| /* |
| * Linux-DVB Driver for DiBcom's DiB9000 and demodulator-family. |
| * |
| * Copyright (C) 2005-10 DiBcom (http://www.dibcom.fr/) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation, version 2. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kernel.h> |
| #include <linux/i2c.h> |
| #include <linux/mutex.h> |
| |
| #include <media/dvb_math.h> |
| #include <media/dvb_frontend.h> |
| |
| #include "dib9000.h" |
| #include "dibx000_common.h" |
| |
| static int debug; |
| module_param(debug, int, 0644); |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); |
| |
| #define dprintk(fmt, arg...) do { \ |
| if (debug) \ |
| printk(KERN_DEBUG pr_fmt("%s: " fmt), \ |
| __func__, ##arg); \ |
| } while (0) |
| |
| #define MAX_NUMBER_OF_FRONTENDS 6 |
| |
| struct i2c_device { |
| struct i2c_adapter *i2c_adap; |
| u8 i2c_addr; |
| u8 *i2c_read_buffer; |
| u8 *i2c_write_buffer; |
| }; |
| |
| struct dib9000_pid_ctrl { |
| #define DIB9000_PID_FILTER_CTRL 0 |
| #define DIB9000_PID_FILTER 1 |
| u8 cmd; |
| u8 id; |
| u16 pid; |
| u8 onoff; |
| }; |
| |
| struct dib9000_state { |
| struct i2c_device i2c; |
| |
| struct dibx000_i2c_master i2c_master; |
| struct i2c_adapter tuner_adap; |
| struct i2c_adapter component_bus; |
| |
| u16 revision; |
| u8 reg_offs; |
| |
| enum frontend_tune_state tune_state; |
| u32 status; |
| struct dvb_frontend_parametersContext channel_status; |
| |
| u8 fe_id; |
| |
| #define DIB9000_GPIO_DEFAULT_DIRECTIONS 0xffff |
| u16 gpio_dir; |
| #define DIB9000_GPIO_DEFAULT_VALUES 0x0000 |
| u16 gpio_val; |
| #define DIB9000_GPIO_DEFAULT_PWM_POS 0xffff |
| u16 gpio_pwm_pos; |
| |
| union { /* common for all chips */ |
| struct { |
| u8 mobile_mode:1; |
| } host; |
| |
| struct { |
| struct dib9000_fe_memory_map { |
| u16 addr; |
| u16 size; |
| } fe_mm[18]; |
| u8 memcmd; |
| |
| struct mutex mbx_if_lock; /* to protect read/write operations */ |
| struct mutex mbx_lock; /* to protect the whole mailbox handling */ |
| |
| struct mutex mem_lock; /* to protect the memory accesses */ |
| struct mutex mem_mbx_lock; /* to protect the memory-based mailbox */ |
| |
| #define MBX_MAX_WORDS (256 - 200 - 2) |
| #define DIB9000_MSG_CACHE_SIZE 2 |
| u16 message_cache[DIB9000_MSG_CACHE_SIZE][MBX_MAX_WORDS]; |
| u8 fw_is_running; |
| } risc; |
| } platform; |
| |
| union { /* common for all platforms */ |
| struct { |
| struct dib9000_config cfg; |
| } d9; |
| } chip; |
| |
| struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS]; |
| u16 component_bus_speed; |
| |
| /* for the I2C transfer */ |
| struct i2c_msg msg[2]; |
| u8 i2c_write_buffer[255]; |
| u8 i2c_read_buffer[255]; |
| struct mutex demod_lock; |
| u8 get_frontend_internal; |
| struct dib9000_pid_ctrl pid_ctrl[10]; |
| s8 pid_ctrl_index; /* -1: empty list; -2: do not use the list */ |
| }; |
| |
| static const u32 fe_info[44] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| enum dib9000_power_mode { |
| DIB9000_POWER_ALL = 0, |
| |
| DIB9000_POWER_NO, |
| DIB9000_POWER_INTERF_ANALOG_AGC, |
| DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD, |
| DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD, |
| DIB9000_POWER_INTERFACE_ONLY, |
| }; |
| |
| enum dib9000_out_messages { |
| OUT_MSG_HBM_ACK, |
| OUT_MSG_HOST_BUF_FAIL, |
| OUT_MSG_REQ_VERSION, |
| OUT_MSG_BRIDGE_I2C_W, |
| OUT_MSG_BRIDGE_I2C_R, |
| OUT_MSG_BRIDGE_APB_W, |
| OUT_MSG_BRIDGE_APB_R, |
| OUT_MSG_SCAN_CHANNEL, |
| OUT_MSG_MONIT_DEMOD, |
| OUT_MSG_CONF_GPIO, |
| OUT_MSG_DEBUG_HELP, |
| OUT_MSG_SUBBAND_SEL, |
| OUT_MSG_ENABLE_TIME_SLICE, |
| OUT_MSG_FE_FW_DL, |
| OUT_MSG_FE_CHANNEL_SEARCH, |
| OUT_MSG_FE_CHANNEL_TUNE, |
| OUT_MSG_FE_SLEEP, |
| OUT_MSG_FE_SYNC, |
| OUT_MSG_CTL_MONIT, |
| |
| OUT_MSG_CONF_SVC, |
| OUT_MSG_SET_HBM, |
| OUT_MSG_INIT_DEMOD, |
| OUT_MSG_ENABLE_DIVERSITY, |
| OUT_MSG_SET_OUTPUT_MODE, |
| OUT_MSG_SET_PRIORITARY_CHANNEL, |
| OUT_MSG_ACK_FRG, |
| OUT_MSG_INIT_PMU, |
| }; |
| |
| enum dib9000_in_messages { |
| IN_MSG_DATA, |
| IN_MSG_FRAME_INFO, |
| IN_MSG_CTL_MONIT, |
| IN_MSG_ACK_FREE_ITEM, |
| IN_MSG_DEBUG_BUF, |
| IN_MSG_MPE_MONITOR, |
| IN_MSG_RAWTS_MONITOR, |
| IN_MSG_END_BRIDGE_I2C_RW, |
| IN_MSG_END_BRIDGE_APB_RW, |
| IN_MSG_VERSION, |
| IN_MSG_END_OF_SCAN, |
| IN_MSG_MONIT_DEMOD, |
| IN_MSG_ERROR, |
| IN_MSG_FE_FW_DL_DONE, |
| IN_MSG_EVENT, |
| IN_MSG_ACK_CHANGE_SVC, |
| IN_MSG_HBM_PROF, |
| }; |
| |
| /* memory_access requests */ |
| #define FE_MM_W_CHANNEL 0 |
| #define FE_MM_W_FE_INFO 1 |
| #define FE_MM_RW_SYNC 2 |
| |
| #define FE_SYNC_CHANNEL 1 |
| #define FE_SYNC_W_GENERIC_MONIT 2 |
| #define FE_SYNC_COMPONENT_ACCESS 3 |
| |
| #define FE_MM_R_CHANNEL_SEARCH_STATE 3 |
| #define FE_MM_R_CHANNEL_UNION_CONTEXT 4 |
| #define FE_MM_R_FE_INFO 5 |
| #define FE_MM_R_FE_MONITOR 6 |
| |
| #define FE_MM_W_CHANNEL_HEAD 7 |
| #define FE_MM_W_CHANNEL_UNION 8 |
| #define FE_MM_W_CHANNEL_CONTEXT 9 |
| #define FE_MM_R_CHANNEL_UNION 10 |
| #define FE_MM_R_CHANNEL_CONTEXT 11 |
| #define FE_MM_R_CHANNEL_TUNE_STATE 12 |
| |
| #define FE_MM_R_GENERIC_MONITORING_SIZE 13 |
| #define FE_MM_W_GENERIC_MONITORING 14 |
| #define FE_MM_R_GENERIC_MONITORING 15 |
| |
| #define FE_MM_W_COMPONENT_ACCESS 16 |
| #define FE_MM_RW_COMPONENT_ACCESS_BUFFER 17 |
| static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len); |
| static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len); |
| |
| static u16 to_fw_output_mode(u16 mode) |
| { |
| switch (mode) { |
| case OUTMODE_HIGH_Z: |
| return 0; |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| return 4; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: |
| return 8; |
| case OUTMODE_MPEG2_SERIAL: |
| return 16; |
| case OUTMODE_DIVERSITY: |
| return 128; |
| case OUTMODE_MPEG2_FIFO: |
| return 2; |
| case OUTMODE_ANALOG_ADC: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int dib9000_read16_attr(struct dib9000_state *state, u16 reg, u8 *b, u32 len, u16 attribute) |
| { |
| u32 chunk_size = 126; |
| u32 l; |
| int ret; |
| |
| if (state->platform.risc.fw_is_running && (reg < 1024)) |
| return dib9000_risc_apb_access_read(state, reg, attribute, NULL, 0, b, len); |
| |
| memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c.i2c_addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = 2; |
| state->msg[1].addr = state->i2c.i2c_addr >> 1; |
| state->msg[1].flags = I2C_M_RD; |
| state->msg[1].buf = b; |
| state->msg[1].len = len; |
| |
| state->i2c_write_buffer[0] = reg >> 8; |
| state->i2c_write_buffer[1] = reg & 0xff; |
| |
| if (attribute & DATA_BUS_ACCESS_MODE_8BIT) |
| state->i2c_write_buffer[0] |= (1 << 5); |
| if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| state->i2c_write_buffer[0] |= (1 << 4); |
| |
| do { |
| l = len < chunk_size ? len : chunk_size; |
| state->msg[1].len = l; |
| state->msg[1].buf = b; |
| ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 2) != 2 ? -EREMOTEIO : 0; |
| if (ret != 0) { |
| dprintk("i2c read error on %d\n", reg); |
| return -EREMOTEIO; |
| } |
| |
| b += l; |
| len -= l; |
| |
| if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) |
| reg += l / 2; |
| } while ((ret == 0) && len); |
| |
| return 0; |
| } |
| |
| static u16 dib9000_i2c_read16(struct i2c_device *i2c, u16 reg) |
| { |
| struct i2c_msg msg[2] = { |
| {.addr = i2c->i2c_addr >> 1, .flags = 0, |
| .buf = i2c->i2c_write_buffer, .len = 2}, |
| {.addr = i2c->i2c_addr >> 1, .flags = I2C_M_RD, |
| .buf = i2c->i2c_read_buffer, .len = 2}, |
| }; |
| |
| i2c->i2c_write_buffer[0] = reg >> 8; |
| i2c->i2c_write_buffer[1] = reg & 0xff; |
| |
| if (i2c_transfer(i2c->i2c_adap, msg, 2) != 2) { |
| dprintk("read register %x error\n", reg); |
| return 0; |
| } |
| |
| return (i2c->i2c_read_buffer[0] << 8) | i2c->i2c_read_buffer[1]; |
| } |
| |
| static inline u16 dib9000_read_word(struct dib9000_state *state, u16 reg) |
| { |
| if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, 0) != 0) |
| return 0; |
| return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; |
| } |
| |
| static inline u16 dib9000_read_word_attr(struct dib9000_state *state, u16 reg, u16 attribute) |
| { |
| if (dib9000_read16_attr(state, reg, state->i2c_read_buffer, 2, |
| attribute) != 0) |
| return 0; |
| return (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; |
| } |
| |
| #define dib9000_read16_noinc_attr(state, reg, b, len, attribute) dib9000_read16_attr(state, reg, b, len, (attribute) | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| |
| static int dib9000_write16_attr(struct dib9000_state *state, u16 reg, const u8 *buf, u32 len, u16 attribute) |
| { |
| u32 chunk_size = 126; |
| u32 l; |
| int ret; |
| |
| if (state->platform.risc.fw_is_running && (reg < 1024)) { |
| if (dib9000_risc_apb_access_write |
| (state, reg, DATA_BUS_ACCESS_MODE_16BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | attribute, buf, len) != 0) |
| return -EINVAL; |
| return 0; |
| } |
| |
| memset(&state->msg[0], 0, sizeof(struct i2c_msg)); |
| state->msg[0].addr = state->i2c.i2c_addr >> 1; |
| state->msg[0].flags = 0; |
| state->msg[0].buf = state->i2c_write_buffer; |
| state->msg[0].len = len + 2; |
| |
| state->i2c_write_buffer[0] = (reg >> 8) & 0xff; |
