| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * BPF JIT compiler for PA-RISC (32-bit) |
| * |
| * Copyright (c) 2023 Helge Deller <deller@gmx.de> |
| * |
| * The code is based on the BPF JIT compiler for RV64 by Björn Töpel and |
| * the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan. |
| */ |
| |
| #include <linux/bpf.h> |
| #include <linux/filter.h> |
| #include <linux/libgcc.h> |
| #include "bpf_jit.h" |
| |
| /* |
| * Stack layout during BPF program execution (note: stack grows up): |
| * |
| * high |
| * HPPA32 sp => +----------+ <= HPPA32 fp |
| * | saved sp | |
| * | saved rp | |
| * | ... | HPPA32 callee-saved registers |
| * | curr args| |
| * | local var| |
| * +----------+ <= (sp - 4 * NR_SAVED_REGISTERS) |
| * | lo(R9) | |
| * | hi(R9) | |
| * | lo(FP) | JIT scratch space for BPF registers |
| * | hi(FP) | |
| * | ... | |
| * +----------+ <= (sp - 4 * NR_SAVED_REGISTERS |
| * | | - 4 * BPF_JIT_SCRATCH_REGS) |
| * | | |
| * | ... | BPF program stack |
| * | | |
| * | ... | Function call stack |
| * | | |
| * +----------+ |
| * low |
| */ |
| |
| enum { |
| /* Stack layout - these are offsets from top of JIT scratch space. */ |
| BPF_R8_HI, |
| BPF_R8_LO, |
| BPF_R9_HI, |
| BPF_R9_LO, |
| BPF_FP_HI, |
| BPF_FP_LO, |
| BPF_AX_HI, |
| BPF_AX_LO, |
| BPF_R0_TEMP_HI, |
| BPF_R0_TEMP_LO, |
| BPF_JIT_SCRATCH_REGS, |
| }; |
| |
| /* Number of callee-saved registers stored to stack: rp, r3-r18. */ |
| #define NR_SAVED_REGISTERS (18 - 3 + 1 + 8) |
| |
| /* Offset from fp for BPF registers stored on stack. */ |
| #define STACK_OFFSET(k) (- (NR_SAVED_REGISTERS + k + 1)) |
| #define STACK_ALIGN FRAME_SIZE |
| |
| #define EXIT_PTR_LOAD(reg) hppa_ldw(-0x08, HPPA_REG_SP, reg) |
| #define EXIT_PTR_STORE(reg) hppa_stw(reg, -0x08, HPPA_REG_SP) |
| #define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop) |
| |
| #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) |
| #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) |
| #define TMP_REG_R0 (MAX_BPF_JIT_REG + 2) |
| |
| static const s8 regmap[][2] = { |
| /* Return value from in-kernel function, and exit value from eBPF. */ |
| [BPF_REG_0] = {HPPA_REG_RET0, HPPA_REG_RET1}, /* HI/LOW */ |
| |
| /* Arguments from eBPF program to in-kernel function. */ |
| [BPF_REG_1] = {HPPA_R(3), HPPA_R(4)}, |
| [BPF_REG_2] = {HPPA_R(5), HPPA_R(6)}, |
| [BPF_REG_3] = {HPPA_R(7), HPPA_R(8)}, |
| [BPF_REG_4] = {HPPA_R(9), HPPA_R(10)}, |
| [BPF_REG_5] = {HPPA_R(11), HPPA_R(12)}, |
| |
| [BPF_REG_6] = {HPPA_R(13), HPPA_R(14)}, |
| [BPF_REG_7] = {HPPA_R(15), HPPA_R(16)}, |
| /* |
| * Callee-saved registers that in-kernel function will preserve. |
| * Stored on the stack. |
| */ |
| [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, |
| [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, |
| |
| /* Read-only frame pointer to access BPF stack. Not needed. */ |
| [BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)}, |
| |
| /* Temporary register for blinding constants. Stored on the stack. */ |
| [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, |
| /* |
| * Temporary registers used by the JIT to operate on registers stored |
| * on the stack. Save t0 and t1 to be used as temporaries in generated |
| * code. |
| */ |
