| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Author: Huacai Chen <chenhuacai@loongson.cn> |
| * Copyright (C) 2020-2022 Loongson Technology Corporation Limited |
| */ |
| #include <linux/bitfield.h> |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/compiler.h> |
| #include <linux/context_tracking.h> |
| #include <linux/entry-common.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/kexec.h> |
| #include <linux/module.h> |
| #include <linux/extable.h> |
| #include <linux/mm.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/debug.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/kallsyms.h> |
| #include <linux/memblock.h> |
| #include <linux/interrupt.h> |
| #include <linux/ptrace.h> |
| #include <linux/kgdb.h> |
| #include <linux/kdebug.h> |
| #include <linux/notifier.h> |
| #include <linux/irq.h> |
| #include <linux/perf_event.h> |
| |
| #include <asm/addrspace.h> |
| #include <asm/bootinfo.h> |
| #include <asm/branch.h> |
| #include <asm/break.h> |
| #include <asm/cpu.h> |
| #include <asm/exception.h> |
| #include <asm/fpu.h> |
| #include <asm/lbt.h> |
| #include <asm/inst.h> |
| #include <asm/kgdb.h> |
| #include <asm/loongarch.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgtable.h> |
| #include <asm/ptrace.h> |
| #include <asm/sections.h> |
| #include <asm/siginfo.h> |
| #include <asm/stacktrace.h> |
| #include <asm/tlb.h> |
| #include <asm/types.h> |
| #include <asm/unwind.h> |
| #include <asm/uprobes.h> |
| |
| #include "access-helper.h" |
| |
| static void show_backtrace(struct task_struct *task, const struct pt_regs *regs, |
| const char *loglvl, bool user) |
| { |
| unsigned long addr; |
| struct unwind_state state; |
| struct pt_regs *pregs = (struct pt_regs *)regs; |
| |
| if (!task) |
| task = current; |
| |
| printk("%sCall Trace:", loglvl); |
| for (unwind_start(&state, task, pregs); |
| !unwind_done(&state); unwind_next_frame(&state)) { |
| addr = unwind_get_return_address(&state); |
| print_ip_sym(loglvl, addr); |
| } |
| printk("%s\n", loglvl); |
| } |
| |
| static void show_stacktrace(struct task_struct *task, |
| const struct pt_regs *regs, const char *loglvl, bool user) |
| { |
| int i; |
| const int field = 2 * sizeof(unsigned long); |
| unsigned long stackdata; |
| unsigned long *sp = (unsigned long *)regs->regs[3]; |
| |
| printk("%sStack :", loglvl); |
| i = 0; |
| while ((unsigned long) sp & (PAGE_SIZE - 1)) { |
| if (i && ((i % (64 / field)) == 0)) { |
| pr_cont("\n"); |
| printk("%s ", loglvl); |
| } |
| if (i > 39) { |
| pr_cont(" ..."); |
| break; |
| } |
| |
| if (__get_addr(&stackdata, sp++, user)) { |
| pr_cont(" (Bad stack address)"); |
| break; |
| } |
| |
| pr_cont(" %0*lx", field, stackdata); |
| i++; |
| } |
| pr_cont("\n"); |
| show_backtrace(task, regs, loglvl, user); |
| } |
| |
| void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl) |
| { |
| struct pt_regs regs; |
| |
| regs.csr_crmd = 0; |
| if (sp) { |
| regs.csr_era = 0; |
| regs.regs[1] = 0; |
| regs.regs[3] = (unsigned long)sp; |
| } else { |
| if (!task || task == current) |
| prepare_frametrace(®s); |
| else { |
| regs.csr_era = task->thread.reg01; |
| regs.regs[1] = 0; |
| regs.regs[3] = task->thread.reg03; |
| regs.regs[22] = task->thread.reg22; |
| } |
| } |
| |
| show_stacktrace(task, ®s, loglvl, false); |
| } |
| |
| static void show_code(unsigned int *pc, bool user) |
| { |
| long i; |
| unsigned int insn; |
| |
| printk("Code:"); |
| |
| for(i = -3 ; i < 6 ; i++) { |
| if (__get_inst(&insn, pc + i, user)) { |
| pr_cont(" (Bad address in era)\n"); |
| break; |
| } |
| pr_cont("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); |
| } |
| pr_cont("\n"); |
| } |
| |
| static void print_bool_fragment(const char *key, unsigned long val, bool first) |
| { |
| /* e.g. "+PG", "-DA" */ |
| pr_cont("%s%c%s", first ? "" : " ", val ? '+' : '-', key); |
| } |
| |
| static void print_plv_fragment(const char *key, int val) |
| { |