| state->i2c_write_buffer[1] = (reg) & 0xff; |
| |
| if (attribute & DATA_BUS_ACCESS_MODE_8BIT) |
| state->i2c_write_buffer[0] |= (1 << 5); |
| if (attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| state->i2c_write_buffer[0] |= (1 << 4); |
| |
| do { |
| l = len < chunk_size ? len : chunk_size; |
| state->msg[0].len = l + 2; |
| memcpy(&state->i2c_write_buffer[2], buf, l); |
| |
| ret = i2c_transfer(state->i2c.i2c_adap, state->msg, 1) != 1 ? -EREMOTEIO : 0; |
| |
| buf += l; |
| len -= l; |
| |
| if (!(attribute & DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT)) |
| reg += l / 2; |
| } while ((ret == 0) && len); |
| |
| return ret; |
| } |
| |
| static int dib9000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val) |
| { |
| struct i2c_msg msg = { |
| .addr = i2c->i2c_addr >> 1, .flags = 0, |
| .buf = i2c->i2c_write_buffer, .len = 4 |
| }; |
| |
| i2c->i2c_write_buffer[0] = (reg >> 8) & 0xff; |
| i2c->i2c_write_buffer[1] = reg & 0xff; |
| i2c->i2c_write_buffer[2] = (val >> 8) & 0xff; |
| i2c->i2c_write_buffer[3] = val & 0xff; |
| |
| return i2c_transfer(i2c->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; |
| } |
| |
| static inline int dib9000_write_word(struct dib9000_state *state, u16 reg, u16 val) |
| { |
| u8 b[2] = { val >> 8, val & 0xff }; |
| return dib9000_write16_attr(state, reg, b, 2, 0); |
| } |
| |
| static inline int dib9000_write_word_attr(struct dib9000_state *state, u16 reg, u16 val, u16 attribute) |
| { |
| u8 b[2] = { val >> 8, val & 0xff }; |
| return dib9000_write16_attr(state, reg, b, 2, attribute); |
| } |
| |
| #define dib9000_write(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, 0) |
| #define dib9000_write16_noinc(state, reg, buf, len) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| #define dib9000_write16_noinc_attr(state, reg, buf, len, attribute) dib9000_write16_attr(state, reg, buf, len, DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT | (attribute)) |
| |
| #define dib9000_mbx_send(state, id, data, len) dib9000_mbx_send_attr(state, id, data, len, 0) |
| #define dib9000_mbx_get_message(state, id, msg, len) dib9000_mbx_get_message_attr(state, id, msg, len, 0) |
| |
| #define MAC_IRQ (1 << 1) |
| #define IRQ_POL_MSK (1 << 4) |
| |
| #define dib9000_risc_mem_read_chunks(state, b, len) dib9000_read16_attr(state, 1063, b, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| #define dib9000_risc_mem_write_chunks(state, buf, len) dib9000_write16_attr(state, 1063, buf, len, DATA_BUS_ACCESS_MODE_8BIT | DATA_BUS_ACCESS_MODE_NO_ADDRESS_INCREMENT) |
| |
| static void dib9000_risc_mem_setup_cmd(struct dib9000_state *state, u32 addr, u32 len, u8 reading) |
| { |
| u8 b[14] = { 0 }; |
| |
| /* dprintk("%d memcmd: %d %d %d\n", state->fe_id, addr, addr+len, len); */ |
| /* b[0] = 0 << 7; */ |
| b[1] = 1; |
| |
| /* b[2] = 0; */ |
| /* b[3] = 0; */ |
| b[4] = (u8) (addr >> 8); |
| b[5] = (u8) (addr & 0xff); |
| |
| /* b[10] = 0; */ |
| /* b[11] = 0; */ |
| b[12] = (u8) (addr >> 8); |
| b[13] = (u8) (addr & 0xff); |
| |
| addr += len; |
| /* b[6] = 0; */ |
| /* b[7] = 0; */ |
| b[8] = (u8) (addr >> 8); |
| b[9] = (u8) (addr & 0xff); |
| |
| dib9000_write(state, 1056, b, 14); |
| if (reading) |
| dib9000_write_word(state, 1056, (1 << 15) | 1); |
| state->platform.risc.memcmd = -1; /* if it was called directly reset it - to force a future setup-call to set it */ |
| } |
| |
| static void dib9000_risc_mem_setup(struct dib9000_state *state, u8 cmd) |
| { |
| struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd & 0x7f]; |
| /* decide whether we need to "refresh" the memory controller */ |
| if (state->platform.risc.memcmd == cmd && /* same command */ |
| !(cmd & 0x80 && m->size < 67)) /* and we do not want to read something with less than 67 bytes looping - working around a bug in the memory controller */ |
| return; |
| dib9000_risc_mem_setup_cmd(state, m->addr, m->size, cmd & 0x80); |
| state->platform.risc.memcmd = cmd; |
| } |
| |
| static int dib9000_risc_mem_read(struct dib9000_state *state, u8 cmd, u8 * b, u16 len) |
| { |
| if (!state->platform.risc.fw_is_running) |
| return -EIO; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| dib9000_risc_mem_setup(state, cmd | 0x80); |
| dib9000_risc_mem_read_chunks(state, b, len); |
| mutex_unlock(&state->platform.risc.mem_lock); |
| return 0; |
| } |
| |
| static int dib9000_risc_mem_write(struct dib9000_state *state, u8 cmd, const u8 * b) |
| { |
| struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[cmd]; |
| if (!state->platform.risc.fw_is_running) |
| return -EIO; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| dib9000_risc_mem_setup(state, cmd); |
| dib9000_risc_mem_write_chunks(state, b, m->size); |
| mutex_unlock(&state->platform.risc.mem_lock); |
| return 0; |
| } |
| |
| static int dib9000_firmware_download(struct dib9000_state *state, u8 risc_id, u16 key, const u8 * code, u32 len) |
| { |
| u16 offs; |
| |
| if (risc_id == 1) |
| offs = 16; |
| else |
| offs = 0; |
| |
| /* config crtl reg */ |
| dib9000_write_word(state, 1024 + offs, 0x000f); |
| dib9000_write_word(state, 1025 + offs, 0); |
| dib9000_write_word(state, 1031 + offs, key); |
| |
| dprintk("going to download %dB of microcode\n", len); |
| if (dib9000_write16_noinc(state, 1026 + offs, (u8 *) code, (u16) len) != 0) { |
| dprintk("error while downloading microcode for RISC %c\n", 'A' + risc_id); |
| return -EIO; |
| } |
| |
| dprintk("Microcode for RISC %c loaded\n", 'A' + risc_id); |
| |
| return 0; |
| } |
| |
| static int dib9000_mbx_host_init(struct dib9000_state *state, u8 risc_id) |
| { |
| u16 mbox_offs; |
| u16 reset_reg; |
| u16 tries = 1000; |
| |
| if (risc_id == 1) |
| mbox_offs = 16; |
| else |
| mbox_offs = 0; |
| |
| /* Reset mailbox */ |
| dib9000_write_word(state, 1027 + mbox_offs, 0x8000); |
| |
| /* Read reset status */ |
| do { |
| reset_reg = dib9000_read_word(state, 1027 + mbox_offs); |
| msleep(100); |
| } while ((reset_reg & 0x8000) && --tries); |
| |
| if (reset_reg & 0x8000) { |
| dprintk("MBX: init ERROR, no response from RISC %c\n", 'A' + risc_id); |
| return -EIO; |
| } |
| dprintk("MBX: initialized\n"); |
| return 0; |
| } |
| |
| #define MAX_MAILBOX_TRY 100 |
| static int dib9000_mbx_send_attr(struct dib9000_state *state, u8 id, u16 * data, u8 len, u16 attr) |
| { |
| u8 *d, b[2]; |
| u16 tmp; |
| u16 size; |
| u32 i; |
| int ret = 0; |
| |
| if (!state->platform.risc.fw_is_running) |
| return -EINVAL; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| tmp = MAX_MAILBOX_TRY; |
| do { |
| size = dib9000_read_word_attr(state, 1043, attr) & 0xff; |
| if ((size + len + 1) > MBX_MAX_WORDS && --tmp) { |
| dprintk("MBX: RISC mbx full, retrying\n"); |
| msleep(100); |
| } else |
| break; |
| } while (1); |
| |
| /*dprintk( "MBX: size: %d\n", size); */ |
| |
| if (tmp == 0) { |
| ret = -EINVAL; |
| goto out; |
| } |
| #ifdef DUMP_MSG |
| dprintk("--> %02x %d %*ph\n", id, len + 1, len, data); |
| #endif |
| |
| /* byte-order conversion - works on big (where it is not necessary) or little endian */ |
| d = (u8 *) data; |
| for (i = 0; i < len; i++) { |
| tmp = data[i]; |
| *d++ = tmp >> 8; |
| *d++ = tmp & 0xff; |
| } |
| |
| /* write msg */ |
| b[0] = id; |
| b[1] = len + 1; |
| if (dib9000_write16_noinc_attr(state, 1045, b, 2, attr) != 0 || dib9000_write16_noinc_attr(state, 1045, (u8 *) data, len * 2, attr) != 0) { |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* update register nb_mes_in_RX */ |
| ret = (u8) dib9000_write_word_attr(state, 1043, 1 << 14, attr); |
| |
| out: |
| mutex_unlock(&state->platform.risc.mbx_if_lock); |
| |
| return ret; |
| } |
| |
| static u8 dib9000_mbx_read(struct dib9000_state *state, u16 * data, u8 risc_id, u16 attr) |
| { |
| #ifdef DUMP_MSG |
| u16 *d = data; |
| #endif |
| |
| u16 tmp, i; |
| u8 size; |
| u8 mc_base; |
| |
| if (!state->platform.risc.fw_is_running) |
| return 0; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mbx_if_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return 0; |
| } |
| if (risc_id == 1) |
| mc_base = 16; |
| else |
| mc_base = 0; |
| |
| /* Length and type in the first word */ |
| *data = dib9000_read_word_attr(state, 1029 + mc_base, attr); |
| |
| size = *data & 0xff; |
| if (size <= MBX_MAX_WORDS) { |
| data++; |
| size--; /* Initial word already read */ |
| |
| dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, size * 2, attr); |
| |
| /* to word conversion */ |
| for (i = 0; i < size; i++) { |
| tmp = *data; |
| *data = (tmp >> 8) | (tmp << 8); |
| data++; |
| } |
| |
| #ifdef DUMP_MSG |
| dprintk("<--\n"); |
| for (i = 0; i < size + 1; i++) |
| dprintk("%04x\n", d[i]); |
| dprintk("\n"); |
| #endif |
| } else { |
| dprintk("MBX: message is too big for message cache (%d), flushing message\n", size); |
| size--; /* Initial word already read */ |
| while (size--) |
| dib9000_read16_noinc_attr(state, 1029 + mc_base, (u8 *) data, 2, attr); |
| } |
| /* Update register nb_mes_in_TX */ |
| dib9000_write_word_attr(state, 1028 + mc_base, 1 << 14, attr); |
| |
| mutex_unlock(&state->platform.risc.mbx_if_lock); |
| |
