| /* |
| * Copyright (c) 2014 Mellanox Technologies. All rights reserved. |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/task.h> |
| #include <linux/pid.h> |
| #include <linux/slab.h> |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/hugetlb.h> |
| #include <linux/interval_tree.h> |
| #include <linux/hmm.h> |
| #include <linux/pagemap.h> |
| |
| #include <rdma/ib_verbs.h> |
| #include <rdma/ib_umem.h> |
| #include <rdma/ib_umem_odp.h> |
| |
| #include "uverbs.h" |
| |
| static inline int ib_init_umem_odp(struct ib_umem_odp *umem_odp, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| int ret; |
| |
| umem_odp->umem.is_odp = 1; |
| mutex_init(&umem_odp->umem_mutex); |
| |
| if (!umem_odp->is_implicit_odp) { |
| size_t page_size = 1UL << umem_odp->page_shift; |
| unsigned long start; |
| unsigned long end; |
| size_t ndmas, npfns; |
| |
| start = ALIGN_DOWN(umem_odp->umem.address, page_size); |
| if (check_add_overflow(umem_odp->umem.address, |
| (unsigned long)umem_odp->umem.length, |
| &end)) |
| return -EOVERFLOW; |
| end = ALIGN(end, page_size); |
| if (unlikely(end < page_size)) |
| return -EOVERFLOW; |
| |
| ndmas = (end - start) >> umem_odp->page_shift; |
| if (!ndmas) |
| return -EINVAL; |
| |
| npfns = (end - start) >> PAGE_SHIFT; |
| umem_odp->pfn_list = kvcalloc( |
| npfns, sizeof(*umem_odp->pfn_list), GFP_KERNEL); |
| if (!umem_odp->pfn_list) |
| return -ENOMEM; |
| |
| umem_odp->dma_list = kvcalloc( |
| ndmas, sizeof(*umem_odp->dma_list), GFP_KERNEL); |
| if (!umem_odp->dma_list) { |
| ret = -ENOMEM; |
| goto out_pfn_list; |
| } |
| |
| ret = mmu_interval_notifier_insert(&umem_odp->notifier, |
| umem_odp->umem.owning_mm, |
| start, end - start, ops); |
| if (ret) |
| goto out_dma_list; |
| } |
| |
| return 0; |
| |
| out_dma_list: |
| kvfree(umem_odp->dma_list); |
| out_pfn_list: |
| kvfree(umem_odp->pfn_list); |
| return ret; |
| } |
| |
| /** |
| * ib_umem_odp_alloc_implicit - Allocate a parent implicit ODP umem |
| * |
| * Implicit ODP umems do not have a VA range and do not have any page lists. |
| * They exist only to hold the per_mm reference to help the driver create |
| * children umems. |
| * |
| * @device: IB device to create UMEM |
| * @access: ib_reg_mr access flags |
| */ |
| struct ib_umem_odp *ib_umem_odp_alloc_implicit(struct ib_device *device, |
| int access) |
| { |
| struct ib_umem *umem; |
| struct ib_umem_odp *umem_odp; |
| int ret; |
| |
| if (access & IB_ACCESS_HUGETLB) |
| return ERR_PTR(-EINVAL); |
| |
| umem_odp = kzalloc(sizeof(*umem_odp), GFP_KERNEL); |
| if (!umem_odp) |
| return ERR_PTR(-ENOMEM); |
| umem = &umem_odp->umem; |
| umem->ibdev = device; |
| umem->writable = ib_access_writable(access); |
| umem->owning_mm = current->mm; |
| umem_odp->is_implicit_odp = 1; |
| umem_odp->page_shift = PAGE_SHIFT; |
| |
| umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); |
| ret = ib_init_umem_odp(umem_odp, NULL); |
| if (ret) { |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| return ERR_PTR(ret); |
| } |
| return umem_odp; |
| } |
| EXPORT_SYMBOL(ib_umem_odp_alloc_implicit); |
| |
| /** |
| * ib_umem_odp_alloc_child - Allocate a child ODP umem under an implicit |
| * parent ODP umem |
| * |
| * @root: The parent umem enclosing the child. This must be allocated using |
| * ib_alloc_implicit_odp_umem() |
| * @addr: The starting userspace VA |
| * @size: The length of the userspace VA |
| * @ops: MMU interval ops, currently only @invalidate |
| */ |
| struct ib_umem_odp * |
| ib_umem_odp_alloc_child(struct ib_umem_odp *root, unsigned long addr, |
| size_t size, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| /* |
| * Caller must ensure that root cannot be freed during the call to |