| /* e.g. "PLV0", "PPLV3" */ |
| pr_cont("%s%d", key, val); |
| } |
| |
| static void print_memory_type_fragment(const char *key, unsigned long val) |
| { |
| const char *humanized_type; |
| |
| switch (val) { |
| case 0: |
| humanized_type = "SUC"; |
| break; |
| case 1: |
| humanized_type = "CC"; |
| break; |
| case 2: |
| humanized_type = "WUC"; |
| break; |
| default: |
| pr_cont(" %s=Reserved(%lu)", key, val); |
| return; |
| } |
| |
| /* e.g. " DATM=WUC" */ |
| pr_cont(" %s=%s", key, humanized_type); |
| } |
| |
| static void print_intr_fragment(const char *key, unsigned long val) |
| { |
| /* e.g. "LIE=0-1,3,5-7" */ |
| pr_cont("%s=%*pbl", key, EXCCODE_INT_NUM, &val); |
| } |
| |
| static void print_crmd(unsigned long x) |
| { |
| printk(" CRMD: %08lx (", x); |
| print_plv_fragment("PLV", (int) FIELD_GET(CSR_CRMD_PLV, x)); |
| print_bool_fragment("IE", FIELD_GET(CSR_CRMD_IE, x), false); |
| print_bool_fragment("DA", FIELD_GET(CSR_CRMD_DA, x), false); |
| print_bool_fragment("PG", FIELD_GET(CSR_CRMD_PG, x), false); |
| print_memory_type_fragment("DACF", FIELD_GET(CSR_CRMD_DACF, x)); |
| print_memory_type_fragment("DACM", FIELD_GET(CSR_CRMD_DACM, x)); |
| print_bool_fragment("WE", FIELD_GET(CSR_CRMD_WE, x), false); |
| pr_cont(")\n"); |
| } |
| |
| static void print_prmd(unsigned long x) |
| { |
| printk(" PRMD: %08lx (", x); |
| print_plv_fragment("PPLV", (int) FIELD_GET(CSR_PRMD_PPLV, x)); |
| print_bool_fragment("PIE", FIELD_GET(CSR_PRMD_PIE, x), false); |
| print_bool_fragment("PWE", FIELD_GET(CSR_PRMD_PWE, x), false); |
| pr_cont(")\n"); |
| } |
| |
| static void print_euen(unsigned long x) |
| { |
| printk(" EUEN: %08lx (", x); |
| print_bool_fragment("FPE", FIELD_GET(CSR_EUEN_FPEN, x), true); |
| print_bool_fragment("SXE", FIELD_GET(CSR_EUEN_LSXEN, x), false); |
| print_bool_fragment("ASXE", FIELD_GET(CSR_EUEN_LASXEN, x), false); |
| print_bool_fragment("BTE", FIELD_GET(CSR_EUEN_LBTEN, x), false); |
| pr_cont(")\n"); |
| } |
| |
| static void print_ecfg(unsigned long x) |
| { |
| printk(" ECFG: %08lx (", x); |
| print_intr_fragment("LIE", FIELD_GET(CSR_ECFG_IM, x)); |
| pr_cont(" VS=%d)\n", (int) FIELD_GET(CSR_ECFG_VS, x)); |
| } |
| |
| static const char *humanize_exc_name(unsigned int ecode, unsigned int esubcode) |
| { |
| /* |
| * LoongArch users and developers are probably more familiar with |
| * those names found in the ISA manual, so we are going to print out |
| * the latter. This will require some mapping. |
| */ |
| switch (ecode) { |
| case EXCCODE_RSV: return "INT"; |
| case EXCCODE_TLBL: return "PIL"; |
| case EXCCODE_TLBS: return "PIS"; |
| case EXCCODE_TLBI: return "PIF"; |
| case EXCCODE_TLBM: return "PME"; |
| case EXCCODE_TLBNR: return "PNR"; |
| case EXCCODE_TLBNX: return "PNX"; |
| case EXCCODE_TLBPE: return "PPI"; |
| case EXCCODE_ADE: |
| switch (esubcode) { |
| case EXSUBCODE_ADEF: return "ADEF"; |
| case EXSUBCODE_ADEM: return "ADEM"; |
| } |
| break; |
| case EXCCODE_ALE: return "ALE"; |
| case EXCCODE_BCE: return "BCE"; |
| case EXCCODE_SYS: return "SYS"; |
| case EXCCODE_BP: return "BRK"; |
| case EXCCODE_INE: return "INE"; |
| case EXCCODE_IPE: return "IPE"; |
| case EXCCODE_FPDIS: return "FPD"; |
| case EXCCODE_LSXDIS: return "SXD"; |
| case EXCCODE_LASXDIS: return "ASXD"; |
| case EXCCODE_FPE: |
| switch (esubcode) { |
| case EXCSUBCODE_FPE: return "FPE"; |
| case EXCSUBCODE_VFPE: return "VFPE"; |
| } |
| break; |
| case EXCCODE_WATCH: |
| switch (esubcode) { |
| case EXCSUBCODE_WPEF: return "WPEF"; |
| case EXCSUBCODE_WPEM: return "WPEM"; |
| } |
| break; |
| case EXCCODE_BTDIS: return "BTD"; |
| case EXCCODE_BTE: return "BTE"; |
| case EXCCODE_GSPR: return "GSPR"; |
| case EXCCODE_HVC: return "HVC"; |
| case EXCCODE_GCM: |
| switch (esubcode) { |
| case EXCSUBCODE_GCSC: return "GCSC"; |
| case EXCSUBCODE_GCHC: return "GCHC"; |
| } |
| break; |
| /* |
| * The manual did not mention the EXCCODE_SE case, but print out it |