| return size + 1; |
| } |
| |
| static int dib9000_risc_debug_buf(struct dib9000_state *state, u16 * data, u8 size) |
| { |
| u32 ts = data[1] << 16 | data[0]; |
| char *b = (char *)&data[2]; |
| |
| b[2 * (size - 2) - 1] = '\0'; /* Bullet proof the buffer */ |
| if (*b == '~') { |
| b++; |
| dprintk("%s\n", b); |
| } else |
| dprintk("RISC%d: %d.%04d %s\n", |
| state->fe_id, |
| ts / 10000, ts % 10000, *b ? b : "<empty>"); |
| return 1; |
| } |
| |
| static int dib9000_mbx_fetch_to_cache(struct dib9000_state *state, u16 attr) |
| { |
| int i; |
| u8 size; |
| u16 *block; |
| /* find a free slot */ |
| for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { |
| block = state->platform.risc.message_cache[i]; |
| if (*block == 0) { |
| size = dib9000_mbx_read(state, block, 1, attr); |
| |
| /* dprintk( "MBX: fetched %04x message to cache\n", *block); */ |
| |
| switch (*block >> 8) { |
| case IN_MSG_DEBUG_BUF: |
| dib9000_risc_debug_buf(state, block + 1, size); /* debug-messages are going to be printed right away */ |
| *block = 0; /* free the block */ |
| break; |
| #if 0 |
| case IN_MSG_DATA: /* FE-TRACE */ |
| dib9000_risc_data_process(state, block + 1, size); |
| *block = 0; |
| break; |
| #endif |
| default: |
| break; |
| } |
| |
| return 1; |
| } |
| } |
| dprintk("MBX: no free cache-slot found for new message...\n"); |
| return -1; |
| } |
| |
| static u8 dib9000_mbx_count(struct dib9000_state *state, u8 risc_id, u16 attr) |
| { |
| if (risc_id == 0) |
| return (u8) (dib9000_read_word_attr(state, 1028, attr) >> 10) & 0x1f; /* 5 bit field */ |
| else |
| return (u8) (dib9000_read_word_attr(state, 1044, attr) >> 8) & 0x7f; /* 7 bit field */ |
| } |
| |
| static int dib9000_mbx_process(struct dib9000_state *state, u16 attr) |
| { |
| int ret = 0; |
| |
| if (!state->platform.risc.fw_is_running) |
| return -1; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -1; |
| } |
| |
| if (dib9000_mbx_count(state, 1, attr)) /* 1=RiscB */ |
| ret = dib9000_mbx_fetch_to_cache(state, attr); |
| |
| dib9000_read_word_attr(state, 1229, attr); /* Clear the IRQ */ |
| /* if (tmp) */ |
| /* dprintk( "cleared IRQ: %x\n", tmp); */ |
| mutex_unlock(&state->platform.risc.mbx_lock); |
| |
| return ret; |
| } |
| |
| static int dib9000_mbx_get_message_attr(struct dib9000_state *state, u16 id, u16 * msg, u8 * size, u16 attr) |
| { |
| u8 i; |
| u16 *block; |
| u16 timeout = 30; |
| |
| *msg = 0; |
| do { |
| /* dib9000_mbx_get_from_cache(); */ |
| for (i = 0; i < DIB9000_MSG_CACHE_SIZE; i++) { |
| block = state->platform.risc.message_cache[i]; |
| if ((*block >> 8) == id) { |
| *size = (*block & 0xff) - 1; |
| memcpy(msg, block + 1, (*size) * 2); |
| *block = 0; /* free the block */ |
| i = 0; /* signal that we found a message */ |
| break; |
| } |
| } |
| |
| if (i == 0) |
| break; |
| |
| if (dib9000_mbx_process(state, attr) == -1) /* try to fetch one message - if any */ |
| return -1; |
| |
| } while (--timeout); |
| |
| if (timeout == 0) { |
| dprintk("waiting for message %d timed out\n", id); |
| return -1; |
| } |
| |
| return i == 0; |
| } |
| |
| static int dib9000_risc_check_version(struct dib9000_state *state) |
| { |
| u8 r[4]; |
| u8 size; |
| u16 fw_version = 0; |
| |
| if (dib9000_mbx_send(state, OUT_MSG_REQ_VERSION, &fw_version, 1) != 0) |
| return -EIO; |
| |
| if (dib9000_mbx_get_message(state, IN_MSG_VERSION, (u16 *) r, &size) < 0) |
| return -EIO; |
| |
| fw_version = (r[0] << 8) | r[1]; |
| dprintk("RISC: ver: %d.%02d (IC: %d)\n", fw_version >> 10, fw_version & 0x3ff, (r[2] << 8) | r[3]); |
| |
| if ((fw_version >> 10) != 7) |
| return -EINVAL; |
| |
| switch (fw_version & 0x3ff) { |
| case 11: |
| case 12: |
| case 14: |
| case 15: |
| case 16: |
| case 17: |
| break; |
| default: |
| dprintk("RISC: invalid firmware version"); |
| return -EINVAL; |
| } |
| |
| dprintk("RISC: valid firmware version"); |
| return 0; |
| } |
| |
| static int dib9000_fw_boot(struct dib9000_state *state, const u8 * codeA, u32 lenA, const u8 * codeB, u32 lenB) |
| { |
| /* Reconfig pool mac ram */ |
| dib9000_write_word(state, 1225, 0x02); /* A: 8k C, 4 k D - B: 32k C 6 k D - IRAM 96k */ |
| dib9000_write_word(state, 1226, 0x05); |
| |
| /* Toggles IP crypto to Host APB interface. */ |
| dib9000_write_word(state, 1542, 1); |
| |
| /* Set jump and no jump in the dma box */ |
| dib9000_write_word(state, 1074, 0); |
| dib9000_write_word(state, 1075, 0); |
| |
| /* Set MAC as APB Master. */ |
| dib9000_write_word(state, 1237, 0); |
| |
| /* Reset the RISCs */ |
| if (codeA != NULL) |
| dib9000_write_word(state, 1024, 2); |
| else |
| dib9000_write_word(state, 1024, 15); |
| if (codeB != NULL) |
| dib9000_write_word(state, 1040, 2); |
| |
| if (codeA != NULL) |
| dib9000_firmware_download(state, 0, 0x1234, codeA, lenA); |
| if (codeB != NULL) |
| dib9000_firmware_download(state, 1, 0x1234, codeB, lenB); |
| |
| /* Run the RISCs */ |
| if (codeA != NULL) |
| dib9000_write_word(state, 1024, 0); |
| if (codeB != NULL) |
| dib9000_write_word(state, 1040, 0); |
| |
| if (codeA != NULL) |
| if (dib9000_mbx_host_init(state, 0) != 0) |
| return -EIO; |
| if (codeB != NULL) |
| if (dib9000_mbx_host_init(state, 1) != 0) |
| return -EIO; |
| |
| msleep(100); |
| state->platform.risc.fw_is_running = 1; |
| |
| if (dib9000_risc_check_version(state) != 0) |
| return -EINVAL; |
| |
| state->platform.risc.memcmd = 0xff; |
| return 0; |
| } |
| |
| static u16 dib9000_identify(struct i2c_device *client) |
| { |
| u16 value; |
| |
| value = dib9000_i2c_read16(client, 896); |
| if (value != 0x01b3) { |
| dprintk("wrong Vendor ID (0x%x)\n", value); |
| return 0; |
| } |
| |
| value = dib9000_i2c_read16(client, 897); |
| if (value != 0x4000 && value != 0x4001 && value != 0x4002 && value != 0x4003 && value != 0x4004 && value != 0x4005) { |
| dprintk("wrong Device ID (0x%x)\n", value); |
| return 0; |
| } |
| |
| /* protect this driver to be used with 7000PC */ |
| if (value == 0x4000 && dib9000_i2c_read16(client, 769) == 0x4000) { |
| dprintk("this driver does not work with DiB7000PC\n"); |
| return 0; |
| } |
| |
| switch (value) { |
| case 0x4000: |
| dprintk("found DiB7000MA/PA/MB/PB\n"); |
| break; |
| case 0x4001: |
| dprintk("found DiB7000HC\n"); |
| break; |
| case 0x4002: |
| dprintk("found DiB7000MC\n"); |
| break; |
| case 0x4003: |
| dprintk("found DiB9000A\n"); |
| break; |
| case 0x4004: |
| dprintk("found DiB9000H\n"); |
| break; |
| case 0x4005: |
| dprintk("found DiB9000M\n"); |
| break; |
| } |
| |
| return value; |
| } |
| |
| static void dib9000_set_power_mode(struct dib9000_state *state, enum dib9000_power_mode mode) |
| { |
| /* by default everything is going to be powered off */ |
| u16 reg_903 = 0x3fff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906; |
| u8 offset; |
| |
| if (state->revision == 0x4003 || state->revision == 0x4004 || state->revision == 0x4005) |
| offset = 1; |
| else |
| offset = 0; |
| |
| reg_906 = dib9000_read_word(state, 906 + offset) | 0x3; /* keep settings for RISC */ |
| |
| /* now, depending on the requested mode, we power on */ |
| switch (mode) { |
| /* power up everything in the demod */ |
| case DIB9000_POWER_ALL: |
| reg_903 = 0x0000; |
| reg_904 = 0x0000; |
| reg_905 = 0x0000; |
| reg_906 = 0x0000; |
| break; |
| |
| /* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */ |
| case DIB9000_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */ |
| reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2)); |
| break; |
| |
| case DIB9000_POWER_INTERF_ANALOG_AGC: |
| reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10)); |
| reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2)); |
| reg_906 &= ~((1 << 0)); |
| break; |
| |
| case DIB9000_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD: |
| reg_903 = 0x0000; |
| reg_904 = 0x801f; |
| reg_905 = 0x0000; |
| reg_906 &= ~((1 << 0)); |
| break; |
| |
| case DIB9000_POWER_COR4_CRY_ESRAM_MOUT_NUD: |
| reg_903 = 0x0000; |
| reg_904 = 0x8000; |
| reg_905 = 0x010b; |
| reg_906 &= ~((1 << 0)); |
| break; |
| default: |
| case DIB9000_POWER_NO: |
| break; |
| } |
| |
| /* always power down unused parts */ |
| if (!state->platform.host.mobile_mode) |
| reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1); |
| |
| /* P_sdio_select_clk = 0 on MC and after */ |
| if (state->revision != 0x4000) |
| reg_906 <<= 1; |
| |
| dib9000_write_word(state, 903 + offset, reg_903); |
| dib9000_write_word(state, 904 + offset, reg_904); |
| dib9000_write_word(state, 905 + offset, reg_905); |
| dib9000_write_word(state, 906 + offset, reg_906); |
| } |
| |
| static int dib9000_fw_reset(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| |
| dib9000_write_word(state, 1817, 0x0003); |
| |
| dib9000_write_word(state, 1227, 1); |
| dib9000_write_word(state, 1227, 0); |
| |
| switch ((state->revision = dib9000_identify(&state->i2c))) { |
| case 0x4003: |
| case 0x4004: |
| case 0x4005: |
| state->reg_offs = 1; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| /* reset the i2c-master to use the host interface */ |
| dibx000_reset_i2c_master(&state->i2c_master); |
| |
