)
{
return reg == BPF_REG_0;
}
/* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */
static u8 add_1mod(u8 byte, u32 reg)
{
if (is_ereg(reg))
byte |= 1;
return byte;
}
static u8 add_2mod(u8 byte, u32 r1, u32 r2)
{
if (is_ereg(r1))
byte |= 1;
if (is_ereg(r2))
byte |= 4;
return byte;
}
/* Encode 'dst_reg' register into x86-64 opcode 'byte' */
static u8 add_1reg(u8 byte, u32 dst_reg)
{
return byte + reg2hex[dst_reg];
}
/* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */
static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg)
{
return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3);
}
static void jit_fill_hole(void *area, unsigned int size)
{
/* Fill whole space with INT3 instructions */
memset(area, 0xcc, size);
}
struct jit_context {
int cleanup_addr; /* Epilogue code offset */
};
/* Maximum number of bytes emitted while JITing one eBPF insn */
#define BPF_MAX_INSN_SIZE 128
#define BPF_INSN_SAFETY 64
#define PROLOGUE_SIZE 20
/*
* Emit x86-64 prologue code for BPF program and check its size.
* bpf_tail_call helper will skip it while jumping into another program
*/
static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf)
{
u8 *prog = *pprog;
int cnt = 0;
EMIT1(0x55); /* push rbp */
EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */
/* sub rsp, rounded_stack_depth */
EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8));
EMIT1(0x53); /* push rbx */
EMIT2(0x41, 0x55); /* push r13 */
EMIT2(0x41, 0x56); /* push r14 */
EMIT2(0x41, 0x57); /* push r15 */
if (!ebpf_from_cbpf) {
/* zero init tail_call_cnt */
EMIT2(0x6a, 0x00);
BUILD_BUG_ON(cnt != PROLOGUE_SIZE);
}
*pprog = prog;
}
/*
* Generate the following code:
*
* ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ...
* if (index >= array->map.max_entries)
* goto out;
* if (++tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
* prog = array->ptrs[index];
* if (prog == NULL)
* goto out;
* goto *(prog->bpf_func + prologue_size);
* out:
*/
static void emit_bpf_tail_call(u8 **pprog)
{
u8 *prog = *pprog;
int label1, label2, label3;
int cnt = 0;
/*
* rdi - pointer to ctx
* rsi - pointer to bpf_array
* rdx - index in bpf_array
*/
/*
* if (index >= array->map.max_entries)
* goto out;
*/
EMIT2(0x89, 0xD2); /* mov edx, edx */
EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */
offsetof(struct bpf_array, map.max_entries));
#define OFFSET1 (41 + RETPOLINE_RAX_BPF_JIT_SIZE) /* Number of bytes to jump */
EMIT2(X86_JBE, OFFSET1); /* jbe out */
label1 = cnt;
/*
* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
* goto out;
*/
EMIT2_off32(0x8B, 0x85, -36 - MAX_BPF_STACK); /* mov eax, dword ptr [rbp - 548] */
EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */
#define OFFSET2 (30 + RETPOLINE_RAX_BPF_JIT_SIZE)
EMIT2(X86_JA, OFFSET2); /* ja out */
label2 = cnt;
EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */
EMIT2_off32(0x89, 0x85, -36 - MAX_BPF_STACK); /* mov dword ptr [rbp -548], eax */
/* prog = array->ptrs[index]; */
EMIT4_off32(0x48, 0x8B, 0x84, 0xD6, /* mov rax, [rsi + rdx * 8 + offsetof(...)] */
offsetof(struct bpf_array, ptrs));
/*
* if (prog == NULL)
* goto out;
*/
EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */
#define OFFSET3 (8 + RETPOLINE_RAX_BPF_JIT_SIZE)
EMIT2(X86_JE, OFFSET3); /* je out */
label3 = cnt;
/* goto *(prog->bpf_func + prologue_size); */
EMIT4(0x48, 0x8B, 0x40, /* mov rax, qword ptr [rax + 32] */
offsetof(struct bpf_prog, bpf_func));
EMIT4(0x48, 0x83, 0xC0, PROLOGUE_SIZE); /* add rax, prologue_size */
/*
* Wow we're ready to jump into next BPF program
* rdi == ctx (1st arg)
* rax == prog->bpf_func + prologue_size
*/
RETPOLINE_RAX_BPF_JIT();
/* out: */
BUILD_BUG_ON(cnt - label1 != OFFSET1);
BUILD_BUG_ON(cnt - label2 != OFFSET2);
BUILD_BUG_ON(cnt - label3 != OFFSET3);
*pprog = prog;
}
static void emit_mov_imm32(u8 **pprog, bool sign_propagate,
u32 dst_reg, const u32 imm32)
{
u8 *prog = *pprog;
u8 b1, b2, b3;
int cnt = 0;
/*
* Optimization: if imm32 is positive, use 'mov %eax, imm32'
* (which zero-extends imm32) to save 2 bytes.