| * nevertheless. |
| */ |
| case EXCCODE_SE: return "SE"; |
| } |
| |
| return "???"; |
| } |
| |
| static void print_estat(unsigned long x) |
| { |
| unsigned int ecode = FIELD_GET(CSR_ESTAT_EXC, x); |
| unsigned int esubcode = FIELD_GET(CSR_ESTAT_ESUBCODE, x); |
| |
| printk("ESTAT: %08lx [%s] (", x, humanize_exc_name(ecode, esubcode)); |
| print_intr_fragment("IS", FIELD_GET(CSR_ESTAT_IS, x)); |
| pr_cont(" ECode=%d EsubCode=%d)\n", (int) ecode, (int) esubcode); |
| } |
| |
| static void __show_regs(const struct pt_regs *regs) |
| { |
| const int field = 2 * sizeof(unsigned long); |
| unsigned int exccode = FIELD_GET(CSR_ESTAT_EXC, regs->csr_estat); |
| |
| show_regs_print_info(KERN_DEFAULT); |
| |
| /* Print saved GPRs except $zero (substituting with PC/ERA) */ |
| #define GPR_FIELD(x) field, regs->regs[x] |
| printk("pc %0*lx ra %0*lx tp %0*lx sp %0*lx\n", |
| field, regs->csr_era, GPR_FIELD(1), GPR_FIELD(2), GPR_FIELD(3)); |
| printk("a0 %0*lx a1 %0*lx a2 %0*lx a3 %0*lx\n", |
| GPR_FIELD(4), GPR_FIELD(5), GPR_FIELD(6), GPR_FIELD(7)); |
| printk("a4 %0*lx a5 %0*lx a6 %0*lx a7 %0*lx\n", |
| GPR_FIELD(8), GPR_FIELD(9), GPR_FIELD(10), GPR_FIELD(11)); |
| printk("t0 %0*lx t1 %0*lx t2 %0*lx t3 %0*lx\n", |
| GPR_FIELD(12), GPR_FIELD(13), GPR_FIELD(14), GPR_FIELD(15)); |
| printk("t4 %0*lx t5 %0*lx t6 %0*lx t7 %0*lx\n", |
| GPR_FIELD(16), GPR_FIELD(17), GPR_FIELD(18), GPR_FIELD(19)); |
| printk("t8 %0*lx u0 %0*lx s9 %0*lx s0 %0*lx\n", |
| GPR_FIELD(20), GPR_FIELD(21), GPR_FIELD(22), GPR_FIELD(23)); |
| printk("s1 %0*lx s2 %0*lx s3 %0*lx s4 %0*lx\n", |
| GPR_FIELD(24), GPR_FIELD(25), GPR_FIELD(26), GPR_FIELD(27)); |
| printk("s5 %0*lx s6 %0*lx s7 %0*lx s8 %0*lx\n", |
| GPR_FIELD(28), GPR_FIELD(29), GPR_FIELD(30), GPR_FIELD(31)); |
| |
| /* The slot for $zero is reused as the syscall restart flag */ |
| if (regs->regs[0]) |
| printk("syscall restart flag: %0*lx\n", GPR_FIELD(0)); |
| |
| if (user_mode(regs)) { |
| printk(" ra: %0*lx\n", GPR_FIELD(1)); |
| printk(" ERA: %0*lx\n", field, regs->csr_era); |
| } else { |
| printk(" ra: %0*lx %pS\n", GPR_FIELD(1), (void *) regs->regs[1]); |
| printk(" ERA: %0*lx %pS\n", field, regs->csr_era, (void *) regs->csr_era); |
| } |
| #undef GPR_FIELD |
| |
| /* Print saved important CSRs */ |
| print_crmd(regs->csr_crmd); |
| print_prmd(regs->csr_prmd); |
| print_euen(regs->csr_euen); |
| print_ecfg(regs->csr_ecfg); |
| print_estat(regs->csr_estat); |
| |
| if (exccode >= EXCCODE_TLBL && exccode <= EXCCODE_ALE) |
| printk(" BADV: %0*lx\n", field, regs->csr_badvaddr); |
| |
| printk(" PRID: %08x (%s, %s)\n", read_cpucfg(LOONGARCH_CPUCFG0), |
| cpu_family_string(), cpu_full_name_string()); |
| } |
| |
| void show_regs(struct pt_regs *regs) |
| { |
| __show_regs((struct pt_regs *)regs); |
| dump_stack(); |
| } |
| |
| void show_registers(struct pt_regs *regs) |
| { |
| __show_regs(regs); |
| print_modules(); |
| printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", |
| current->comm, current->pid, current_thread_info(), current); |
| |
| show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs)); |
| show_code((void *)regs->csr_era, user_mode(regs)); |
| printk("\n"); |
| } |
| |
| static DEFINE_RAW_SPINLOCK(die_lock); |
| |
| void die(const char *str, struct pt_regs *regs) |
| { |
| int ret; |
| static int die_counter; |
| |
| oops_enter(); |
| |
| ret = notify_die(DIE_OOPS, str, regs, 0, |
| current->thread.trap_nr, SIGSEGV); |
| |
| console_verbose(); |
| raw_spin_lock_irq(&die_lock); |
| bust_spinlocks(1); |
| |
| printk("%s[#%d]:\n", str, ++die_counter); |
| show_registers(regs); |
| add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| raw_spin_unlock_irq(&die_lock); |
| |
| oops_exit(); |
| |
| if (ret == NOTIFY_STOP) |
| return; |
| |
| if (regs && kexec_should_crash(current)) |
| crash_kexec(regs); |
| |
| if (in_interrupt()) |
| panic("Fatal exception in interrupt"); |
| |
| if (panic_on_oops) |