| dib9000_set_power_mode(state, DIB9000_POWER_ALL); |
| |
| /* unforce divstr regardless whether i2c enumeration was done or not */ |
| dib9000_write_word(state, 1794, dib9000_read_word(state, 1794) & ~(1 << 1)); |
| dib9000_write_word(state, 1796, 0); |
| dib9000_write_word(state, 1805, 0x805); |
| |
| /* restart all parts */ |
| dib9000_write_word(state, 898, 0xffff); |
| dib9000_write_word(state, 899, 0xffff); |
| dib9000_write_word(state, 900, 0x0001); |
| dib9000_write_word(state, 901, 0xff19); |
| dib9000_write_word(state, 902, 0x003c); |
| |
| dib9000_write_word(state, 898, 0); |
| dib9000_write_word(state, 899, 0); |
| dib9000_write_word(state, 900, 0); |
| dib9000_write_word(state, 901, 0); |
| dib9000_write_word(state, 902, 0); |
| |
| dib9000_write_word(state, 911, state->chip.d9.cfg.if_drives); |
| |
| dib9000_set_power_mode(state, DIB9000_POWER_INTERFACE_ONLY); |
| |
| return 0; |
| } |
| |
| static int dib9000_risc_apb_access_read(struct dib9000_state *state, u32 address, u16 attribute, const u8 * tx, u32 txlen, u8 * b, u32 len) |
| { |
| u16 mb[10]; |
| u8 i, s; |
| |
| if (address >= 1024 || !state->platform.risc.fw_is_running) |
| return -EINVAL; |
| |
| /* dprintk( "APB access through rd fw %d %x\n", address, attribute); */ |
| |
| mb[0] = (u16) address; |
| mb[1] = len / 2; |
| dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_R, mb, 2, attribute); |
| switch (dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute)) { |
| case 1: |
| s--; |
| for (i = 0; i < s; i++) { |
| b[i * 2] = (mb[i + 1] >> 8) & 0xff; |
| b[i * 2 + 1] = (mb[i + 1]) & 0xff; |
| } |
| return 0; |
| default: |
| return -EIO; |
| } |
| return -EIO; |
| } |
| |
| static int dib9000_risc_apb_access_write(struct dib9000_state *state, u32 address, u16 attribute, const u8 * b, u32 len) |
| { |
| u16 mb[10]; |
| u8 s, i; |
| |
| if (address >= 1024 || !state->platform.risc.fw_is_running) |
| return -EINVAL; |
| |
| if (len > 18) |
| return -EINVAL; |
| |
| /* dprintk( "APB access through wr fw %d %x\n", address, attribute); */ |
| |
| mb[0] = (u16)address; |
| for (i = 0; i + 1 < len; i += 2) |
| mb[1 + i / 2] = b[i] << 8 | b[i + 1]; |
| if (len & 1) |
| mb[1 + len / 2] = b[len - 1] << 8; |
| |
| dib9000_mbx_send_attr(state, OUT_MSG_BRIDGE_APB_W, mb, (3 + len) / 2, attribute); |
| return dib9000_mbx_get_message_attr(state, IN_MSG_END_BRIDGE_APB_RW, mb, &s, attribute) == 1 ? 0 : -EINVAL; |
| } |
| |
| static int dib9000_fw_memmbx_sync(struct dib9000_state *state, u8 i) |
| { |
| u8 index_loop = 10; |
| |
| if (!state->platform.risc.fw_is_running) |
| return 0; |
| dib9000_risc_mem_write(state, FE_MM_RW_SYNC, &i); |
| do { |
| dib9000_risc_mem_read(state, FE_MM_RW_SYNC, state->i2c_read_buffer, 1); |
| } while (state->i2c_read_buffer[0] && index_loop--); |
| |
| if (index_loop > 0) |
| return 0; |
| return -EIO; |
| } |
| |
| static int dib9000_fw_init(struct dib9000_state *state) |
| { |
| struct dibGPIOFunction *f; |
| u16 b[40] = { 0 }; |
| u8 i; |
| u8 size; |
| |
| if (dib9000_fw_boot(state, NULL, 0, state->chip.d9.cfg.microcode_B_fe_buffer, state->chip.d9.cfg.microcode_B_fe_size) != 0) |
| return -EIO; |
| |
| /* initialize the firmware */ |
| for (i = 0; i < ARRAY_SIZE(state->chip.d9.cfg.gpio_function); i++) { |
| f = &state->chip.d9.cfg.gpio_function[i]; |
| if (f->mask) { |
| switch (f->function) { |
| case BOARD_GPIO_FUNCTION_COMPONENT_ON: |
| b[0] = (u16) f->mask; |
| b[1] = (u16) f->direction; |
| b[2] = (u16) f->value; |
| break; |
| case BOARD_GPIO_FUNCTION_COMPONENT_OFF: |
| b[3] = (u16) f->mask; |
| b[4] = (u16) f->direction; |
| b[5] = (u16) f->value; |
| break; |
| } |
| } |
| } |
| if (dib9000_mbx_send(state, OUT_MSG_CONF_GPIO, b, 15) != 0) |
| return -EIO; |
| |
| /* subband */ |
| b[0] = state->chip.d9.cfg.subband.size; /* type == 0 -> GPIO - PWM not yet supported */ |
| for (i = 0; i < state->chip.d9.cfg.subband.size; i++) { |
| b[1 + i * 4] = state->chip.d9.cfg.subband.subband[i].f_mhz; |
| b[2 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.mask; |
| b[3 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.direction; |
| b[4 + i * 4] = (u16) state->chip.d9.cfg.subband.subband[i].gpio.value; |
| } |
| b[1 + i * 4] = 0; /* fe_id */ |
| if (dib9000_mbx_send(state, OUT_MSG_SUBBAND_SEL, b, 2 + 4 * i) != 0) |
| return -EIO; |
| |
| /* 0 - id, 1 - no_of_frontends */ |
| b[0] = (0 << 8) | 1; |
| /* 0 = i2c-address demod, 0 = tuner */ |
| b[1] = (0 << 8) | (0); |
| b[2] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000) >> 16) & 0xffff); |
| b[3] = (u16) (((state->chip.d9.cfg.xtal_clock_khz * 1000)) & 0xffff); |
| b[4] = (u16) ((state->chip.d9.cfg.vcxo_timer >> 16) & 0xffff); |
| b[5] = (u16) ((state->chip.d9.cfg.vcxo_timer) & 0xffff); |
| b[6] = (u16) ((state->chip.d9.cfg.timing_frequency >> 16) & 0xffff); |
| b[7] = (u16) ((state->chip.d9.cfg.timing_frequency) & 0xffff); |
| b[29] = state->chip.d9.cfg.if_drives; |
| if (dib9000_mbx_send(state, OUT_MSG_INIT_DEMOD, b, ARRAY_SIZE(b)) != 0) |
| return -EIO; |
| |
| if (dib9000_mbx_send(state, OUT_MSG_FE_FW_DL, NULL, 0) != 0) |
| return -EIO; |
| |
| if (dib9000_mbx_get_message(state, IN_MSG_FE_FW_DL_DONE, b, &size) < 0) |
| return -EIO; |
| |
| if (size > ARRAY_SIZE(b)) { |
| dprintk("error : firmware returned %dbytes needed but the used buffer has only %dbytes\n Firmware init ABORTED", size, |
| (int)ARRAY_SIZE(b)); |
| return -EINVAL; |
| } |
| |
| for (i = 0; i < size; i += 2) { |
| state->platform.risc.fe_mm[i / 2].addr = b[i + 0]; |
| state->platform.risc.fe_mm[i / 2].size = b[i + 1]; |
| } |
| |
| return 0; |
| } |
| |
| static void dib9000_fw_set_channel_head(struct dib9000_state *state) |
| { |
| u8 b[9]; |
| u32 freq = state->fe[0]->dtv_property_cache.frequency / 1000; |
| if (state->fe_id % 2) |
| freq += 101; |
| |
| b[0] = (u8) ((freq >> 0) & 0xff); |
| b[1] = (u8) ((freq >> 8) & 0xff); |
| b[2] = (u8) ((freq >> 16) & 0xff); |
| b[3] = (u8) ((freq >> 24) & 0xff); |
| b[4] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 0) & 0xff); |
| b[5] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 8) & 0xff); |
| b[6] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 16) & 0xff); |
| b[7] = (u8) ((state->fe[0]->dtv_property_cache.bandwidth_hz / 1000 >> 24) & 0xff); |
| b[8] = 0x80; /* do not wait for CELL ID when doing autosearch */ |
| if (state->fe[0]->dtv_property_cache.delivery_system == SYS_DVBT) |
| b[8] |= 1; |
| dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_HEAD, b); |
| } |
| |
| static int dib9000_fw_get_channel(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| struct dibDVBTChannel { |
| s8 spectrum_inversion; |
| |
| s8 nfft; |
| s8 guard; |
| s8 constellation; |
| |
| s8 hrch; |
| s8 alpha; |
| s8 code_rate_hp; |
| s8 code_rate_lp; |
| s8 select_hp; |
| |
| s8 intlv_native; |
| }; |
| struct dibDVBTChannel *ch; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { |
| ret = -EIO; |
| goto error; |
| } |
| |
| dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_UNION, |
| state->i2c_read_buffer, sizeof(struct dibDVBTChannel)); |
| ch = (struct dibDVBTChannel *)state->i2c_read_buffer; |
| |
| |
| switch (ch->spectrum_inversion & 0x7) { |
| case 1: |
| state->fe[0]->dtv_property_cache.inversion = INVERSION_ON; |
| break; |
| case 0: |
| state->fe[0]->dtv_property_cache.inversion = INVERSION_OFF; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.inversion = INVERSION_AUTO; |
| break; |
| } |
| switch (ch->nfft) { |
| case 0: |
| state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K; |
| break; |
| case 2: |
| state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_4K; |
| break; |
| case 1: |
| state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_AUTO; |
| break; |
| } |
| switch (ch->guard) { |
| case 0: |
| state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32; |
| break; |
| case 1: |
| state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16; |
| break; |
| case 2: |
| state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8; |
| break; |
| case 3: |
| state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.guard_interval = GUARD_INTERVAL_AUTO; |
| break; |
| } |
| switch (ch->constellation) { |
| case 2: |
| state->fe[0]->dtv_property_cache.modulation = QAM_64; |
| break; |
| case 1: |
| state->fe[0]->dtv_property_cache.modulation = QAM_16; |
| break; |
| case 0: |
| state->fe[0]->dtv_property_cache.modulation = QPSK; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.modulation = QAM_AUTO; |
| break; |
| } |
| switch (ch->hrch) { |
| case 0: |
| state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_NONE; |
| break; |
| case 1: |
| state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_1; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.hierarchy = HIERARCHY_AUTO; |
| break; |
| } |
| switch (ch->code_rate_hp) { |
| case 1: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_1_2; |
| break; |
| case 2: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_2_3; |
| break; |
| case 3: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_3_4; |
| break; |
| case 5: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_5_6; |