| [TMP_REG_1] = {HPPA_REG_T3, HPPA_REG_T2}, |
| [TMP_REG_2] = {HPPA_REG_T5, HPPA_REG_T4}, |
| |
| /* temporary space for BPF_R0 during libgcc and millicode calls */ |
| [TMP_REG_R0] = {STACK_OFFSET(BPF_R0_TEMP_HI), STACK_OFFSET(BPF_R0_TEMP_LO)}, |
| }; |
| |
| static s8 hi(const s8 *r) |
| { |
| return r[0]; |
| } |
| |
| static s8 lo(const s8 *r) |
| { |
| return r[1]; |
| } |
| |
| static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) |
| { |
| REG_SET_SEEN(ctx, rd); |
| if (OPTIMIZE_HPPA && (rs == rd)) |
| return; |
| REG_SET_SEEN(ctx, rs); |
| emit(hppa_copy(rs, rd), ctx); |
| } |
| |
| static void emit_hppa_xor(const s8 r1, const s8 r2, const s8 r3, struct hppa_jit_context *ctx) |
| { |
| REG_SET_SEEN(ctx, r1); |
| REG_SET_SEEN(ctx, r2); |
| REG_SET_SEEN(ctx, r3); |
| if (OPTIMIZE_HPPA && (r1 == r2)) { |
| emit(hppa_copy(HPPA_REG_ZERO, r3), ctx); |
| } else { |
| emit(hppa_xor(r1, r2, r3), ctx); |
| } |
| } |
| |
| static void emit_imm(const s8 rd, s32 imm, struct hppa_jit_context *ctx) |
| { |
| u32 lower = im11(imm); |
| |
| REG_SET_SEEN(ctx, rd); |
| if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) { |
| emit(hppa_ldi(imm, rd), ctx); |
| return; |
| } |
| emit(hppa_ldil(imm, rd), ctx); |
| if (OPTIMIZE_HPPA && (lower == 0)) |
| return; |
| emit(hppa_ldo(lower, rd, rd), ctx); |
| } |
| |
| static void emit_imm32(const s8 *rd, s32 imm, struct hppa_jit_context *ctx) |
| { |
| /* Emit immediate into lower bits. */ |
| REG_SET_SEEN(ctx, lo(rd)); |
| emit_imm(lo(rd), imm, ctx); |
| |
| /* Sign-extend into upper bits. */ |
| REG_SET_SEEN(ctx, hi(rd)); |
| if (imm >= 0) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| else |
| emit(hppa_ldi(-1, hi(rd)), ctx); |
| } |
| |
| static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo, |
| struct hppa_jit_context *ctx) |
| { |
| emit_imm(hi(rd), imm_hi, ctx); |
| emit_imm(lo(rd), imm_lo, ctx); |
| } |
| |
| static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx) |
| { |
| const s8 *r0 = regmap[BPF_REG_0]; |
| int i; |
| |
| if (is_tail_call) { |
| /* |
| * goto *(t0 + 4); |
| * Skips first instruction of prologue which initializes tail |
| * call counter. Assumes t0 contains address of target program, |
| * see emit_bpf_tail_call. |
| */ |
| emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx); |
| /* in delay slot: */ |
| emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx); |
| |
| return; |
| } |
| |
| /* load epilogue function pointer and jump to it. */ |
| /* exit point is either directly below, or the outest TCC exit function */ |
| emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* NOTE: we are 32-bit and big-endian, so return lower 32-bit value */ |
| emit_hppa_copy(lo(r0), HPPA_REG_RET0, ctx); |
| |
| /* Restore callee-saved registers. */ |
| for (i = 3; i <= 18; i++) { |
| if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) |
| continue; |
| emit(hppa_ldw(-REG_SIZE * (8 + (i-3)), HPPA_REG_SP, HPPA_R(i)), ctx); |
| } |
| |
| /* load original return pointer (stored by outest TCC function) */ |
| emit(hppa_ldw(-0x14, HPPA_REG_SP, HPPA_REG_RP), ctx); |
| emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx); |
| /* in delay slot: */ |
| emit(hppa_ldw(-0x04, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| } |