| panic("Fatal exception"); |
| |
| make_task_dead(SIGSEGV); |
| } |
| |
| static inline void setup_vint_size(unsigned int size) |
| { |
| unsigned int vs; |
| |
| vs = ilog2(size/4); |
| |
| if (vs == 0 || vs > 7) |
| panic("vint_size %d Not support yet", vs); |
| |
| csr_xchg32(vs<<CSR_ECFG_VS_SHIFT, CSR_ECFG_VS, LOONGARCH_CSR_ECFG); |
| } |
| |
| /* |
| * Send SIGFPE according to FCSR Cause bits, which must have already |
| * been masked against Enable bits. This is impotant as Inexact can |
| * happen together with Overflow or Underflow, and `ptrace' can set |
| * any bits. |
| */ |
| static void force_fcsr_sig(unsigned long fcsr, |
| void __user *fault_addr, struct task_struct *tsk) |
| { |
| int si_code = FPE_FLTUNK; |
| |
| if (fcsr & FPU_CSR_INV_X) |
| si_code = FPE_FLTINV; |
| else if (fcsr & FPU_CSR_DIV_X) |
| si_code = FPE_FLTDIV; |
| else if (fcsr & FPU_CSR_OVF_X) |
| si_code = FPE_FLTOVF; |
| else if (fcsr & FPU_CSR_UDF_X) |
| si_code = FPE_FLTUND; |
| else if (fcsr & FPU_CSR_INE_X) |
| si_code = FPE_FLTRES; |
| |
| force_sig_fault(SIGFPE, si_code, fault_addr); |
| } |
| |
| static int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcsr) |
| { |
| int si_code; |
| |
| switch (sig) { |
| case 0: |
| return 0; |
| |
| case SIGFPE: |
| force_fcsr_sig(fcsr, fault_addr, current); |
| return 1; |
| |
| case SIGBUS: |
| force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); |
| return 1; |
| |
| case SIGSEGV: |
| mmap_read_lock(current->mm); |
| if (vma_lookup(current->mm, (unsigned long)fault_addr)) |
| si_code = SEGV_ACCERR; |
| else |
| si_code = SEGV_MAPERR; |
| mmap_read_unlock(current->mm); |
| force_sig_fault(SIGSEGV, si_code, fault_addr); |
| return 1; |
| |
| default: |
| force_sig(sig); |
| return 1; |
| } |
| } |
| |
| /* |
| * Delayed fp exceptions when doing a lazy ctx switch |
| */ |
| asmlinkage void noinstr do_fpe(struct pt_regs *regs, unsigned long fcsr) |
| { |
| int sig; |
| void __user *fault_addr; |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, |
| SIGFPE) == NOTIFY_STOP) |
| goto out; |
| |
| /* Clear FCSR.Cause before enabling interrupts */ |
| write_fcsr(LOONGARCH_FCSR0, fcsr & ~mask_fcsr_x(fcsr)); |
| local_irq_enable(); |
| |
| die_if_kernel("FP exception in kernel code", regs); |
| |
| sig = SIGFPE; |
| fault_addr = (void __user *) regs->csr_era; |
| |
| /* Send a signal if required. */ |
| process_fpemu_return(sig, fault_addr, fcsr); |
| |
| out: |
| local_irq_disable(); |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void noinstr do_ade(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| die_if_kernel("Kernel ade access", regs); |
| force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)regs->csr_badvaddr); |
| |
| irqentry_exit(regs, state); |
| } |
| |
| /* sysctl hooks */ |
| int unaligned_enabled __read_mostly = 1; /* Enabled by default */ |
| int no_unaligned_warning __read_mostly = 1; /* Only 1 warning by default */ |
| |
| asmlinkage void noinstr do_ale(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| #ifndef CONFIG_ARCH_STRICT_ALIGN |
| die_if_kernel("Kernel ale access", regs); |
| force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)regs->csr_badvaddr); |
| #else |
| unsigned int *pc; |
| |
| perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, regs->csr_badvaddr); |
| |
| /* |
| * Did we catch a fault trying to load an instruction? |
| */ |
| if (regs->csr_badvaddr == regs->csr_era) |
| goto sigbus; |
| if (user_mode(regs) && !test_thread_flag(TIF_FIXADE)) |
| goto sigbus; |
| if (!unaligned_enabled) |
| goto sigbus; |
| if (!no_unaligned_warning) |
| show_registers(regs); |
| |
| pc = (unsigned int *)exception_era(regs); |
| |
| emulate_load_store_insn(regs, (void __user *)regs->csr_badvaddr, pc); |
| |
| goto out; |
| |
| sigbus: |
| die_if_kernel("Kernel ale access", regs); |
| force_sig_fault(SIGBUS, BUS_ADRALN, (void __user *)regs->csr_badvaddr); |
| out: |
| #endif |