| * ib_alloc_odp_umem. |
| */ |
| struct ib_umem_odp *odp_data; |
| struct ib_umem *umem; |
| int ret; |
| |
| if (WARN_ON(!root->is_implicit_odp)) |
| return ERR_PTR(-EINVAL); |
| |
| odp_data = kzalloc(sizeof(*odp_data), GFP_KERNEL); |
| if (!odp_data) |
| return ERR_PTR(-ENOMEM); |
| umem = &odp_data->umem; |
| umem->ibdev = root->umem.ibdev; |
| umem->length = size; |
| umem->address = addr; |
| umem->writable = root->umem.writable; |
| umem->owning_mm = root->umem.owning_mm; |
| odp_data->page_shift = PAGE_SHIFT; |
| odp_data->notifier.ops = ops; |
| |
| /* |
| * A mmget must be held when registering a notifier, the owming_mm only |
| * has a mm_grab at this point. |
| */ |
| if (!mmget_not_zero(umem->owning_mm)) { |
| ret = -EFAULT; |
| goto out_free; |
| } |
| |
| odp_data->tgid = get_pid(root->tgid); |
| ret = ib_init_umem_odp(odp_data, ops); |
| if (ret) |
| goto out_tgid; |
| mmput(umem->owning_mm); |
| return odp_data; |
| |
| out_tgid: |
| put_pid(odp_data->tgid); |
| mmput(umem->owning_mm); |
| out_free: |
| kfree(odp_data); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_alloc_child); |
| |
| /** |
| * ib_umem_odp_get - Create a umem_odp for a userspace va |
| * |
| * @device: IB device struct to get UMEM |
| * @addr: userspace virtual address to start at |
| * @size: length of region to pin |
| * @access: IB_ACCESS_xxx flags for memory being pinned |
| * @ops: MMU interval ops, currently only @invalidate |
| * |
| * The driver should use when the access flags indicate ODP memory. It avoids |
| * pinning, instead, stores the mm for future page fault handling in |
| * conjunction with MMU notifiers. |
| */ |
| struct ib_umem_odp *ib_umem_odp_get(struct ib_device *device, |
| unsigned long addr, size_t size, int access, |
| const struct mmu_interval_notifier_ops *ops) |
| { |
| struct ib_umem_odp *umem_odp; |
| int ret; |
| |
| if (WARN_ON_ONCE(!(access & IB_ACCESS_ON_DEMAND))) |
| return ERR_PTR(-EINVAL); |
| |
| umem_odp = kzalloc(sizeof(struct ib_umem_odp), GFP_KERNEL); |
| if (!umem_odp) |
| return ERR_PTR(-ENOMEM); |
| |
| umem_odp->umem.ibdev = device; |
| umem_odp->umem.length = size; |
| umem_odp->umem.address = addr; |
| umem_odp->umem.writable = ib_access_writable(access); |
| umem_odp->umem.owning_mm = current->mm; |
| umem_odp->notifier.ops = ops; |
| |
| umem_odp->page_shift = PAGE_SHIFT; |
| #ifdef CONFIG_HUGETLB_PAGE |
| if (access & IB_ACCESS_HUGETLB) |
| umem_odp->page_shift = HPAGE_SHIFT; |
| #endif |
| |
| umem_odp->tgid = get_task_pid(current->group_leader, PIDTYPE_PID); |
| ret = ib_init_umem_odp(umem_odp, ops); |
| if (ret) |
| goto err_put_pid; |
| return umem_odp; |
| |
| err_put_pid: |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| return ERR_PTR(ret); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_get); |
| |
| void ib_umem_odp_release(struct ib_umem_odp *umem_odp) |
| { |
| /* |
| * Ensure that no more pages are mapped in the umem. |
| * |
| * It is the driver's responsibility to ensure, before calling us, |
| * that the hardware will not attempt to access the MR any more. |
| */ |
| if (!umem_odp->is_implicit_odp) { |
| mutex_lock(&umem_odp->umem_mutex); |
| ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp), |
| ib_umem_end(umem_odp)); |
| mutex_unlock(&umem_odp->umem_mutex); |
| mmu_interval_notifier_remove(&umem_odp->notifier); |
| kvfree(umem_odp->dma_list); |
| kvfree(umem_odp->pfn_list); |
| } |
| put_pid(umem_odp->tgid); |
| kfree(umem_odp); |
| } |
| EXPORT_SYMBOL(ib_umem_odp_release); |
| |
| /* |
| * Map for DMA and insert a single page into the on-demand paging page tables. |
| * |
| * @umem: the umem to insert the page to. |
| * @dma_index: index in the umem to add the dma to. |