| |
| static bool is_stacked(s8 reg) |
| { |
| return reg < 0; |
| } |
| |
| static const s8 *bpf_get_reg64_offset(const s8 *reg, const s8 *tmp, |
| u16 offset_sp, struct hppa_jit_context *ctx) |
| { |
| if (is_stacked(hi(reg))) { |
| emit(hppa_ldw(REG_SIZE * hi(reg) - offset_sp, HPPA_REG_SP, hi(tmp)), ctx); |
| emit(hppa_ldw(REG_SIZE * lo(reg) - offset_sp, HPPA_REG_SP, lo(tmp)), ctx); |
| reg = tmp; |
| } |
| REG_SET_SEEN(ctx, hi(reg)); |
| REG_SET_SEEN(ctx, lo(reg)); |
| return reg; |
| } |
| |
| static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp, |
| struct hppa_jit_context *ctx) |
| { |
| return bpf_get_reg64_offset(reg, tmp, 0, ctx); |
| } |
| |
| static const s8 *bpf_get_reg64_ref(const s8 *reg, const s8 *tmp, |
| bool must_load, struct hppa_jit_context *ctx) |
| { |
| if (!OPTIMIZE_HPPA) |
| return bpf_get_reg64(reg, tmp, ctx); |
| |
| if (is_stacked(hi(reg))) { |
| if (must_load) |
| emit(hppa_ldw(REG_SIZE * hi(reg), HPPA_REG_SP, hi(tmp)), ctx); |
| reg = tmp; |
| } |
| REG_SET_SEEN(ctx, hi(reg)); |
| REG_SET_SEEN(ctx, lo(reg)); |
| return reg; |
| } |
| |
| |
| static void bpf_put_reg64(const s8 *reg, const s8 *src, |
| struct hppa_jit_context *ctx) |
| { |
| if (is_stacked(hi(reg))) { |
| emit(hppa_stw(hi(src), REG_SIZE * hi(reg), HPPA_REG_SP), ctx); |
| emit(hppa_stw(lo(src), REG_SIZE * lo(reg), HPPA_REG_SP), ctx); |
| } |
| } |
| |
| static void bpf_save_R0(struct hppa_jit_context *ctx) |
| { |
| bpf_put_reg64(regmap[TMP_REG_R0], regmap[BPF_REG_0], ctx); |
| } |
| |
| static void bpf_restore_R0(struct hppa_jit_context *ctx) |
| { |
| bpf_get_reg64(regmap[TMP_REG_R0], regmap[BPF_REG_0], ctx); |
| } |
| |
| |
| static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp, |
| struct hppa_jit_context *ctx) |
| { |
| if (is_stacked(lo(reg))) { |
| emit(hppa_ldw(REG_SIZE * lo(reg), HPPA_REG_SP, lo(tmp)), ctx); |
| reg = tmp; |
| } |
| REG_SET_SEEN(ctx, lo(reg)); |
| return reg; |
| } |
| |
| static const s8 *bpf_get_reg32_ref(const s8 *reg, const s8 *tmp, |
| struct hppa_jit_context *ctx) |
| { |
| if (!OPTIMIZE_HPPA) |
| return bpf_get_reg32(reg, tmp, ctx); |
| |
| if (is_stacked(hi(reg))) { |
| reg = tmp; |
| } |
| REG_SET_SEEN(ctx, lo(reg)); |
| return reg; |
| } |
| |
| static void bpf_put_reg32(const s8 *reg, const s8 *src, |
| struct hppa_jit_context *ctx) |
| { |
| if (is_stacked(lo(reg))) { |
| REG_SET_SEEN(ctx, lo(src)); |
| emit(hppa_stw(lo(src), REG_SIZE * lo(reg), HPPA_REG_SP), ctx); |
| if (1 && !ctx->prog->aux->verifier_zext) { |
| REG_SET_SEEN(ctx, hi(reg)); |
| emit(hppa_stw(HPPA_REG_ZERO, REG_SIZE * hi(reg), HPPA_REG_SP), ctx); |
| } |
| } else if (1 && !ctx->prog->aux->verifier_zext) { |
| REG_SET_SEEN(ctx, hi(reg)); |
| emit_hppa_copy(HPPA_REG_ZERO, hi(reg), ctx); |
| } |
| } |
| |
| /* extern hppa millicode functions */ |
| extern void $$mulI(void); |
| extern void $$divU(void); |
| extern void $$remU(void); |
| |
| static void emit_call_millicode(void *func, const s8 arg0, |
| const s8 arg1, u8 opcode, struct hppa_jit_context *ctx) |
| { |
| u32 func_addr; |
| |
| emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx); |
| emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx); |
| |
| /* libcgcc overwrites HPPA_REG_RET0/1, save temp. in dest. */ |