| irqentry_exit(regs, state); |
| } |
| |
| #ifdef CONFIG_GENERIC_BUG |
| int is_valid_bugaddr(unsigned long addr) |
| { |
| return 1; |
| } |
| #endif /* CONFIG_GENERIC_BUG */ |
| |
| static void bug_handler(struct pt_regs *regs) |
| { |
| switch (report_bug(regs->csr_era, regs)) { |
| case BUG_TRAP_TYPE_BUG: |
| case BUG_TRAP_TYPE_NONE: |
| die_if_kernel("Oops - BUG", regs); |
| force_sig(SIGTRAP); |
| break; |
| |
| case BUG_TRAP_TYPE_WARN: |
| /* Skip the BUG instruction and continue */ |
| regs->csr_era += LOONGARCH_INSN_SIZE; |
| break; |
| } |
| } |
| |
| asmlinkage void noinstr do_bce(struct pt_regs *regs) |
| { |
| bool user = user_mode(regs); |
| unsigned long era = exception_era(regs); |
| u64 badv = 0, lower = 0, upper = ULONG_MAX; |
| union loongarch_instruction insn; |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_enable(); |
| |
| current->thread.trap_nr = read_csr_excode(); |
| |
| die_if_kernel("Bounds check error in kernel code", regs); |
| |
| /* |
| * Pull out the address that failed bounds checking, and the lower / |
| * upper bound, by minimally looking at the faulting instruction word |
| * and reading from the correct register. |
| */ |
| if (__get_inst(&insn.word, (u32 *)era, user)) |
| goto bad_era; |
| |
| switch (insn.reg3_format.opcode) { |
| case asrtle_op: |
| if (insn.reg3_format.rd != 0) |
| break; /* not asrtle */ |
| badv = regs->regs[insn.reg3_format.rj]; |
| upper = regs->regs[insn.reg3_format.rk]; |
| break; |
| |
| case asrtgt_op: |
| if (insn.reg3_format.rd != 0) |
| break; /* not asrtgt */ |
| badv = regs->regs[insn.reg3_format.rj]; |
| lower = regs->regs[insn.reg3_format.rk]; |
| break; |
| |
| case ldleb_op: |
| case ldleh_op: |
| case ldlew_op: |
| case ldled_op: |
| case stleb_op: |
| case stleh_op: |
| case stlew_op: |
| case stled_op: |
| case fldles_op: |
| case fldled_op: |
| case fstles_op: |
| case fstled_op: |
| badv = regs->regs[insn.reg3_format.rj]; |
| upper = regs->regs[insn.reg3_format.rk]; |
| break; |
| |
| case ldgtb_op: |
| case ldgth_op: |
| case ldgtw_op: |
| case ldgtd_op: |
| case stgtb_op: |
| case stgth_op: |
| case stgtw_op: |
| case stgtd_op: |
| case fldgts_op: |
| case fldgtd_op: |
| case fstgts_op: |
| case fstgtd_op: |
| badv = regs->regs[insn.reg3_format.rj]; |
| lower = regs->regs[insn.reg3_format.rk]; |
| break; |
| } |
| |
| force_sig_bnderr((void __user *)badv, (void __user *)lower, (void __user *)upper); |
| |
| out: |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_disable(); |
| |
| irqentry_exit(regs, state); |
| return; |
| |
| bad_era: |
| /* |
| * Cannot pull out the instruction word, hence cannot provide more |
| * info than a regular SIGSEGV in this case. |
| */ |
| force_sig(SIGSEGV); |
| goto out; |
| } |
| |
| asmlinkage void noinstr do_bp(struct pt_regs *regs) |
| { |
| bool user = user_mode(regs); |
| unsigned int opcode, bcode; |
| unsigned long era = exception_era(regs); |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_enable(); |
| |
| if (__get_inst(&opcode, (u32 *)era, user)) |
| goto out_sigsegv; |
| |
| bcode = (opcode & 0x7fff); |
| |
| /* |
| * notify the kprobe handlers, if instruction is likely to |
| * pertain to them. |
| */ |
| switch (bcode) { |
| case BRK_KDB: |
| if (kgdb_breakpoint_handler(regs)) |
| goto out; |
| else |
| break; |
| case BRK_KPROBE_BP: |
| if (kprobe_breakpoint_handler(regs)) |
| goto out; |
| else |
| break; |
| case BRK_KPROBE_SSTEPBP: |
| if (kprobe_singlestep_handler(regs)) |
| goto out; |
| else |
| break; |
| case BRK_UPROBE_BP: |
| if (uprobe_breakpoint_handler(regs)) |
| goto out; |
| else |
| break; |
| case BRK_UPROBE_XOLBP: |
| if (uprobe_singlestep_handler(regs)) |
| goto out; |
| else |
| break; |
| default: |
| current->thread.trap_nr = read_csr_excode(); |
| if (notify_die(DIE_TRAP, "Break", regs, bcode, |
| current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| goto out; |
| else |
| break; |
| } |
| |