*/
if (sign_propagate && (s32)imm32 < 0) {
/* 'mov %rax, imm32' sign extends imm32 */
b1 = add_1mod(0x48, dst_reg);
b2 = 0xC7;
b3 = 0xC0;
EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32);
goto done;
}
/*
* Optimization: if imm32 is zero, use 'xor %eax, %eax'
* to save 3 bytes.
*/
if (imm32 == 0) {
if (is_ereg(dst_reg))
EMIT1(add_2mod(0x40, dst_reg, dst_reg));
b2 = 0x31; /* xor */
b3 = 0xC0;
EMIT2(b2, add_2reg(b3, dst_reg, dst_reg));
goto done;
}
/* mov %eax, imm32 */
if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT1_off32(add_1reg(0xB8, dst_reg), imm32);
done:
*pprog = prog;
}
static void emit_mov_imm64(u8 **pprog, u32 dst_reg,
const u32 imm32_hi, const u32 imm32_lo)
{
u8 *prog = *pprog;
int cnt = 0;
if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) {
/*
* For emitting plain u32, where sign bit must not be
* propagated LLVM tends to load imm64 over mov32
* directly, so save couple of bytes by just doing
* 'mov %eax, imm32' instead.
*/
emit_mov_imm32(&prog, false, dst_reg, imm32_lo);
} else {
/* movabsq %rax, imm64 */
EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg));
EMIT(imm32_lo, 4);
EMIT(imm32_hi, 4);
}
*pprog = prog;
}
static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
{
u8 *prog = *pprog;
int cnt = 0;
if (is64) {
/* mov dst, src */
EMIT_mov(dst_reg, src_reg);
} else {
/* mov32 dst, src */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg));
}
*pprog = prog;
}
static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image,
int oldproglen, struct jit_context *ctx)
{
struct bpf_insn *insn = bpf_prog->insnsi;
int insn_cnt = bpf_prog->len;
bool seen_exit = false;
u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY];
int i, cnt = 0;
int proglen = 0;
u8 *prog = temp;
emit_prologue(&prog, bpf_prog->aux->stack_depth,
bpf_prog_was_classic(bpf_prog));
for (i = 0; i < insn_cnt; i++, insn++) {
const s32 imm32 = insn->imm;
u32 dst_reg = insn->dst_reg;
u32 src_reg = insn->src_reg;
u8 b2 = 0, b3 = 0;
s64 jmp_offset;
u8 jmp_cond;
int ilen;
u8 *func;
switch (insn->code) {
/* ALU */
case BPF_ALU | BPF_ADD | BPF_X:
case BPF_ALU | BPF_SUB | BPF_X:
case BPF_ALU | BPF_AND | BPF_X:
case BPF_ALU | BPF_OR | BPF_X:
case BPF_ALU | BPF_XOR | BPF_X:
case BPF_ALU64 | BPF_ADD | BPF_X:
case BPF_ALU64 | BPF_SUB | BPF_X:
case BPF_ALU64 | BPF_AND | BPF_X:
case BPF_ALU64 | BPF_OR | BPF_X:
case BPF_ALU64 | BPF_XOR | BPF_X:
switch (BPF_OP(insn->code)) {
case BPF_ADD: b2 = 0x01; break;
case BPF_SUB: b2 = 0x29; break;
case BPF_AND: b2 = 0x21; break;
case BPF_OR: b2 = 0x09; break;
case BPF_XOR: b2 = 0x31; break;
}
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg));
break;
case BPF_ALU64 | BPF_MOV | BPF_X:
case BPF_ALU | BPF_MOV | BPF_X:
emit_mov_reg(&prog,
BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, src_reg);
break;
/* neg dst */
case BPF_ALU | BPF_NEG:
case BPF_ALU64 | BPF_NEG:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT2(0xF7, add_1reg(0xD8, dst_reg));
break;
case BPF_ALU | BPF_ADD | BPF_K:
case BPF_ALU | BPF_SUB | BPF_K:
case BPF_ALU | BPF_AND | BPF_K:
case BPF_ALU | BPF_OR | BPF_K:
case BPF_ALU | BPF_XOR | BPF_K:
case BPF_ALU64 | BPF_ADD | BPF_K:
case BPF_ALU64 | BPF_SUB | BPF_K:
case BPF_ALU64 | BPF_AND | BPF_K:
case BPF_ALU64 | BPF_OR | BPF_K:
case BPF_ALU64 | BPF_XOR | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
/*
* b3 holds 'normal' opcode, b2 short form only valid
* in case dst is eax/rax.