| if (arg0 != HPPA_REG_RET1) |
| bpf_save_R0(ctx); |
| |
| func_addr = (uintptr_t) dereference_function_descriptor(func); |
| emit(hppa_ldil(func_addr, HPPA_REG_R31), ctx); |
| /* skip the following be_l instruction if divisor is zero. */ |
| if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { |
| if (BPF_OP(opcode) == BPF_DIV) |
| emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET1, ctx); |
| else |
| emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET1, ctx); |
| emit(hppa_or_cond(HPPA_REG_ARG1, HPPA_REG_ZERO, 1, 0, HPPA_REG_ZERO), ctx); |
| } |
| /* Note: millicode functions use r31 as return pointer instead of rp */ |
| emit(hppa_be_l(im11(func_addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); |
| emit(hppa_nop(), ctx); /* this nop is needed here for delay slot */ |
| |
| /* Note: millicode functions return result in RET1, not RET0 */ |
| emit_hppa_copy(HPPA_REG_RET1, arg0, ctx); |
| |
| /* restore HPPA_REG_RET0/1, temp. save in dest. */ |
| if (arg0 != HPPA_REG_RET1) |
| bpf_restore_R0(ctx); |
| } |
| |
| static void emit_call_libgcc_ll(void *func, const s8 *arg0, |
| const s8 *arg1, u8 opcode, struct hppa_jit_context *ctx) |
| { |
| u32 func_addr; |
| |
| emit_hppa_copy(lo(arg0), HPPA_REG_ARG0, ctx); |
| emit_hppa_copy(hi(arg0), HPPA_REG_ARG1, ctx); |
| emit_hppa_copy(lo(arg1), HPPA_REG_ARG2, ctx); |
| emit_hppa_copy(hi(arg1), HPPA_REG_ARG3, ctx); |
| |
| /* libcgcc overwrites HPPA_REG_RET0/_RET1, so keep copy of R0 on stack */ |
| if (hi(arg0) != HPPA_REG_RET0) |
| bpf_save_R0(ctx); |
| |
| /* prepare stack */ |
| emit(hppa_ldo(2 * FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| func_addr = (uintptr_t) dereference_function_descriptor(func); |
| emit(hppa_ldil(func_addr, HPPA_REG_R31), ctx); |
| /* zero out the following be_l instruction if divisor is 0 (and set default values) */ |
| if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { |
| emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx); |
| if (BPF_OP(opcode) == BPF_DIV) |
| emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET1, ctx); |
| else |
| emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET1, ctx); |
| emit(hppa_or_cond(HPPA_REG_ARG2, HPPA_REG_ARG3, 1, 0, HPPA_REG_ZERO), ctx); |
| } |
| emit(hppa_be_l(im11(func_addr) >> 2, HPPA_REG_R31, EXEC_NEXT_INSTR), ctx); |
| emit_hppa_copy(HPPA_REG_R31, HPPA_REG_RP, ctx); |
| |
| /* restore stack */ |
| emit(hppa_ldo(-2 * FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| emit_hppa_copy(HPPA_REG_RET0, hi(arg0), ctx); |
| emit_hppa_copy(HPPA_REG_RET1, lo(arg0), ctx); |
| |
| /* restore HPPA_REG_RET0/_RET1 */ |
| if (hi(arg0) != HPPA_REG_RET0) |
| bpf_restore_R0(ctx); |
| } |
| |
| static void emit_jump(s32 paoff, bool force_far, |
| struct hppa_jit_context *ctx) |
| { |
| unsigned long pc, addr; |
| |
| /* Note: allocate 2 instructions for jumps if force_far is set. */ |
| if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 17)) { |
| /* use BL,short branch followed by nop() */ |
| emit(hppa_bl(paoff - HPPA_BRANCH_DISPLACEMENT, HPPA_REG_ZERO), ctx); |
| if (force_far) |
| emit(hppa_nop(), ctx); |
| return; |
| } |
| |
| pc = (uintptr_t) &ctx->insns[ctx->ninsns]; |
| addr = pc + (paoff * HPPA_INSN_SIZE); |
| emit(hppa_ldil(addr, HPPA_REG_R31), ctx); |
| emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); // be,l,n addr(sr4,r31), %sr0, %r31 |
| } |
| |
| static void emit_alu_i64(const s8 *dst, s32 imm, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *rd; |
| |
| if (0 && op == BPF_MOV) |
| rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); |
| else |
| rd = bpf_get_reg64(dst, tmp1, ctx); |
| |
| /* dst = dst OP imm */ |
| switch (op) { |
| case BPF_MOV: |
| emit_imm32(rd, imm, ctx); |
| break; |
| case BPF_AND: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_and(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| if (imm >= 0) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case BPF_OR: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_or(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| if (imm < 0) |
| emit_imm(hi(rd), -1, ctx); |
| break; |
| case BPF_XOR: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit_hppa_xor(lo(rd), HPPA_REG_T0, lo(rd), ctx); |
| if (imm < 0) { |
| emit_imm(HPPA_REG_T0, -1, ctx); |
| emit_hppa_xor(hi(rd), HPPA_REG_T0, hi(rd), ctx); |
| } |
| break; |
| case BPF_LSH: |
| if (imm == 0) |
| break; |
| if (imm > 32) { |
| imm -= 32; |
| emit(hppa_zdep(lo(rd), imm, imm, hi(rd)), ctx); |
| emit_hppa_copy(HPPA_REG_ZERO, lo(rd), ctx); |
| } else if (imm == 32) { |
| emit_hppa_copy(lo(rd), hi(rd), ctx); |
| emit_hppa_copy(HPPA_REG_ZERO, lo(rd), ctx); |
| } else { |
| emit(hppa_shd(hi(rd), lo(rd), 32 - imm, hi(rd)), ctx); |
| emit(hppa_zdep(lo(rd), imm, imm, lo(rd)), ctx); |
| } |
| break; |
| case BPF_RSH: |
| if (imm == 0) |
| break; |
| if (imm > 32) { |
| imm -= 32; |
| emit(hppa_shr(hi(rd), imm, lo(rd)), ctx); |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| } else if (imm == 32) { |
| emit_hppa_copy(hi(rd), lo(rd), ctx); |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| } else { |
| emit(hppa_shrpw(hi(rd), lo(rd), imm, lo(rd)), ctx); |
| emit(hppa_shr(hi(rd), imm, hi(rd)), ctx); |
| } |
| break; |
| case BPF_ARSH: |
| if (imm == 0) |
| break; |
| if (imm > 32) { |
| imm -= 32; |
| emit(hppa_extrws(hi(rd), 31 - imm, imm, lo(rd)), ctx); |
| emit(hppa_extrws(hi(rd), 0, 31, hi(rd)), ctx); |
| } else if (imm == 32) { |
| emit_hppa_copy(hi(rd), lo(rd), ctx); |
| emit(hppa_extrws(hi(rd), 0, 31, hi(rd)), ctx); |
| } else { |
| emit(hppa_shrpw(hi(rd), lo(rd), imm, lo(rd)), ctx); |
| emit(hppa_extrws(hi(rd), 31 - imm, imm, hi(rd)), ctx); |
| } |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| static void emit_alu_i32(const s8 *dst, s32 imm, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); |
| |
| if (op == BPF_MOV) |
| rd = bpf_get_reg32_ref(dst, tmp1, ctx); |
| else |
| rd = bpf_get_reg32(dst, tmp1, ctx); |
| |
| /* dst = dst OP imm */ |
| switch (op) { |
| case BPF_MOV: |
| emit_imm(lo(rd), imm, ctx); |
| break; |
| case BPF_ADD: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_add(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| break; |
| case BPF_SUB: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_sub(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| break; |
| case BPF_AND: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_and(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| break; |