| switch (bcode) { |
| case BRK_BUG: |
| bug_handler(regs); |
| break; |
| case BRK_DIVZERO: |
| die_if_kernel("Break instruction in kernel code", regs); |
| force_sig_fault(SIGFPE, FPE_INTDIV, (void __user *)regs->csr_era); |
| break; |
| case BRK_OVERFLOW: |
| die_if_kernel("Break instruction in kernel code", regs); |
| force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->csr_era); |
| break; |
| default: |
| die_if_kernel("Break instruction in kernel code", regs); |
| force_sig_fault(SIGTRAP, TRAP_BRKPT, (void __user *)regs->csr_era); |
| break; |
| } |
| |
| out: |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_disable(); |
| |
| irqentry_exit(regs, state); |
| return; |
| |
| out_sigsegv: |
| force_sig(SIGSEGV); |
| goto out; |
| } |
| |
| asmlinkage void noinstr do_watch(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| #ifndef CONFIG_HAVE_HW_BREAKPOINT |
| pr_warn("Hardware watch point handler not implemented!\n"); |
| #else |
| if (kgdb_breakpoint_handler(regs)) |
| goto out; |
| |
| if (test_tsk_thread_flag(current, TIF_SINGLESTEP)) { |
| int llbit = (csr_read32(LOONGARCH_CSR_LLBCTL) & 0x1); |
| unsigned long pc = instruction_pointer(regs); |
| union loongarch_instruction *ip = (union loongarch_instruction *)pc; |
| |
| if (llbit) { |
| /* |
| * When the ll-sc combo is encountered, it is regarded as an single |
| * instruction. So don't clear llbit and reset CSR.FWPS.Skip until |
| * the llsc execution is completed. |
| */ |
| csr_write32(CSR_FWPC_SKIP, LOONGARCH_CSR_FWPS); |
| csr_write32(CSR_LLBCTL_KLO, LOONGARCH_CSR_LLBCTL); |
| goto out; |
| } |
| |
| if (pc == current->thread.single_step) { |
| /* |
| * Certain insns are occasionally not skipped when CSR.FWPS.Skip is |
| * set, such as fld.d/fst.d. So singlestep needs to compare whether |
| * the csr_era is equal to the value of singlestep which last time set. |
| */ |
| if (!is_self_loop_ins(ip, regs)) { |
| /* |
| * Check if the given instruction the target pc is equal to the |
| * current pc, If yes, then we should not set the CSR.FWPS.SKIP |
| * bit to break the original instruction stream. |
| */ |
| csr_write32(CSR_FWPC_SKIP, LOONGARCH_CSR_FWPS); |
| goto out; |
| } |
| } |
| } else { |
| breakpoint_handler(regs); |
| watchpoint_handler(regs); |
| } |
| |
| force_sig(SIGTRAP); |
| out: |
| #endif |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void noinstr do_ri(struct pt_regs *regs) |
| { |
| int status = SIGILL; |
| unsigned int __maybe_unused opcode; |
| unsigned int __user *era = (unsigned int __user *)exception_era(regs); |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| local_irq_enable(); |
| current->thread.trap_nr = read_csr_excode(); |
| |
| if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, |
| SIGILL) == NOTIFY_STOP) |
| goto out; |
| |
| die_if_kernel("Reserved instruction in kernel code", regs); |
| |
| if (unlikely(get_user(opcode, era) < 0)) { |
| status = SIGSEGV; |
| current->thread.error_code = 1; |
| } |
| |
| force_sig(status); |
| |
| out: |
| local_irq_disable(); |
| irqentry_exit(regs, state); |
| } |
| |
| static void init_restore_fp(void) |
| { |
| if (!used_math()) { |
| /* First time FP context user. */ |
| init_fpu(); |
| } else { |
| /* This task has formerly used the FP context */ |
| if (!is_fpu_owner()) |
| own_fpu_inatomic(1); |
| } |
| |
| BUG_ON(!is_fp_enabled()); |
| } |
| |
| static void init_restore_lsx(void) |
| { |
| enable_lsx(); |
| |
| if (!thread_lsx_context_live()) { |
| /* First time LSX context user */ |
| init_restore_fp(); |
| init_lsx_upper(); |
| set_thread_flag(TIF_LSX_CTX_LIVE); |
| } else { |
| if (!is_simd_owner()) { |
| if (is_fpu_owner()) { |
| restore_lsx_upper(current); |
| } else { |
| __own_fpu(); |
| restore_lsx(current); |
| } |
| } |
| } |
| |
| set_thread_flag(TIF_USEDSIMD); |
| |
| BUG_ON(!is_fp_enabled()); |
| BUG_ON(!is_lsx_enabled()); |
| } |
| |
| static void init_restore_lasx(void) |
| { |