| break; |
| case 7: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_7_8; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.code_rate_HP = FEC_AUTO; |
| break; |
| } |
| switch (ch->code_rate_lp) { |
| case 1: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_1_2; |
| break; |
| case 2: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_2_3; |
| break; |
| case 3: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_3_4; |
| break; |
| case 5: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_5_6; |
| break; |
| case 7: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_7_8; |
| break; |
| default: |
| case -1: |
| state->fe[0]->dtv_property_cache.code_rate_LP = FEC_AUTO; |
| break; |
| } |
| |
| error: |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| return ret; |
| } |
| |
| static int dib9000_fw_set_channel_union(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| struct dibDVBTChannel { |
| s8 spectrum_inversion; |
| |
| s8 nfft; |
| s8 guard; |
| s8 constellation; |
| |
| s8 hrch; |
| s8 alpha; |
| s8 code_rate_hp; |
| s8 code_rate_lp; |
| s8 select_hp; |
| |
| s8 intlv_native; |
| }; |
| struct dibDVBTChannel ch; |
| |
| switch (state->fe[0]->dtv_property_cache.inversion) { |
| case INVERSION_ON: |
| ch.spectrum_inversion = 1; |
| break; |
| case INVERSION_OFF: |
| ch.spectrum_inversion = 0; |
| break; |
| default: |
| case INVERSION_AUTO: |
| ch.spectrum_inversion = -1; |
| break; |
| } |
| switch (state->fe[0]->dtv_property_cache.transmission_mode) { |
| case TRANSMISSION_MODE_2K: |
| ch.nfft = 0; |
| break; |
| case TRANSMISSION_MODE_4K: |
| ch.nfft = 2; |
| break; |
| case TRANSMISSION_MODE_8K: |
| ch.nfft = 1; |
| break; |
| default: |
| case TRANSMISSION_MODE_AUTO: |
| ch.nfft = 1; |
| break; |
| } |
| switch (state->fe[0]->dtv_property_cache.guard_interval) { |
| case GUARD_INTERVAL_1_32: |
| ch.guard = 0; |
| break; |
| case GUARD_INTERVAL_1_16: |
| ch.guard = 1; |
| break; |
| case GUARD_INTERVAL_1_8: |
| ch.guard = 2; |
| break; |
| case GUARD_INTERVAL_1_4: |
| ch.guard = 3; |
| break; |
| default: |
| case GUARD_INTERVAL_AUTO: |
| ch.guard = -1; |
| break; |
| } |
| switch (state->fe[0]->dtv_property_cache.modulation) { |
| case QAM_64: |
| ch.constellation = 2; |
| break; |
| case QAM_16: |
| ch.constellation = 1; |
| break; |
| case QPSK: |
| ch.constellation = 0; |
| break; |
| default: |
| case QAM_AUTO: |
| ch.constellation = -1; |
| break; |
| } |
| switch (state->fe[0]->dtv_property_cache.hierarchy) { |
| case HIERARCHY_NONE: |
| ch.hrch = 0; |
| break; |
| case HIERARCHY_1: |
| case HIERARCHY_2: |
| case HIERARCHY_4: |
| ch.hrch = 1; |
| break; |
| default: |
| case HIERARCHY_AUTO: |
| ch.hrch = -1; |
| break; |
| } |
| ch.alpha = 1; |
| switch (state->fe[0]->dtv_property_cache.code_rate_HP) { |
| case FEC_1_2: |
| ch.code_rate_hp = 1; |
| break; |
| case FEC_2_3: |
| ch.code_rate_hp = 2; |
| break; |
| case FEC_3_4: |
| ch.code_rate_hp = 3; |
| break; |
| case FEC_5_6: |
| ch.code_rate_hp = 5; |
| break; |
| case FEC_7_8: |
| ch.code_rate_hp = 7; |
| break; |
| default: |
| case FEC_AUTO: |
| ch.code_rate_hp = -1; |
| break; |
| } |
| switch (state->fe[0]->dtv_property_cache.code_rate_LP) { |
| case FEC_1_2: |
| ch.code_rate_lp = 1; |
| break; |
| case FEC_2_3: |
| ch.code_rate_lp = 2; |
| break; |
| case FEC_3_4: |
| ch.code_rate_lp = 3; |
| break; |
| case FEC_5_6: |
| ch.code_rate_lp = 5; |
| break; |
| case FEC_7_8: |
| ch.code_rate_lp = 7; |
| break; |
| default: |
| case FEC_AUTO: |
| ch.code_rate_lp = -1; |
| break; |
| } |
| ch.select_hp = 1; |
| ch.intlv_native = 1; |
| |
| dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_UNION, (u8 *) &ch); |
| |
| return 0; |
| } |
| |
| static int dib9000_fw_tune(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| int ret = 10, search = state->channel_status.status == CHANNEL_STATUS_PARAMETERS_UNKNOWN; |
| s8 i; |
| |
| switch (state->tune_state) { |
| case CT_DEMOD_START: |
| dib9000_fw_set_channel_head(state); |
| |
| /* write the channel context - a channel is initialized to 0, so it is OK */ |
| dib9000_risc_mem_write(state, FE_MM_W_CHANNEL_CONTEXT, (u8 *) fe_info); |
| dib9000_risc_mem_write(state, FE_MM_W_FE_INFO, (u8 *) fe_info); |
| |
| if (search) |
| dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_SEARCH, NULL, 0); |
| else { |
| dib9000_fw_set_channel_union(fe); |
| dib9000_mbx_send(state, OUT_MSG_FE_CHANNEL_TUNE, NULL, 0); |
| } |
| state->tune_state = CT_DEMOD_STEP_1; |
| break; |
| case CT_DEMOD_STEP_1: |
| if (search) |
| dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_SEARCH_STATE, state->i2c_read_buffer, 1); |
| else |
| dib9000_risc_mem_read(state, FE_MM_R_CHANNEL_TUNE_STATE, state->i2c_read_buffer, 1); |
| i = (s8)state->i2c_read_buffer[0]; |
| switch (i) { /* something happened */ |
| case 0: |
| break; |
| case -2: /* tps locks are "slower" than MPEG locks -> even in autosearch data is OK here */ |
| if (search) |
| state->status = FE_STATUS_DEMOD_SUCCESS; |
| else { |
| state->tune_state = CT_DEMOD_STOP; |
| state->status = FE_STATUS_LOCKED; |
| } |
| break; |
| default: |
| state->status = FE_STATUS_TUNE_FAILED; |
| state->tune_state = CT_DEMOD_STOP; |
| break; |
| } |
| break; |
| default: |
| ret = FE_CALLBACK_TIME_NEVER; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static int dib9000_fw_set_diversity_in(struct dvb_frontend *fe, int onoff) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 mode = (u16) onoff; |
| return dib9000_mbx_send(state, OUT_MSG_ENABLE_DIVERSITY, &mode, 1); |
| } |
| |
| static int dib9000_fw_set_output_mode(struct dvb_frontend *fe, int mode) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 outreg, smo_mode; |
| |
| dprintk("setting output mode for demod %p to %d\n", fe, mode); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| outreg = (1 << 10); /* 0x0400 */ |
| break; |
| case OUTMODE_MPEG2_PAR_CONT_CLK: |
| outreg = (1 << 10) | (1 << 6); /* 0x0440 */ |
| break; |
| case OUTMODE_MPEG2_SERIAL: |
| outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */ |
| break; |
| case OUTMODE_DIVERSITY: |
| outreg = (1 << 10) | (4 << 6); /* 0x0500 */ |
| break; |
| case OUTMODE_MPEG2_FIFO: |
| outreg = (1 << 10) | (5 << 6); |
| break; |
| case OUTMODE_HIGH_Z: |
| outreg = 0; |
| break; |
| default: |
| dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->fe[0]); |
| return -EINVAL; |
| } |
| |
| dib9000_write_word(state, 1795, outreg); |
| |
| switch (mode) { |
| case OUTMODE_MPEG2_PAR_GATED_CLK: |
| case OUTMODE_MPEG2_PAR_CONT_CLK: |
| case OUTMODE_MPEG2_SERIAL: |
| case OUTMODE_MPEG2_FIFO: |
| smo_mode = (dib9000_read_word(state, 295) & 0x0010) | (1 << 1); |
| if (state->chip.d9.cfg.output_mpeg2_in_188_bytes) |
| smo_mode |= (1 << 5); |
| dib9000_write_word(state, 295, smo_mode); |
| break; |
| } |
| |
| outreg = to_fw_output_mode(mode); |
| return dib9000_mbx_send(state, OUT_MSG_SET_OUTPUT_MODE, &outreg, 1); |
| } |
| |
| static int dib9000_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct dib9000_state *state = i2c_get_adapdata(i2c_adap); |
| u16 i, len, t, index_msg; |
| |
| for (index_msg = 0; index_msg < num; index_msg++) { |
| if (msg[index_msg].flags & I2C_M_RD) { /* read */ |
| len = msg[index_msg].len; |
| if (len > 16) |
| len = 16; |
| |
| if (dib9000_read_word(state, 790) != 0) |
| dprintk("TunerITF: read busy\n"); |
| |
| dib9000_write_word(state, 784, (u16) (msg[index_msg].addr)); |
| dib9000_write_word(state, 787, (len / 2) - 1); |
| dib9000_write_word(state, 786, 1); /* start read */ |
| |
| i = 1000; |
| while (dib9000_read_word(state, 790) != (len / 2) && i) |
| i--; |
| |
| if (i == 0) |
| dprintk("TunerITF: read failed\n"); |
| |
| for (i = 0; i < len; i += 2) { |
| t = dib9000_read_word(state, 785); |
| msg[index_msg].buf[i] = (t >> 8) & 0xff; |
| msg[index_msg].buf[i + 1] = (t) & 0xff; |
| } |
| if (dib9000_read_word(state, 790) != 0) |
| dprintk("TunerITF: read more data than expected\n"); |
| } else { |
| i = 1000; |
| while (dib9000_read_word(state, 789) && i) |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: write busy\n"); |
| |
| len = msg[index_msg].len; |
| if (len > 16) |
| len = 16; |
| |
| for (i = 0; i < len; i += 2) |
| dib9000_write_word(state, 785, (msg[index_msg].buf[i] << 8) | msg[index_msg].buf[i + 1]); |
| dib9000_write_word(state, 784, (u16) msg[index_msg].addr); |
| dib9000_write_word(state, 787, (len / 2) - 1); |
| dib9000_write_word(state, 786, 0); /* start write */ |
| |
| i = 1000; |
| while (dib9000_read_word(state, 791) > 0 && i) |
| i--; |
| if (i == 0) |
| dprintk("TunerITF: write failed\n"); |
| } |
| } |
| return num; |
| } |
| |
| int dib9000_fw_set_component_bus_speed(struct dvb_frontend *fe, u16 speed) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| |
| state->component_bus_speed = speed; |
| return 0; |
| } |
| EXPORT_SYMBOL(dib9000_fw_set_component_bus_speed); |
| |
| static int dib9000_fw_component_bus_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num) |
| { |
| struct dib9000_state *state = i2c_get_adapdata(i2c_adap); |
| u8 type = 0; /* I2C */ |