| case BPF_OR: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit(hppa_or(lo(rd), HPPA_REG_T0, lo(rd)), ctx); |
| break; |
| case BPF_XOR: |
| emit_imm(HPPA_REG_T0, imm, ctx); |
| emit_hppa_xor(lo(rd), HPPA_REG_T0, lo(rd), ctx); |
| break; |
| case BPF_LSH: |
| if (imm != 0) |
| emit(hppa_zdep(lo(rd), imm, imm, lo(rd)), ctx); |
| break; |
| case BPF_RSH: |
| if (imm != 0) |
| emit(hppa_shr(lo(rd), imm, lo(rd)), ctx); |
| break; |
| case BPF_ARSH: |
| if (imm != 0) |
| emit(hppa_extrws(lo(rd), 31 - imm, imm, lo(rd)), ctx); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| bpf_put_reg32(dst, rd, ctx); |
| } |
| |
| static void emit_alu_r64(const s8 *dst, const s8 *src, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| const s8 *rd; |
| const s8 *rs = bpf_get_reg64(src, tmp2, ctx); |
| |
| if (op == BPF_MOV) |
| rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); |
| else |
| rd = bpf_get_reg64(dst, tmp1, ctx); |
| |
| /* dst = dst OP src */ |
| switch (op) { |
| case BPF_MOV: |
| emit_hppa_copy(lo(rs), lo(rd), ctx); |
| emit_hppa_copy(hi(rs), hi(rd), ctx); |
| break; |
| case BPF_ADD: |
| emit(hppa_add(lo(rd), lo(rs), lo(rd)), ctx); |
| emit(hppa_addc(hi(rd), hi(rs), hi(rd)), ctx); |
| break; |
| case BPF_SUB: |
| emit(hppa_sub(lo(rd), lo(rs), lo(rd)), ctx); |
| emit(hppa_subb(hi(rd), hi(rs), hi(rd)), ctx); |
| break; |
| case BPF_AND: |
| emit(hppa_and(lo(rd), lo(rs), lo(rd)), ctx); |
| emit(hppa_and(hi(rd), hi(rs), hi(rd)), ctx); |
| break; |
| case BPF_OR: |
| emit(hppa_or(lo(rd), lo(rs), lo(rd)), ctx); |
| emit(hppa_or(hi(rd), hi(rs), hi(rd)), ctx); |
| break; |
| case BPF_XOR: |
| emit_hppa_xor(lo(rd), lo(rs), lo(rd), ctx); |
| emit_hppa_xor(hi(rd), hi(rs), hi(rd), ctx); |
| break; |
| case BPF_MUL: |
| emit_call_libgcc_ll(__muldi3, rd, rs, op, ctx); |
| break; |
| case BPF_DIV: |
| emit_call_libgcc_ll(&hppa_div64, rd, rs, op, ctx); |
| break; |
| case BPF_MOD: |
| emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, op, ctx); |
| break; |
| case BPF_LSH: |
| emit_call_libgcc_ll(__ashldi3, rd, rs, op, ctx); |
| break; |
| case BPF_RSH: |
| emit_call_libgcc_ll(__lshrdi3, rd, rs, op, ctx); |
| break; |
| case BPF_ARSH: |
| emit_call_libgcc_ll(__ashrdi3, rd, rs, op, ctx); |
| break; |
| case BPF_NEG: |
| emit(hppa_sub(HPPA_REG_ZERO, lo(rd), lo(rd)), ctx); |
| emit(hppa_subb(HPPA_REG_ZERO, hi(rd), hi(rd)), ctx); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| static void emit_alu_r32(const s8 *dst, const s8 *src, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| const s8 *rd; |
| const s8 *rs = bpf_get_reg32(src, tmp2, ctx); |
| |
| if (op == BPF_MOV) |
| rd = bpf_get_reg32_ref(dst, tmp1, ctx); |
| else |
| rd = bpf_get_reg32(dst, tmp1, ctx); |
| |
| /* dst = dst OP src */ |
| switch (op) { |
| case BPF_MOV: |
| emit_hppa_copy(lo(rs), lo(rd), ctx); |
| break; |
| case BPF_ADD: |
| emit(hppa_add(lo(rd), lo(rs), lo(rd)), ctx); |
| break; |
| case BPF_SUB: |
| emit(hppa_sub(lo(rd), lo(rs), lo(rd)), ctx); |
| break; |
| case BPF_AND: |
| emit(hppa_and(lo(rd), lo(rs), lo(rd)), ctx); |
| break; |
| case BPF_OR: |
| emit(hppa_or(lo(rd), lo(rs), lo(rd)), ctx); |
| break; |
| case BPF_XOR: |
| emit_hppa_xor(lo(rd), lo(rs), lo(rd), ctx); |
| break; |
| case BPF_MUL: |
| emit_call_millicode($$mulI, lo(rd), lo(rs), op, ctx); |