| enable_lasx(); |
| |
| if (!thread_lasx_context_live()) { |
| /* First time LASX context user */ |
| init_restore_lsx(); |
| init_lasx_upper(); |
| set_thread_flag(TIF_LASX_CTX_LIVE); |
| } else { |
| if (is_fpu_owner() || is_simd_owner()) { |
| init_restore_lsx(); |
| restore_lasx_upper(current); |
| } else { |
| __own_fpu(); |
| enable_lsx(); |
| restore_lasx(current); |
| } |
| } |
| |
| set_thread_flag(TIF_USEDSIMD); |
| |
| BUG_ON(!is_fp_enabled()); |
| BUG_ON(!is_lsx_enabled()); |
| BUG_ON(!is_lasx_enabled()); |
| } |
| |
| asmlinkage void noinstr do_fpu(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| local_irq_enable(); |
| die_if_kernel("do_fpu invoked from kernel context!", regs); |
| BUG_ON(is_lsx_enabled()); |
| BUG_ON(is_lasx_enabled()); |
| |
| preempt_disable(); |
| init_restore_fp(); |
| preempt_enable(); |
| |
| local_irq_disable(); |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void noinstr do_lsx(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| local_irq_enable(); |
| if (!cpu_has_lsx) { |
| force_sig(SIGILL); |
| goto out; |
| } |
| |
| die_if_kernel("do_lsx invoked from kernel context!", regs); |
| BUG_ON(is_lasx_enabled()); |
| |
| preempt_disable(); |
| init_restore_lsx(); |
| preempt_enable(); |
| |
| out: |
| local_irq_disable(); |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void noinstr do_lasx(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| local_irq_enable(); |
| if (!cpu_has_lasx) { |
| force_sig(SIGILL); |
| goto out; |
| } |
| |
| die_if_kernel("do_lasx invoked from kernel context!", regs); |
| |
| preempt_disable(); |
| init_restore_lasx(); |
| preempt_enable(); |
| |
| out: |
| local_irq_disable(); |
| irqentry_exit(regs, state); |
| } |
| |
| static void init_restore_lbt(void) |
| { |
| if (!thread_lbt_context_live()) { |
| /* First time LBT context user */ |
| init_lbt(); |
| set_thread_flag(TIF_LBT_CTX_LIVE); |
| } else { |
| if (!is_lbt_owner()) |
| own_lbt_inatomic(1); |
| } |
| |
| BUG_ON(!is_lbt_enabled()); |
| } |
| |
| asmlinkage void noinstr do_lbt(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| /* |
| * BTD (Binary Translation Disable exception) can be triggered |
| * during FP save/restore if TM (Top Mode) is on, which may |
| * cause irq_enable during 'switch_to'. To avoid this situation |
| * (including the user using 'MOVGR2GCSR' to turn on TM, which |
| * will not trigger the BTE), we need to check PRMD first. |
| */ |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_enable(); |
| |
| if (!cpu_has_lbt) { |
| force_sig(SIGILL); |
| goto out; |
| } |
| BUG_ON(is_lbt_enabled()); |
| |
| preempt_disable(); |
| init_restore_lbt(); |
| preempt_enable(); |
| |
| out: |
| if (regs->csr_prmd & CSR_PRMD_PIE) |
| local_irq_disable(); |
| |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void noinstr do_reserved(struct pt_regs *regs) |
| { |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| local_irq_enable(); |
| /* |
| * Game over - no way to handle this if it ever occurs. Most probably |
| * caused by a fatal error after another hardware/software error. |
| */ |
| pr_err("Caught reserved exception %u on pid:%d [%s] - should not happen\n", |
| read_csr_excode(), current->pid, current->comm); |
| die_if_kernel("do_reserved exception", regs); |
| force_sig(SIGUNUSED); |
| |
| local_irq_disable(); |
| |
| irqentry_exit(regs, state); |
| } |
| |
| asmlinkage void cache_parity_error(void) |
| { |
| /* For the moment, report the problem and hang. */ |
| pr_err("Cache error exception:\n"); |
| pr_err("csr_merrctl == %08x\n", csr_read32(LOONGARCH_CSR_MERRCTL)); |
| pr_err("csr_merrera == %016lx\n", csr_read64(LOONGARCH_CSR_MERRERA)); |
| panic("Can't handle the cache error!"); |
| } |
| |
| asmlinkage void noinstr handle_loongarch_irq(struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs; |
| |
| irq_enter_rcu(); |
| old_regs = set_irq_regs(regs); |
| handle_arch_irq(regs); |