| u8 port = DIBX000_I2C_INTERFACE_GPIO_3_4; |
| u16 scl = state->component_bus_speed; /* SCL frequency */ |
| struct dib9000_fe_memory_map *m = &state->platform.risc.fe_mm[FE_MM_RW_COMPONENT_ACCESS_BUFFER]; |
| u8 p[13] = { 0 }; |
| |
| p[0] = type; |
| p[1] = port; |
| p[2] = msg[0].addr << 1; |
| |
| p[3] = (u8) scl & 0xff; /* scl */ |
| p[4] = (u8) (scl >> 8); |
| |
| p[7] = 0; |
| p[8] = 0; |
| |
| p[9] = (u8) (msg[0].len); |
| p[10] = (u8) (msg[0].len >> 8); |
| if ((num > 1) && (msg[1].flags & I2C_M_RD)) { |
| p[11] = (u8) (msg[1].len); |
| p[12] = (u8) (msg[1].len >> 8); |
| } else { |
| p[11] = 0; |
| p[12] = 0; |
| } |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return 0; |
| } |
| |
| dib9000_risc_mem_write(state, FE_MM_W_COMPONENT_ACCESS, p); |
| |
| { /* write-part */ |
| dib9000_risc_mem_setup_cmd(state, m->addr, msg[0].len, 0); |
| dib9000_risc_mem_write_chunks(state, msg[0].buf, msg[0].len); |
| } |
| |
| /* do the transaction */ |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_COMPONENT_ACCESS) < 0) { |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| return 0; |
| } |
| |
| /* read back any possible result */ |
| if ((num > 1) && (msg[1].flags & I2C_M_RD)) |
| dib9000_risc_mem_read(state, FE_MM_RW_COMPONENT_ACCESS_BUFFER, msg[1].buf, msg[1].len); |
| |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| |
| return num; |
| } |
| |
| static u32 dib9000_i2c_func(struct i2c_adapter *adapter) |
| { |
| return I2C_FUNC_I2C; |
| } |
| |
| static const struct i2c_algorithm dib9000_tuner_algo = { |
| .master_xfer = dib9000_tuner_xfer, |
| .functionality = dib9000_i2c_func, |
| }; |
| |
| static const struct i2c_algorithm dib9000_component_bus_algo = { |
| .master_xfer = dib9000_fw_component_bus_xfer, |
| .functionality = dib9000_i2c_func, |
| }; |
| |
| struct i2c_adapter *dib9000_get_tuner_interface(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *st = fe->demodulator_priv; |
| return &st->tuner_adap; |
| } |
| EXPORT_SYMBOL(dib9000_get_tuner_interface); |
| |
| struct i2c_adapter *dib9000_get_component_bus_interface(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *st = fe->demodulator_priv; |
| return &st->component_bus; |
| } |
| EXPORT_SYMBOL(dib9000_get_component_bus_interface); |
| |
| struct i2c_adapter *dib9000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating) |
| { |
| struct dib9000_state *st = fe->demodulator_priv; |
| return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); |
| } |
| EXPORT_SYMBOL(dib9000_get_i2c_master); |
| |
| int dib9000_set_i2c_adapter(struct dvb_frontend *fe, struct i2c_adapter *i2c) |
| { |
| struct dib9000_state *st = fe->demodulator_priv; |
| |
| st->i2c.i2c_adap = i2c; |
| return 0; |
| } |
| EXPORT_SYMBOL(dib9000_set_i2c_adapter); |
| |
| static int dib9000_cfg_gpio(struct dib9000_state *st, u8 num, u8 dir, u8 val) |
| { |
| st->gpio_dir = dib9000_read_word(st, 773); |
| st->gpio_dir &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ |
| dib9000_write_word(st, 773, st->gpio_dir); |
| |
| st->gpio_val = dib9000_read_word(st, 774); |
| st->gpio_val &= ~(1 << num); /* reset the direction bit */ |
| st->gpio_val |= (val & 0x01) << num; /* set the new value */ |
| dib9000_write_word(st, 774, st->gpio_val); |
| |
| dprintk("gpio dir: %04x: gpio val: %04x\n", st->gpio_dir, st->gpio_val); |
| |
| return 0; |
| } |
| |
| int dib9000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| return dib9000_cfg_gpio(state, num, dir, val); |
| } |
| EXPORT_SYMBOL(dib9000_set_gpio); |
| |
| int dib9000_fw_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 val; |
| int ret; |
| |
| if ((state->pid_ctrl_index != -2) && (state->pid_ctrl_index < 9)) { |
| /* postpone the pid filtering cmd */ |
| dprintk("pid filter cmd postpone\n"); |
| state->pid_ctrl_index++; |
| state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER_CTRL; |
| state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; |
| return 0; |
| } |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| |
| val = dib9000_read_word(state, 294 + 1) & 0xffef; |
| val |= (onoff & 0x1) << 4; |
| |
| dprintk("PID filter enabled %d\n", onoff); |
| ret = dib9000_write_word(state, 294 + 1, val); |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| |
| } |
| EXPORT_SYMBOL(dib9000_fw_pid_filter_ctrl); |
| |
| int dib9000_fw_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| int ret; |
| |
| if (state->pid_ctrl_index != -2) { |
| /* postpone the pid filtering cmd */ |
| dprintk("pid filter postpone\n"); |
| if (state->pid_ctrl_index < 9) { |
| state->pid_ctrl_index++; |
| state->pid_ctrl[state->pid_ctrl_index].cmd = DIB9000_PID_FILTER; |
| state->pid_ctrl[state->pid_ctrl_index].id = id; |
| state->pid_ctrl[state->pid_ctrl_index].pid = pid; |
| state->pid_ctrl[state->pid_ctrl_index].onoff = onoff; |
| } else |
| dprintk("can not add any more pid ctrl cmd\n"); |
| return 0; |
| } |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| dprintk("Index %x, PID %d, OnOff %d\n", id, pid, onoff); |
| ret = dib9000_write_word(state, 300 + 1 + id, |
| onoff ? (1 << 13) | pid : 0); |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(dib9000_fw_pid_filter); |
| |
| int dib9000_firmware_post_pll_init(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| return dib9000_fw_init(state); |
| } |
| EXPORT_SYMBOL(dib9000_firmware_post_pll_init); |
| |
| static void dib9000_release(struct dvb_frontend *demod) |
| { |
| struct dib9000_state *st = demod->demodulator_priv; |
| u8 index_frontend; |
| |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++) |
| dvb_frontend_detach(st->fe[index_frontend]); |
| |
| dibx000_exit_i2c_master(&st->i2c_master); |
| |
| i2c_del_adapter(&st->tuner_adap); |
| i2c_del_adapter(&st->component_bus); |
| kfree(st->fe[0]); |
| kfree(st); |
| } |
| |
| static int dib9000_wakeup(struct dvb_frontend *fe) |
| { |
| return 0; |
| } |
| |
| static int dib9000_sleep(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]); |
| if (ret < 0) |
| goto error; |
| } |
| ret = dib9000_mbx_send(state, OUT_MSG_FE_SLEEP, NULL, 0); |
| |
| error: |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| |
| static int dib9000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune) |
| { |
| tune->min_delay_ms = 1000; |
| return 0; |
| } |
| |
| static int dib9000_get_frontend(struct dvb_frontend *fe, |
| struct dtv_frontend_properties *c) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend, sub_index_frontend; |
| enum fe_status stat; |
| int ret = 0; |
| |
| if (state->get_frontend_internal == 0) { |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| } |
| |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat); |
| if (stat & FE_HAS_SYNC) { |
| dprintk("TPS lock on the slave%i\n", index_frontend); |
| |
| /* synchronize the cache with the other frontends */ |
| state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c); |
| for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); |
| sub_index_frontend++) { |
| if (sub_index_frontend != index_frontend) { |
| state->fe[sub_index_frontend]->dtv_property_cache.modulation = |
| state->fe[index_frontend]->dtv_property_cache.modulation; |
| state->fe[sub_index_frontend]->dtv_property_cache.inversion = |
| state->fe[index_frontend]->dtv_property_cache.inversion; |
| state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = |
| state->fe[index_frontend]->dtv_property_cache.transmission_mode; |
| state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = |
| state->fe[index_frontend]->dtv_property_cache.guard_interval; |
| state->fe[sub_index_frontend]->dtv_property_cache.hierarchy = |
| state->fe[index_frontend]->dtv_property_cache.hierarchy; |
| state->fe[sub_index_frontend]->dtv_property_cache.code_rate_HP = |
| state->fe[index_frontend]->dtv_property_cache.code_rate_HP; |
| state->fe[sub_index_frontend]->dtv_property_cache.code_rate_LP = |
| state->fe[index_frontend]->dtv_property_cache.code_rate_LP; |
| state->fe[sub_index_frontend]->dtv_property_cache.rolloff = |
| state->fe[index_frontend]->dtv_property_cache.rolloff; |
| } |
| } |
| ret = 0; |
| goto return_value; |
| } |
| } |
| |
| /* get the channel from master chip */ |
| ret = dib9000_fw_get_channel(fe); |
| if (ret != 0) |
| goto return_value; |
| |
| /* synchronize the cache with the other frontends */ |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion; |
| state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode; |
| state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval; |
| state->fe[index_frontend]->dtv_property_cache.modulation = c->modulation; |
| state->fe[index_frontend]->dtv_property_cache.hierarchy = c->hierarchy; |
| state->fe[index_frontend]->dtv_property_cache.code_rate_HP = c->code_rate_HP; |
| state->fe[index_frontend]->dtv_property_cache.code_rate_LP = c->code_rate_LP; |
| state->fe[index_frontend]->dtv_property_cache.rolloff = c->rolloff; |
| } |
| ret = 0; |
| |
| return_value: |
| if (state->get_frontend_internal == 0) |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| |
| static int dib9000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| state->tune_state = tune_state; |