*/
switch (BPF_OP(insn->code)) {
case BPF_ADD:
b3 = 0xC0;
b2 = 0x05;
break;
case BPF_SUB:
b3 = 0xE8;
b2 = 0x2D;
break;
case BPF_AND:
b3 = 0xE0;
b2 = 0x25;
break;
case BPF_OR:
b3 = 0xC8;
b2 = 0x0D;
break;
case BPF_XOR:
b3 = 0xF0;
b2 = 0x35;
break;
}
if (is_imm8(imm32))
EMIT3(0x83, add_1reg(b3, dst_reg), imm32);
else if (is_axreg(dst_reg))
EMIT1_off32(b2, imm32);
else
EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32);
break;
case BPF_ALU64 | BPF_MOV | BPF_K:
case BPF_ALU | BPF_MOV | BPF_K:
emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, imm32);
break;
case BPF_LD | BPF_IMM | BPF_DW:
emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm);
insn++;
i++;
break;
/* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */
case BPF_ALU | BPF_MOD | BPF_X:
case BPF_ALU | BPF_DIV | BPF_X:
case BPF_ALU | BPF_MOD | BPF_K:
case BPF_ALU | BPF_DIV | BPF_K:
case BPF_ALU64 | BPF_MOD | BPF_X:
case BPF_ALU64 | BPF_DIV | BPF_X:
case BPF_ALU64 | BPF_MOD | BPF_K:
case BPF_ALU64 | BPF_DIV | BPF_K:
EMIT1(0x50); /* push rax */
EMIT1(0x52); /* push rdx */
if (BPF_SRC(insn->code) == BPF_X)
/* mov r11, src_reg */
EMIT_mov(AUX_REG, src_reg);
else
/* mov r11, imm32 */
EMIT3_off32(0x49, 0xC7, 0xC3, imm32);
/* mov rax, dst_reg */
EMIT_mov(BPF_REG_0, dst_reg);
/*
* xor edx, edx
* equivalent to 'xor rdx, rdx', but one byte less
*/
EMIT2(0x31, 0xd2);
if (BPF_CLASS(insn->code) == BPF_ALU64)
/* div r11 */
EMIT3(0x49, 0xF7, 0xF3);
else
/* div r11d */
EMIT3(0x41, 0xF7, 0xF3);
if (BPF_OP(insn->code) == BPF_MOD)
/* mov r11, rdx */
EMIT3(0x49, 0x89, 0xD3);
else
/* mov r11, rax */
EMIT3(0x49, 0x89, 0xC3);
EMIT1(0x5A); /* pop rdx */
EMIT1(0x58); /* pop rax */
/* mov dst_reg, r11 */
EMIT_mov(dst_reg, AUX_REG);
break;
case BPF_ALU | BPF_MUL | BPF_K:
case BPF_ALU | BPF_MUL | BPF_X:
case BPF_ALU64 | BPF_MUL | BPF_K:
case BPF_ALU64 | BPF_MUL | BPF_X:
{
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
if (dst_reg != BPF_REG_0)
EMIT1(0x50); /* push rax */
if (dst_reg != BPF_REG_3)
EMIT1(0x52); /* push rdx */
/* mov r11, dst_reg */
EMIT_mov(AUX_REG, dst_reg);
if (BPF_SRC(insn->code) == BPF_X)
emit_mov_reg(&prog, is64, BPF_REG_0, src_reg);
else
emit_mov_imm32(&prog, is64, BPF_REG_0, imm32);
if (is64)
EMIT1(add_1mod(0x48, AUX_REG));
else if (is_ereg(AUX_REG))
EMIT1(add_1mod(0x40, AUX_REG));
/* mul(q) r11 */
EMIT2(0xF7, add_1reg(0xE0, AUX_REG));
if (dst_reg != BPF_REG_3)
EMIT1(0x5A); /* pop rdx */
if (dst_reg != BPF_REG_0) {
/* mov dst_reg, rax */
EMIT_mov(dst_reg, BPF_REG_0);
EMIT1(0x58); /* pop rax */
}
break;
}
/* Shifts */
case BPF_ALU | BPF_LSH | BPF_K:
case BPF_ALU | BPF_RSH | BPF_K:
case BPF_ALU | BPF_ARSH | BPF_K:
case BPF_ALU64 | BPF_LSH | BPF_K:
case BPF_ALU64 | BPF_RSH | BPF_K:
case BPF_ALU64 | BPF_ARSH | BPF_K:
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
switch (BPF_OP(insn->code)) {
case BPF_LSH: b3 = 0xE0; break;
case BPF_RSH: b3 = 0xE8; break;
case BPF_ARSH: b3 = 0xF8; break;
}
if (imm32 == 1)
EMIT2(0xD1, add_1reg(b3, dst_reg));
else
EMIT3(0xC1, add_1reg(b3, dst_reg), imm32);
break;
case BPF_ALU | BPF_LSH | BPF_X:
case BPF_ALU | BPF_RSH | BPF_X:
case BPF_ALU | BPF_ARSH | BPF_X:
case BPF_ALU64 | BPF_LSH | BPF_X:
case BPF_ALU64 | BPF_RSH | BPF_X:
case BPF_ALU64 | BPF_ARSH | BPF_X:
/* Check for bad case when dst_reg == rcx */
if (dst_reg == BPF_REG_4) {
/* mov r11, dst_reg */
EMIT_mov(AUX_REG, dst_reg);
dst_reg = AUX_REG;
}
if (src_reg != BPF_REG_4) { /* common case */
EMIT1(0x51); /* push rcx */
/* mov rcx, src_reg */
EMIT_mov(BPF_REG_4, src_reg);
}
/* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */
if (BPF_CLASS(insn->code) == BPF_ALU64)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
switch (BPF_OP(insn->code)) {
case BPF_LSH: b3 = 0xE0; break;
case BPF_RSH: b3 = 0xE8; break;
case BPF_ARSH: b3 = 0xF8; break;
}
EMIT2(0xD3, add_1reg(b3, dst_reg));
if (src_reg != BPF_REG_4)
EMIT1(0x59); /* pop rcx */
if (insn->dst_reg == BPF_REG_4)
/* mov dst_reg, r11 */
EMIT_mov(insn->dst_reg, AUX_REG);
break;
case BPF_ALU | BPF_END | BPF_FROM_BE:
switch (imm32) {
case 16:
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
EMIT1(0x66);
if (is_ereg(dst_reg))
EMIT1(0x41);
EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8);
/* Emit 'movzwl eax, ax' */
if (is_ereg(dst_reg))
EMIT3(0x45, 0x0F, 0xB7);
else
EMIT2(0x0F, 0xB7);
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
break;
case 32:
/* Emit 'bswap eax' to swap lower 4 bytes */
if (is_ereg(dst_reg))
EMIT2(0x41, 0x0F);
else
EMIT1(0x0F);
EMIT1(add_1reg(0xC8, dst_reg));
break;
case 64:
/* Emit 'bswap rax' to swap 8 bytes */
EMIT3(add_1mod(0x48, dst_reg), 0x0F,
add_1reg(0xC8, dst_reg));
break;
}
break;
case BPF_ALU | BPF_END | BPF_FROM_LE:
switch (imm32) {
case 16:
/*
* Emit 'movzwl eax, ax' to zero extend 16-bit
* into 64 bit
*/
if (is_ereg(dst_reg))
EMIT3(0x45, 0x0F, 0xB7);
else
EMIT2(0x0F, 0xB7);
EMIT1(add_2reg(0xC0, dst_reg, dst_reg));
break;
case 32:
/* Emit 'mov eax, eax' to clear upper 32-bits */
if (is_ereg(dst_reg))
EMIT1(0x45);
EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg));
break;
case 64:
/* nop */
break;
}
break;
/* ST: *(u8*)(dst_reg + off) = imm */
case BPF_ST | BPF_MEM | BPF_B:
if (is_ereg(dst_reg))
EMIT2(0x41, 0xC6);
else
EMIT1(0xC6);
goto st;
case BPF_ST | BPF_MEM | BPF_H:
if (is_ereg(dst_reg))
EMIT3(0x66, 0x41, 0xC7);
else
EMIT2(0x66, 0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_W:
if (is_ereg(dst_reg))
EMIT2(0x41, 0xC7);
else
EMIT1(0xC7);
goto st;
case BPF_ST | BPF_MEM | BPF_DW:
EMIT2(add_1mod(0x48, dst_reg), 0xC7);
st: if (is_imm8(insn->off))
EMIT2(add_1reg(0x40, dst_reg), insn->off);
else
EMIT1_off32(add_1reg(0x80, dst_reg), insn->off);
EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code)));
break;
/* STX: *(u8*)(dst_reg + off) = src_reg */
case BPF_STX | BPF_MEM | BPF_B:
/* Emit 'mov byte ptr [rax + off], al' */
if (is_ereg(dst_reg) || is_ereg(src_reg) ||
/* We have to add extra byte for x86 SIL, DIL regs */
src_reg == BPF_REG_1 || src_reg == BPF_REG_2)
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88);
else
EMIT1(0x88);
goto stx;
case BPF_STX | BPF_MEM | BPF_H:
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89);
else
EMIT2(0x66, 0x89);