| * @page: the page struct to map and add. |
| * @access_mask: access permissions needed for this page. |
| * |
| * The function returns -EFAULT if the DMA mapping operation fails. |
| * |
| */ |
| static int ib_umem_odp_map_dma_single_page( |
| struct ib_umem_odp *umem_odp, |
| unsigned int dma_index, |
| struct page *page, |
| u64 access_mask) |
| { |
| struct ib_device *dev = umem_odp->umem.ibdev; |
| dma_addr_t *dma_addr = &umem_odp->dma_list[dma_index]; |
| |
| if (*dma_addr) { |
| /* |
| * If the page is already dma mapped it means it went through |
| * a non-invalidating trasition, like read-only to writable. |
| * Resync the flags. |
| */ |
| *dma_addr = (*dma_addr & ODP_DMA_ADDR_MASK) | access_mask; |
| return 0; |
| } |
| |
| *dma_addr = ib_dma_map_page(dev, page, 0, 1 << umem_odp->page_shift, |
| DMA_BIDIRECTIONAL); |
| if (ib_dma_mapping_error(dev, *dma_addr)) { |
| *dma_addr = 0; |
| return -EFAULT; |
| } |
| umem_odp->npages++; |
| *dma_addr |= access_mask; |
| return 0; |
| } |
| |
| /** |
| * ib_umem_odp_map_dma_and_lock - DMA map userspace memory in an ODP MR and lock it. |
| * |
| * Maps the range passed in the argument to DMA addresses. |
| * The DMA addresses of the mapped pages is updated in umem_odp->dma_list. |
| * Upon success the ODP MR will be locked to let caller complete its device |
| * page table update. |
| * |
| * Returns the number of pages mapped in success, negative error code |
| * for failure. |
| * @umem_odp: the umem to map and pin |
| * @user_virt: the address from which we need to map. |
| * @bcnt: the minimal number of bytes to pin and map. The mapping might be |
| * bigger due to alignment, and may also be smaller in case of an error |
| * pinning or mapping a page. The actual pages mapped is returned in |
| * the return value. |
| * @access_mask: bit mask of the requested access permissions for the given |
| * range. |
| * @fault: is faulting required for the given range |
| */ |
| int ib_umem_odp_map_dma_and_lock(struct ib_umem_odp *umem_odp, u64 user_virt, |
| u64 bcnt, u64 access_mask, bool fault) |
| __acquires(&umem_odp->umem_mutex) |
| { |
| struct task_struct *owning_process = NULL; |
| struct mm_struct *owning_mm = umem_odp->umem.owning_mm; |
| int pfn_index, dma_index, ret = 0, start_idx; |
| unsigned int page_shift, hmm_order, pfn_start_idx; |
| unsigned long num_pfns, current_seq; |
| struct hmm_range range = {}; |
| unsigned long timeout; |
| |
| if (access_mask == 0) |
| return -EINVAL; |
| |
| if (user_virt < ib_umem_start(umem_odp) || |
| user_virt + bcnt > ib_umem_end(umem_odp)) |
| return -EFAULT; |
| |
| page_shift = umem_odp->page_shift; |
| |
| /* |
| * owning_process is allowed to be NULL, this means somehow the mm is |
| * existing beyond the lifetime of the originating process.. Presumably |
| * mmget_not_zero will fail in this case. |
| */ |
| owning_process = get_pid_task(umem_odp->tgid, PIDTYPE_PID); |
| if (!owning_process || !mmget_not_zero(owning_mm)) { |
| ret = -EINVAL; |
| goto out_put_task; |
| } |
| |
| range.notifier = &umem_odp->notifier; |
| range.start = ALIGN_DOWN(user_virt, 1UL << page_shift); |
| range.end = ALIGN(user_virt + bcnt, 1UL << page_shift); |
| pfn_start_idx = (range.start - ib_umem_start(umem_odp)) >> PAGE_SHIFT; |
| num_pfns = (range.end - range.start) >> PAGE_SHIFT; |
| if (fault) { |
| range.default_flags = HMM_PFN_REQ_FAULT; |
| |
| if (access_mask & ODP_WRITE_ALLOWED_BIT) |
| range.default_flags |= HMM_PFN_REQ_WRITE; |
| } |
| |
| range.hmm_pfns = &(umem_odp->pfn_list[pfn_start_idx]); |
| timeout = jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT); |
| |
| retry: |
| current_seq = range.notifier_seq = |
| mmu_interval_read_begin(&umem_odp->notifier); |