| if (tune_state == CT_DEMOD_START) |
| state->status = FE_STATUS_TUNE_PENDING; |
| |
| return 0; |
| } |
| |
| static u32 dib9000_get_status(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| return state->status; |
| } |
| |
| static int dib9000_set_channel_status(struct dvb_frontend *fe, struct dvb_frontend_parametersContext *channel_status) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| |
| memcpy(&state->channel_status, channel_status, sizeof(struct dvb_frontend_parametersContext)); |
| return 0; |
| } |
| |
| static int dib9000_set_frontend(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| int sleep_time, sleep_time_slave; |
| u32 frontend_status; |
| u8 nbr_pending, exit_condition, index_frontend, index_frontend_success; |
| struct dvb_frontend_parametersContext channel_status; |
| |
| /* check that the correct parameters are set */ |
| if (state->fe[0]->dtv_property_cache.frequency == 0) { |
| dprintk("dib9000: must specify frequency\n"); |
| return 0; |
| } |
| |
| if (state->fe[0]->dtv_property_cache.bandwidth_hz == 0) { |
| dprintk("dib9000: must specify bandwidth\n"); |
| return 0; |
| } |
| |
| state->pid_ctrl_index = -1; /* postpone the pid filtering cmd */ |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return 0; |
| } |
| |
| fe->dtv_property_cache.delivery_system = SYS_DVBT; |
| |
| /* set the master status */ |
| if (state->fe[0]->dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO || |
| state->fe[0]->dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO || |
| state->fe[0]->dtv_property_cache.modulation == QAM_AUTO || |
| state->fe[0]->dtv_property_cache.code_rate_HP == FEC_AUTO) { |
| /* no channel specified, autosearch the channel */ |
| state->channel_status.status = CHANNEL_STATUS_PARAMETERS_UNKNOWN; |
| } else |
| state->channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; |
| |
| /* set mode and status for the different frontends */ |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| dib9000_fw_set_diversity_in(state->fe[index_frontend], 1); |
| |
| /* synchronization of the cache */ |
| memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties)); |
| |
| state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_DVBT; |
| dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_HIGH_Z); |
| |
| dib9000_set_channel_status(state->fe[index_frontend], &state->channel_status); |
| dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); |
| } |
| |
| /* actual tune */ |
| exit_condition = 0; /* 0: tune pending; 1: tune failed; 2:tune success */ |
| index_frontend_success = 0; |
| do { |
| sleep_time = dib9000_fw_tune(state->fe[0]); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); |
| if (sleep_time == FE_CALLBACK_TIME_NEVER) |
| sleep_time = sleep_time_slave; |
| else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) |
| sleep_time = sleep_time_slave; |
| } |
| if (sleep_time != FE_CALLBACK_TIME_NEVER) |
| msleep(sleep_time / 10); |
| else |
| break; |
| |
| nbr_pending = 0; |
| exit_condition = 0; |
| index_frontend_success = 0; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| frontend_status = -dib9000_get_status(state->fe[index_frontend]); |
| if (frontend_status > -FE_STATUS_TUNE_PENDING) { |
| exit_condition = 2; /* tune success */ |
| index_frontend_success = index_frontend; |
| break; |
| } |
| if (frontend_status == -FE_STATUS_TUNE_PENDING) |
| nbr_pending++; /* some frontends are still tuning */ |
| } |
| if ((exit_condition != 2) && (nbr_pending == 0)) |
| exit_condition = 1; /* if all tune are done and no success, exit: tune failed */ |
| |
| } while (exit_condition == 0); |
| |
| /* check the tune result */ |
| if (exit_condition == 1) { /* tune failed */ |
| dprintk("tune failed\n"); |
| mutex_unlock(&state->demod_lock); |
| /* tune failed; put all the pid filtering cmd to junk */ |
| state->pid_ctrl_index = -1; |
| return 0; |
| } |
| |
| dprintk("tune success on frontend%i\n", index_frontend_success); |
| |
| /* synchronize all the channel cache */ |
| state->get_frontend_internal = 1; |
| dib9000_get_frontend(state->fe[0], &state->fe[0]->dtv_property_cache); |
| state->get_frontend_internal = 0; |
| |
| /* retune the other frontends with the found channel */ |
| channel_status.status = CHANNEL_STATUS_PARAMETERS_SET; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| /* only retune the frontends which was not tuned success */ |
| if (index_frontend != index_frontend_success) { |
| dib9000_set_channel_status(state->fe[index_frontend], &channel_status); |
| dib9000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START); |
| } |
| } |
| do { |
| sleep_time = FE_CALLBACK_TIME_NEVER; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| if (index_frontend != index_frontend_success) { |
| sleep_time_slave = dib9000_fw_tune(state->fe[index_frontend]); |
| if (sleep_time == FE_CALLBACK_TIME_NEVER) |
| sleep_time = sleep_time_slave; |
| else if ((sleep_time_slave != FE_CALLBACK_TIME_NEVER) && (sleep_time_slave > sleep_time)) |
| sleep_time = sleep_time_slave; |
| } |
| } |
| if (sleep_time != FE_CALLBACK_TIME_NEVER) |
| msleep(sleep_time / 10); |
| else |
| break; |
| |
| nbr_pending = 0; |
| for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| if (index_frontend != index_frontend_success) { |
| frontend_status = -dib9000_get_status(state->fe[index_frontend]); |
| if ((index_frontend != index_frontend_success) && (frontend_status == -FE_STATUS_TUNE_PENDING)) |
| nbr_pending++; /* some frontends are still tuning */ |
| } |
| } |
| } while (nbr_pending != 0); |
| |
| /* set the output mode */ |
| dib9000_fw_set_output_mode(state->fe[0], state->chip.d9.cfg.output_mode); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| dib9000_fw_set_output_mode(state->fe[index_frontend], OUTMODE_DIVERSITY); |
| |
| /* turn off the diversity for the last frontend */ |
| dib9000_fw_set_diversity_in(state->fe[index_frontend - 1], 0); |
| |
| mutex_unlock(&state->demod_lock); |
| if (state->pid_ctrl_index >= 0) { |
| u8 index_pid_filter_cmd; |
| u8 pid_ctrl_index = state->pid_ctrl_index; |
| |
| state->pid_ctrl_index = -2; |
| for (index_pid_filter_cmd = 0; |
| index_pid_filter_cmd <= pid_ctrl_index; |
| index_pid_filter_cmd++) { |
| if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER_CTRL) |
| dib9000_fw_pid_filter_ctrl(state->fe[0], |
| state->pid_ctrl[index_pid_filter_cmd].onoff); |
| else if (state->pid_ctrl[index_pid_filter_cmd].cmd == DIB9000_PID_FILTER) |
| dib9000_fw_pid_filter(state->fe[0], |
| state->pid_ctrl[index_pid_filter_cmd].id, |
| state->pid_ctrl[index_pid_filter_cmd].pid, |
| state->pid_ctrl[index_pid_filter_cmd].onoff); |
| } |
| } |
| /* do not postpone any more the pid filtering */ |
| state->pid_ctrl_index = -2; |
| |
| return 0; |
| } |
| |
| static u16 dib9000_read_lock(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| |
| return dib9000_read_word(state, 535); |
| } |
| |
| static int dib9000_read_status(struct dvb_frontend *fe, enum fe_status *stat) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| u16 lock = 0, lock_slave = 0; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| lock_slave |= dib9000_read_lock(state->fe[index_frontend]); |
| |
| lock = dib9000_read_word(state, 535); |
| |
| *stat = 0; |
| |
| if ((lock & 0x8000) || (lock_slave & 0x8000)) |
| *stat |= FE_HAS_SIGNAL; |
| if ((lock & 0x3000) || (lock_slave & 0x3000)) |
| *stat |= FE_HAS_CARRIER; |
| if ((lock & 0x0100) || (lock_slave & 0x0100)) |
| *stat |= FE_HAS_VITERBI; |
| if (((lock & 0x0038) == 0x38) || ((lock_slave & 0x0038) == 0x38)) |
| *stat |= FE_HAS_SYNC; |
| if ((lock & 0x0008) || (lock_slave & 0x0008)) |
| *stat |= FE_HAS_LOCK; |
| |
| mutex_unlock(&state->demod_lock); |
| |
| return 0; |
| } |
| |
| static int dib9000_read_ber(struct dvb_frontend *fe, u32 * ber) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 *c; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| ret = -EINTR; |
| goto error; |
| } |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| ret = -EIO; |
| goto error; |
| } |
| dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, |
| state->i2c_read_buffer, 16 * 2); |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| |
| c = (u16 *)state->i2c_read_buffer; |
| |
| *ber = c[10] << 16 | c[11]; |
| |
| error: |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| |
| static int dib9000_read_signal_strength(struct dvb_frontend *fe, u16 * strength) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| u16 *c = (u16 *)state->i2c_read_buffer; |
| u16 val; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| *strength = 0; |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) { |
| state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val); |
| if (val > 65535 - *strength) |
| *strength = 65535; |
| else |
| *strength += val; |
| } |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| ret = -EINTR; |
| goto error; |
| } |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| ret = -EIO; |
| goto error; |
| } |
| dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| |