| set_irq_regs(old_regs); |
| irq_exit_rcu(); |
| } |
| |
| asmlinkage void noinstr do_vint(struct pt_regs *regs, unsigned long sp) |
| { |
| register int cpu; |
| register unsigned long stack; |
| irqentry_state_t state = irqentry_enter(regs); |
| |
| cpu = smp_processor_id(); |
| |
| if (on_irq_stack(cpu, sp)) |
| handle_loongarch_irq(regs); |
| else { |
| stack = per_cpu(irq_stack, cpu) + IRQ_STACK_START; |
| |
| /* Save task's sp on IRQ stack for unwinding */ |
| *(unsigned long *)stack = sp; |
| |
| __asm__ __volatile__( |
| "move $s0, $sp \n" /* Preserve sp */ |
| "move $sp, %[stk] \n" /* Switch stack */ |
| "move $a0, %[regs] \n" |
| "bl handle_loongarch_irq \n" |
| "move $sp, $s0 \n" /* Restore sp */ |
| : /* No outputs */ |
| : [stk] "r" (stack), [regs] "r" (regs) |
| : "$a0", "$a1", "$a2", "$a3", "$a4", "$a5", "$a6", "$a7", "$s0", |
| "$t0", "$t1", "$t2", "$t3", "$t4", "$t5", "$t6", "$t7", "$t8", |
| "memory"); |
| } |
| |
| irqentry_exit(regs, state); |
| } |
| |
| unsigned long eentry; |
| unsigned long tlbrentry; |
| |
| long exception_handlers[VECSIZE * 128 / sizeof(long)] __aligned(SZ_64K); |
| |
| static void configure_exception_vector(void) |
| { |
| eentry = (unsigned long)exception_handlers; |
| tlbrentry = (unsigned long)exception_handlers + 80*VECSIZE; |
| |
| csr_write64(eentry, LOONGARCH_CSR_EENTRY); |
| csr_write64(eentry, LOONGARCH_CSR_MERRENTRY); |
| csr_write64(tlbrentry, LOONGARCH_CSR_TLBRENTRY); |
| } |
| |
| void per_cpu_trap_init(int cpu) |
| { |
| unsigned int i; |
| |
| setup_vint_size(VECSIZE); |
| |
| configure_exception_vector(); |
| |
| if (!cpu_data[cpu].asid_cache) |
| cpu_data[cpu].asid_cache = asid_first_version(cpu); |
| |
| mmgrab(&init_mm); |
| current->active_mm = &init_mm; |
| BUG_ON(current->mm); |
| enter_lazy_tlb(&init_mm, current); |
| |
| /* Initialise exception handlers */ |
| if (cpu == 0) |
| for (i = 0; i < 64; i++) |
| set_handler(i * VECSIZE, handle_reserved, VECSIZE); |
| |
| tlb_init(cpu); |
| cpu_cache_init(); |
| } |
| |
| /* Install CPU exception handler */ |
| void set_handler(unsigned long offset, void *addr, unsigned long size) |
| { |
| memcpy((void *)(eentry + offset), addr, size); |
| local_flush_icache_range(eentry + offset, eentry + offset + size); |
| } |
| |
| static const char panic_null_cerr[] = |
| "Trying to set NULL cache error exception handler\n"; |
| |
| /* |
| * Install uncached CPU exception handler. |
| * This is suitable only for the cache error exception which is the only |
| * exception handler that is being run uncached. |
| */ |
| void set_merr_handler(unsigned long offset, void *addr, unsigned long size) |
| { |
| unsigned long uncached_eentry = TO_UNCACHE(__pa(eentry)); |
| |
| if (!addr) |
| panic(panic_null_cerr); |
| |
| memcpy((void *)(uncached_eentry + offset), addr, size); |
| } |
| |
| void __init trap_init(void) |
| { |
| long i; |
| |
| /* Set interrupt vector handler */ |
| for (i = EXCCODE_INT_START; i <= EXCCODE_INT_END; i++) |
| set_handler(i * VECSIZE, handle_vint, VECSIZE); |
| |
| set_handler(EXCCODE_ADE * VECSIZE, handle_ade, VECSIZE); |
| set_handler(EXCCODE_ALE * VECSIZE, handle_ale, VECSIZE); |
| set_handler(EXCCODE_BCE * VECSIZE, handle_bce, VECSIZE); |
| set_handler(EXCCODE_SYS * VECSIZE, handle_sys, VECSIZE); |
| set_handler(EXCCODE_BP * VECSIZE, handle_bp, VECSIZE); |
| set_handler(EXCCODE_INE * VECSIZE, handle_ri, VECSIZE); |
| set_handler(EXCCODE_IPE * VECSIZE, handle_ri, VECSIZE); |
| set_handler(EXCCODE_FPDIS * VECSIZE, handle_fpu, VECSIZE); |
| set_handler(EXCCODE_LSXDIS * VECSIZE, handle_lsx, VECSIZE); |
| set_handler(EXCCODE_LASXDIS * VECSIZE, handle_lasx, VECSIZE); |
| set_handler(EXCCODE_FPE * VECSIZE, handle_fpe, VECSIZE); |
| set_handler(EXCCODE_BTDIS * VECSIZE, handle_lbt, VECSIZE); |
| set_handler(EXCCODE_WATCH * VECSIZE, handle_watch, VECSIZE); |
| |
| cache_error_setup(); |
| |
| local_flush_icache_range(eentry, eentry + 0x400); |
| } |