| |
| mmap_read_lock(owning_mm); |
| ret = hmm_range_fault(&range); |
| mmap_read_unlock(owning_mm); |
| if (unlikely(ret)) { |
| if (ret == -EBUSY && !time_after(jiffies, timeout)) |
| goto retry; |
| goto out_put_mm; |
| } |
| |
| start_idx = (range.start - ib_umem_start(umem_odp)) >> page_shift; |
| dma_index = start_idx; |
| |
| mutex_lock(&umem_odp->umem_mutex); |
| if (mmu_interval_read_retry(&umem_odp->notifier, current_seq)) { |
| mutex_unlock(&umem_odp->umem_mutex); |
| goto retry; |
| } |
| |
| for (pfn_index = 0; pfn_index < num_pfns; |
| pfn_index += 1 << (page_shift - PAGE_SHIFT), dma_index++) { |
| |
| if (fault) { |
| /* |
| * Since we asked for hmm_range_fault() to populate |
| * pages it shouldn't return an error entry on success. |
| */ |
| WARN_ON(range.hmm_pfns[pfn_index] & HMM_PFN_ERROR); |
| WARN_ON(!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)); |
| } else { |
| if (!(range.hmm_pfns[pfn_index] & HMM_PFN_VALID)) { |
| WARN_ON(umem_odp->dma_list[dma_index]); |
| continue; |
| } |
| access_mask = ODP_READ_ALLOWED_BIT; |
| if (range.hmm_pfns[pfn_index] & HMM_PFN_WRITE) |
| access_mask |= ODP_WRITE_ALLOWED_BIT; |
| } |
| |
| hmm_order = hmm_pfn_to_map_order(range.hmm_pfns[pfn_index]); |
| /* If a hugepage was detected and ODP wasn't set for, the umem |
| * page_shift will be used, the opposite case is an error. |
| */ |
| if (hmm_order + PAGE_SHIFT < page_shift) { |
| ret = -EINVAL; |
| ibdev_dbg(umem_odp->umem.ibdev, |
| "%s: un-expected hmm_order %u, page_shift %u\n", |
| __func__, hmm_order, page_shift); |
| break; |
| } |
| |
| ret = ib_umem_odp_map_dma_single_page( |
| umem_odp, dma_index, hmm_pfn_to_page(range.hmm_pfns[pfn_index]), |
| access_mask); |
| if (ret < 0) { |
| ibdev_dbg(umem_odp->umem.ibdev, |
| "ib_umem_odp_map_dma_single_page failed with error %d\n", ret); |
| break; |
| } |
| } |
| /* upon success lock should stay on hold for the callee */ |
| if (!ret) |
| ret = dma_index - start_idx; |
| else |
| mutex_unlock(&umem_odp->umem_mutex); |
| |
| out_put_mm: |
| mmput_async(owning_mm); |
| out_put_task: |
| if (owning_process) |
| put_task_struct(owning_process); |
| return ret; |
| } |
| EXPORT_SYMBOL(ib_umem_odp_map_dma_and_lock); |
| |
| void ib_umem_odp_unmap_dma_pages(struct ib_umem_odp *umem_odp, u64 virt, |
| u64 bound) |
| { |
| dma_addr_t dma_addr; |
| dma_addr_t dma; |
| int idx; |
| u64 addr; |
| struct ib_device *dev = umem_odp->umem.ibdev; |
| |
| lockdep_assert_held(&umem_odp->umem_mutex); |
| |
| virt = max_t(u64, virt, ib_umem_start(umem_odp)); |
| bound = min_t(u64, bound, ib_umem_end(umem_odp)); |
| for (addr = virt; addr < bound; addr += BIT(umem_odp->page_shift)) { |
| idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift; |
| dma = umem_odp->dma_list[idx]; |
| |
| /* The access flags guaranteed a valid DMA address in case was NULL */ |
| if (dma) { |
| unsigned long pfn_idx = (addr - ib_umem_start(umem_odp)) >> PAGE_SHIFT; |
| struct page *page = hmm_pfn_to_page(umem_odp->pfn_list[pfn_idx]); |
| |
| dma_addr = dma & ODP_DMA_ADDR_MASK; |
| ib_dma_unmap_page(dev, dma_addr, |
| BIT(umem_odp->page_shift), |
| DMA_BIDIRECTIONAL); |
| if (dma & ODP_WRITE_ALLOWED_BIT) { |
| struct page *head_page = compound_head(page); |
| /* |
| * set_page_dirty prefers being called with |
| * the page lock. However, MMU notifiers are |
| * called sometimes with and sometimes without |
| * the lock. We rely on the umem_mutex instead |
| * to prevent other mmu notifiers from |
| * continuing and allowing the page mapping to |
| * be removed. |
| */ |
| set_page_dirty(head_page); |
| } |
| umem_odp->dma_list[idx] = 0; |
| umem_odp->npages--; |
| } |
| } |
| } |
| EXPORT_SYMBOL(ib_umem_odp_unmap_dma_pages); |