goto stx;
case BPF_STX | BPF_MEM | BPF_W:
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89);
else
EMIT1(0x89);
goto stx;
case BPF_STX | BPF_MEM | BPF_DW:
EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89);
stx: if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
insn->off);
break;
/* LDX: dst_reg = *(u8*)(src_reg + off) */
case BPF_LDX | BPF_MEM | BPF_B:
/* Emit 'movzx rax, byte ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_H:
/* Emit 'movzx rax, word ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_W:
/* Emit 'mov eax, dword ptr [rax+0x14]' */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B);
else
EMIT1(0x8B);
goto ldx;
case BPF_LDX | BPF_MEM | BPF_DW:
/* Emit 'mov rax, qword ptr [rax+0x14]' */
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B);
ldx: /*
* If insn->off == 0 we can save one extra byte, but
* special case of x86 R13 which always needs an offset
* is not worth the hassle
*/
if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, src_reg, dst_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, src_reg, dst_reg),
insn->off);
break;
/* STX XADD: lock *(u32*)(dst_reg + off) += src_reg */
case BPF_STX | BPF_XADD | BPF_W:
/* Emit 'lock add dword ptr [rax + off], eax' */
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT3(0xF0, add_2mod(0x40, dst_reg, src_reg), 0x01);
else
EMIT2(0xF0, 0x01);
goto xadd;
case BPF_STX | BPF_XADD | BPF_DW:
EMIT3(0xF0, add_2mod(0x48, dst_reg, src_reg), 0x01);
xadd: if (is_imm8(insn->off))
EMIT2(add_2reg(0x40, dst_reg, src_reg), insn->off);
else
EMIT1_off32(add_2reg(0x80, dst_reg, src_reg),
insn->off);
break;
/* call */
case BPF_JMP | BPF_CALL:
func = (u8 *) __bpf_call_base + imm32;
jmp_offset = func - (image + addrs[i]);
if (!imm32 || !is_simm32(jmp_offset)) {
pr_err("unsupported BPF func %d addr %p image %p\n",
imm32, func, image);
return -EINVAL;
}
EMIT1_off32(0xE8, jmp_offset);
break;
case BPF_JMP | BPF_TAIL_CALL:
emit_bpf_tail_call(&prog);
break;
/* cond jump */
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JLT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JLE | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSLT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
case BPF_JMP | BPF_JSLE | BPF_X:
case BPF_JMP32 | BPF_JEQ | BPF_X:
case BPF_JMP32 | BPF_JNE | BPF_X:
case BPF_JMP32 | BPF_JGT | BPF_X:
case BPF_JMP32 | BPF_JLT | BPF_X:
case BPF_JMP32 | BPF_JGE | BPF_X:
case BPF_JMP32 | BPF_JLE | BPF_X:
case BPF_JMP32 | BPF_JSGT | BPF_X:
case BPF_JMP32 | BPF_JSLT | BPF_X:
case BPF_JMP32 | BPF_JSGE | BPF_X:
case BPF_JMP32 | BPF_JSLE | BPF_X:
/* cmp dst_reg, src_reg */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg));
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
/* test dst_reg, src_reg */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_2mod(0x48, dst_reg, src_reg));
else if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, dst_reg, src_reg));
EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg));
goto emit_cond_jmp;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP32 | BPF_JSET | BPF_K:
/* test dst_reg, imm32 */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32);
goto emit_cond_jmp;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JLT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JLE | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSLT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSLE | BPF_K:
case BPF_JMP32 | BPF_JEQ | BPF_K:
case BPF_JMP32 | BPF_JNE | BPF_K:
case BPF_JMP32 | BPF_JGT | BPF_K:
case BPF_JMP32 | BPF_JLT | BPF_K:
case BPF_JMP32 | BPF_JGE | BPF_K:
case BPF_JMP32 | BPF_JLE | BPF_K:
case BPF_JMP32 | BPF_JSGT | BPF_K:
case BPF_JMP32 | BPF_JSLT | BPF_K:
case BPF_JMP32 | BPF_JSGE | BPF_K:
case BPF_JMP32 | BPF_JSLE | BPF_K:
/* cmp dst_reg, imm8/32 */
if (BPF_CLASS(insn->code) == BPF_JMP)
EMIT1(add_1mod(0x48, dst_reg));
else if (is_ereg(dst_reg))
EMIT1(add_1mod(0x40, dst_reg));
if (is_imm8(imm32))
EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32);
else
EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32);
emit_cond_jmp: /* Convert BPF opcode to x86 */
switch (BPF_OP(insn->code)) {
case BPF_JEQ:
jmp_cond = X86_JE;
break;
case BPF_JSET:
case BPF_JNE:
jmp_cond = X86_JNE;
break;
case BPF_JGT:
/* GT is unsigned '>', JA in x86 */
jmp_cond = X86_JA;
break;
case BPF_JLT:
/* LT is unsigned '<', JB in x86 */
jmp_cond = X86_JB;
break;
case BPF_JGE:
/* GE is unsigned '>=', JAE in x86 */
jmp_cond = X86_JAE;
break;
case BPF_JLE:
/* LE is unsigned '<=', JBE in x86 */
jmp_cond = X86_JBE;
break;
case BPF_JSGT:
/* Signed '>', GT in x86 */
jmp_cond = X86_JG;
break;
case BPF_JSLT:
/* Signed '<', LT in x86 */
jmp_cond = X86_JL;
break;
case BPF_JSGE:
/* Signed '>=', GE in x86 */
jmp_cond = X86_JGE;
break;
case BPF_JSLE:
/* Signed '<=', LE in x86 */
jmp_cond = X86_JLE;
break;
default: /* to silence GCC warning */
return -EFAULT;
}
jmp_offset = addrs[i + insn->off] - addrs[i];
if (is_imm8(jmp_offset)) {
EMIT2(jmp_cond, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset);
} else {
pr_err("cond_jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
case BPF_JMP | BPF_JA:
if (insn->off == -1)
/* -1 jmp instructions will always jump
* backwards two bytes. Explicitly handling
* this case avoids wasting too many passes
* when there are long sequences of replaced
* dead code.
*/
jmp_offset = -2;
else
jmp_offset = addrs[i + insn->off] - addrs[i];
if (!jmp_offset)
/* Optimize out nop jumps */
break;
emit_jmp:
if (is_imm8(jmp_offset)) {
EMIT2(0xEB, jmp_offset);
} else if (is_simm32(jmp_offset)) {
EMIT1_off32(0xE9, jmp_offset);
} else {
pr_err("jmp gen bug %llx\n", jmp_offset);
return -EFAULT;
}
break;
case BPF_JMP | BPF_EXIT:
if (seen_exit) {
jmp_offset = ctx->cleanup_addr - addrs[i];
goto emit_jmp;
}
seen_exit = true;
/* Update cleanup_addr */
ctx->cleanup_addr = proglen;
if (!bpf_prog_was_classic(bpf_prog))
EMIT1(0x5B); /* get rid of tail_call_cnt */
EMIT2(0x41, 0x5F); /* pop r15 */
EMIT2(0x41, 0x5E); /* pop r14 */
EMIT2(0x41, 0x5D); /* pop r13 */
EMIT1(0x5B); /* pop rbx */
EMIT1(0xC9); /* leave */
EMIT1(0xC3); /* ret */
break;
default:
/*
* By design x86-64 JIT should support all BPF instructions.