| val = 65535 - c[4]; |
| if (val > 65535 - *strength) |
| *strength = 65535; |
| else |
| *strength += val; |
| |
| error: |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| |
| static u32 dib9000_get_snr(struct dvb_frontend *fe) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 *c = (u16 *)state->i2c_read_buffer; |
| u32 n, s, exp; |
| u16 val; |
| |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return 0; |
| } |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| return 0; |
| } |
| dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| |
| val = c[7]; |
| n = (val >> 4) & 0xff; |
| exp = ((val & 0xf) << 2); |
| val = c[8]; |
| exp += ((val >> 14) & 0x3); |
| if ((exp & 0x20) != 0) |
| exp -= 0x40; |
| n <<= exp + 16; |
| |
| s = (val >> 6) & 0xFF; |
| exp = (val & 0x3F); |
| if ((exp & 0x20) != 0) |
| exp -= 0x40; |
| s <<= exp + 16; |
| |
| if (n > 0) { |
| u32 t = (s / n) << 16; |
| return t + ((s << 16) - n * t) / n; |
| } |
| return 0xffffffff; |
| } |
| |
| static int dib9000_read_snr(struct dvb_frontend *fe, u16 * snr) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend; |
| u32 snr_master; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| snr_master = dib9000_get_snr(fe); |
| for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) |
| snr_master += dib9000_get_snr(state->fe[index_frontend]); |
| |
| if ((snr_master >> 16) != 0) { |
| snr_master = 10 * intlog10(snr_master >> 16); |
| *snr = snr_master / ((1 << 24) / 10); |
| } else |
| *snr = 0; |
| |
| mutex_unlock(&state->demod_lock); |
| |
| return 0; |
| } |
| |
| static int dib9000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u16 *c = (u16 *)state->i2c_read_buffer; |
| int ret = 0; |
| |
| if (mutex_lock_interruptible(&state->demod_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| return -EINTR; |
| } |
| if (mutex_lock_interruptible(&state->platform.risc.mem_mbx_lock) < 0) { |
| dprintk("could not get the lock\n"); |
| ret = -EINTR; |
| goto error; |
| } |
| if (dib9000_fw_memmbx_sync(state, FE_SYNC_CHANNEL) < 0) { |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| ret = -EIO; |
| goto error; |
| } |
| dib9000_risc_mem_read(state, FE_MM_R_FE_MONITOR, (u8 *) c, 16 * 2); |
| mutex_unlock(&state->platform.risc.mem_mbx_lock); |
| |
| *unc = c[12]; |
| |
| error: |
| mutex_unlock(&state->demod_lock); |
| return ret; |
| } |
| |
| int dib9000_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, u8 first_addr) |
| { |
| int k = 0, ret = 0; |
| u8 new_addr = 0; |
| struct i2c_device client = {.i2c_adap = i2c }; |
| |
| client.i2c_write_buffer = kzalloc(4, GFP_KERNEL); |
| if (!client.i2c_write_buffer) { |
| dprintk("%s: not enough memory\n", __func__); |
| return -ENOMEM; |
| } |
| client.i2c_read_buffer = kzalloc(4, GFP_KERNEL); |
| if (!client.i2c_read_buffer) { |
| dprintk("%s: not enough memory\n", __func__); |
| ret = -ENOMEM; |
| goto error_memory; |
| } |
| |
| client.i2c_addr = default_addr + 16; |
| dib9000_i2c_write16(&client, 1796, 0x0); |
| |
| for (k = no_of_demods - 1; k >= 0; k--) { |
| /* designated i2c address */ |
| new_addr = first_addr + (k << 1); |
| client.i2c_addr = default_addr; |
| |
| dib9000_i2c_write16(&client, 1817, 3); |
| dib9000_i2c_write16(&client, 1796, 0); |
| dib9000_i2c_write16(&client, 1227, 1); |
| dib9000_i2c_write16(&client, 1227, 0); |
| |
| client.i2c_addr = new_addr; |
| dib9000_i2c_write16(&client, 1817, 3); |
| dib9000_i2c_write16(&client, 1796, 0); |
| dib9000_i2c_write16(&client, 1227, 1); |
| dib9000_i2c_write16(&client, 1227, 0); |
| |
| if (dib9000_identify(&client) == 0) { |
| client.i2c_addr = default_addr; |
| if (dib9000_identify(&client) == 0) { |
| dprintk("DiB9000 #%d: not identified\n", k); |
| ret = -EIO; |
| goto error; |
| } |
| } |
| |
| dib9000_i2c_write16(&client, 1795, (1 << 10) | (4 << 6)); |
| dib9000_i2c_write16(&client, 1794, (new_addr << 2) | 2); |
| |
| dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); |
| } |
| |
| for (k = 0; k < no_of_demods; k++) { |
| new_addr = first_addr | (k << 1); |
| client.i2c_addr = new_addr; |
| |
| dib9000_i2c_write16(&client, 1794, (new_addr << 2)); |
| dib9000_i2c_write16(&client, 1795, 0); |
| } |
| |
| error: |
| kfree(client.i2c_read_buffer); |
| error_memory: |
| kfree(client.i2c_write_buffer); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(dib9000_i2c_enumeration); |
| |
| int dib9000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| u8 index_frontend = 1; |
| |
| while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL)) |
| index_frontend++; |
| if (index_frontend < MAX_NUMBER_OF_FRONTENDS) { |
| dprintk("set slave fe %p to index %i\n", fe_slave, index_frontend); |
| state->fe[index_frontend] = fe_slave; |
| return 0; |
| } |
| |
| dprintk("too many slave frontend\n"); |
| return -ENOMEM; |
| } |
| EXPORT_SYMBOL(dib9000_set_slave_frontend); |
| |
| struct dvb_frontend *dib9000_get_slave_frontend(struct dvb_frontend *fe, int slave_index) |
| { |
| struct dib9000_state *state = fe->demodulator_priv; |
| |
| if (slave_index >= MAX_NUMBER_OF_FRONTENDS) |
| return NULL; |
| return state->fe[slave_index]; |
| } |
| EXPORT_SYMBOL(dib9000_get_slave_frontend); |
| |
| static const struct dvb_frontend_ops dib9000_ops; |
| struct dvb_frontend *dib9000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, const struct dib9000_config *cfg) |
| { |
| struct dvb_frontend *fe; |
| struct dib9000_state *st; |
| st = kzalloc(sizeof(struct dib9000_state), GFP_KERNEL); |
| if (st == NULL) |
| return NULL; |
| fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL); |
| if (fe == NULL) { |
| kfree(st); |
| return NULL; |
| } |
| |
| memcpy(&st->chip.d9.cfg, cfg, sizeof(struct dib9000_config)); |
| st->i2c.i2c_adap = i2c_adap; |
| st->i2c.i2c_addr = i2c_addr; |
| st->i2c.i2c_write_buffer = st->i2c_write_buffer; |
| st->i2c.i2c_read_buffer = st->i2c_read_buffer; |
| |
| st->gpio_dir = DIB9000_GPIO_DEFAULT_DIRECTIONS; |
| st->gpio_val = DIB9000_GPIO_DEFAULT_VALUES; |
| st->gpio_pwm_pos = DIB9000_GPIO_DEFAULT_PWM_POS; |
| |
| mutex_init(&st->platform.risc.mbx_if_lock); |
| mutex_init(&st->platform.risc.mbx_lock); |
| mutex_init(&st->platform.risc.mem_lock); |
| mutex_init(&st->platform.risc.mem_mbx_lock); |
| mutex_init(&st->demod_lock); |
| st->get_frontend_internal = 0; |
| |
| st->pid_ctrl_index = -2; |
| |
| st->fe[0] = fe; |
| fe->demodulator_priv = st; |
| memcpy(&st->fe[0]->ops, &dib9000_ops, sizeof(struct dvb_frontend_ops)); |
| |
| /* Ensure the output mode remains at the previous default if it's |
| * not specifically set by the caller. |
| */ |
| if ((st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->chip.d9.cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK)) |
| st->chip.d9.cfg.output_mode = OUTMODE_MPEG2_FIFO; |
| |
| if (dib9000_identify(&st->i2c) == 0) |
| goto error; |
| |
| dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c.i2c_adap, st->i2c.i2c_addr); |
| |
| st->tuner_adap.dev.parent = i2c_adap->dev.parent; |
| strscpy(st->tuner_adap.name, "DIB9000_FW TUNER ACCESS", |
| sizeof(st->tuner_adap.name)); |
| st->tuner_adap.algo = &dib9000_tuner_algo; |
| st->tuner_adap.algo_data = NULL; |
| i2c_set_adapdata(&st->tuner_adap, st); |
| if (i2c_add_adapter(&st->tuner_adap) < 0) |
| goto error; |
| |
| st->component_bus.dev.parent = i2c_adap->dev.parent; |
| strscpy(st->component_bus.name, "DIB9000_FW COMPONENT BUS ACCESS", |
| sizeof(st->component_bus.name)); |
| st->component_bus.algo = &dib9000_component_bus_algo; |
| st->component_bus.algo_data = NULL; |
| st->component_bus_speed = 340; |
| i2c_set_adapdata(&st->component_bus, st); |
| if (i2c_add_adapter(&st->component_bus) < 0) |
| goto component_bus_add_error; |
| |
| dib9000_fw_reset(fe); |
| |
| return fe; |
| |
| component_bus_add_error: |
| i2c_del_adapter(&st->tuner_adap); |
| error: |
| kfree(st); |
| return NULL; |
| } |
| EXPORT_SYMBOL(dib9000_attach); |
| |
| static const struct dvb_frontend_ops dib9000_ops = { |
| .delsys = { SYS_DVBT }, |
| .info = { |
| .name = "DiBcom 9000", |
| .frequency_min_hz = 44250 * kHz, |
| .frequency_max_hz = 867250 * kHz, |
| .frequency_stepsize_hz = 62500, |
| .caps = FE_CAN_INVERSION_AUTO | |
| FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | |
| FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | |
| FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | |
| FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, |
| }, |
| |
| .release = dib9000_release, |
| |
| .init = dib9000_wakeup, |
| .sleep = dib9000_sleep, |
| |
| .set_frontend = dib9000_set_frontend, |
| .get_tune_settings = dib9000_fe_get_tune_settings, |
| .get_frontend = dib9000_get_frontend, |
| |
| .read_status = dib9000_read_status, |
| .read_ber = dib9000_read_ber, |
| .read_signal_strength = dib9000_read_signal_strength, |
| .read_snr = dib9000_read_snr, |
| .read_ucblocks = dib9000_read_unc_blocks, |
| }; |
| |
| MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); |
| MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>"); |
| MODULE_DESCRIPTION("Driver for the DiBcom 9000 COFDM demodulator"); |
| MODULE_LICENSE("GPL"); |