* This error will be seen if new instruction was added
* to the interpreter, but not to the JIT, or if there is
* junk in bpf_prog.
*/
pr_err("bpf_jit: unknown opcode %02x\n", insn->code);
return -EINVAL;
}
ilen = prog - temp;
if (ilen > BPF_MAX_INSN_SIZE) {
pr_err("bpf_jit: fatal insn size error\n");
return -EFAULT;
}
if (image) {
if (unlikely(proglen + ilen > oldproglen)) {
pr_err("bpf_jit: fatal error\n");
return -EFAULT;
}
memcpy(image + proglen, temp, ilen);
}
proglen += ilen;
addrs[i] = proglen;
prog = temp;
}
return proglen;
}
struct x64_jit_data {
struct bpf_binary_header *header;
int *addrs;
u8 *image;
int proglen;
struct jit_context ctx;
};
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
{
struct bpf_binary_header *header = NULL;
struct bpf_prog *tmp, *orig_prog = prog;
struct x64_jit_data *jit_data;
int proglen, oldproglen = 0;
struct jit_context ctx = {};
bool tmp_blinded = false;
bool extra_pass = false;
u8 *image = NULL;
int *addrs;
int pass;
int i;
if (!prog->jit_requested)
return orig_prog;
tmp = bpf_jit_blind_constants(prog);
/*
* If blinding was requested and we failed during blinding,
* we must fall back to the interpreter.
*/
if (IS_ERR(tmp))
return orig_prog;
if (tmp != prog) {
tmp_blinded = true;
prog = tmp;
}
jit_data = prog->aux->jit_data;
if (!jit_data) {
jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
if (!jit_data) {
prog = orig_prog;
goto out;
}
prog->aux->jit_data = jit_data;
}
addrs = jit_data->addrs;
if (addrs) {
ctx = jit_data->ctx;
oldproglen = jit_data->proglen;
image = jit_data->image;
header = jit_data->header;
extra_pass = true;
goto skip_init_addrs;
}
addrs = kmalloc_array(prog->len, sizeof(*addrs), GFP_KERNEL);
if (!addrs) {
prog = orig_prog;
goto out_addrs;
}
/*
* Before first pass, make a rough estimation of addrs[]
* each BPF instruction is translated to less than 64 bytes
*/
for (proglen = 0, i = 0; i < prog->len; i++) {
proglen += 64;
addrs[i] = proglen;
}
ctx.cleanup_addr = proglen;
skip_init_addrs:
/*
* JITed image shrinks with every pass and the loop iterates
* until the image stops shrinking. Very large BPF programs
* may converge on the last pass. In such case do one more
* pass to emit the final image.
*/
for (pass = 0; pass < 20 || image; pass++) {
proglen = do_jit(prog, addrs, image, oldproglen, &ctx);
if (proglen <= 0) {
out_image:
image = NULL;
if (header)
bpf_jit_binary_free(header);
prog = orig_prog;
goto out_addrs;
}
if (image) {
if (proglen != oldproglen) {
pr_err("bpf_jit: proglen=%d != oldproglen=%d\n",
proglen, oldproglen);
goto out_image;
}
break;
}
if (proglen == oldproglen) {
header = bpf_jit_binary_alloc(proglen, &image,
1, jit_fill_hole);
if (!header) {
prog = orig_prog;
goto out_addrs;
}
}
oldproglen = proglen;
cond_resched();
}
if (bpf_jit_enable > 1)
bpf_jit_dump(prog->len, proglen, pass + 1, image);
if (image) {
if (!prog->is_func || extra_pass) {
bpf_jit_binary_lock_ro(header);
} else {
jit_data->addrs = addrs;
jit_data->ctx = ctx;
jit_data->proglen = proglen;
jit_data->image = image;
jit_data->header = header;
}
prog->bpf_func = (void *)image;
prog->jited = 1;
prog->jited_len = proglen;
} else {
prog = orig_prog;
}
if (!image || !prog->is_func || extra_pass) {
if (image)
bpf_prog_fill_jited_linfo(prog, addrs);
out_addrs:
kfree(addrs);
kfree(jit_data);
prog->aux->jit_data = NULL;
}
out:
if (tmp_blinded)
bpf_jit_prog_release_other(prog, prog == orig_prog ?
tmp : orig_prog);
return prog;
}