| break; |
| case BPF_DIV: |
| emit_call_millicode($$divU, lo(rd), lo(rs), op, ctx); |
| break; |
| case BPF_MOD: |
| emit_call_millicode($$remU, lo(rd), lo(rs), op, ctx); |
| break; |
| case BPF_LSH: |
| emit(hppa_subi(0x1f, lo(rs), HPPA_REG_T0), ctx); |
| emit(hppa_mtsar(HPPA_REG_T0), ctx); |
| emit(hppa_depwz_sar(lo(rd), lo(rd)), ctx); |
| break; |
| case BPF_RSH: |
| emit(hppa_mtsar(lo(rs)), ctx); |
| emit(hppa_shrpw_sar(lo(rd), lo(rd)), ctx); |
| break; |
| case BPF_ARSH: /* sign extending arithmetic shift right */ |
| // emit(hppa_beq(lo(rs), HPPA_REG_ZERO, 2), ctx); |
| emit(hppa_subi(0x1f, lo(rs), HPPA_REG_T0), ctx); |
| emit(hppa_mtsar(HPPA_REG_T0), ctx); |
| emit(hppa_extrws_sar(lo(rd), lo(rd)), ctx); |
| break; |
| case BPF_NEG: |
| emit(hppa_sub(HPPA_REG_ZERO, lo(rd), lo(rd)), ctx); // sub r0,rd,rd |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| bpf_put_reg32(dst, rd, ctx); |
| } |
| |
| static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 paoff, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| int e, s = ctx->ninsns; |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| |
| const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx); |
| const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx); |
| |
| /* |
| * NO_JUMP skips over the rest of the instructions and the |
| * emit_jump, meaning the BPF branch is not taken. |
| * JUMP skips directly to the emit_jump, meaning |
| * the BPF branch is taken. |
| * |
| * The fallthrough case results in the BPF branch being taken. |
| */ |
| #define NO_JUMP(idx) (2 + (idx) - 1) |
| #define JUMP(idx) (0 + (idx) - 1) |
| |
| switch (op) { |
| case BPF_JEQ: |
| emit(hppa_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JGT: |
| emit(hppa_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JLT: |
| emit(hppa_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JGE: |
| emit(hppa_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JLE: |
| emit(hppa_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JNE: |
| emit(hppa_bne(hi(rs1), hi(rs2), JUMP(1)), ctx); |
| emit(hppa_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JSGT: |
| emit(hppa_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JSLT: |
| emit(hppa_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JSGE: |
| emit(hppa_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JSLE: |
| emit(hppa_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); |
| emit(hppa_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); |
| emit(hppa_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); |
| break; |
| case BPF_JSET: |
| emit(hppa_and(hi(rs1), hi(rs2), HPPA_REG_T0), ctx); |
| emit(hppa_and(lo(rs1), lo(rs2), HPPA_REG_T1), ctx); |
| emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, JUMP(1)), ctx); |
| emit(hppa_beq(HPPA_REG_T1, HPPA_REG_ZERO, NO_JUMP(0)), ctx); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| #undef NO_JUMP |
| #undef JUMP |
| |
| e = ctx->ninsns; |
| /* Adjust for extra insns. */ |
| paoff -= (e - s); |
| emit_jump(paoff, true, ctx); |
| return 0; |
| } |
| |
| static int emit_bcc(u8 op, u8 rd, u8 rs, int paoff, struct hppa_jit_context *ctx) |
| { |
| int e, s; |
| bool far = false; |
| int off; |
| |
| if (op == BPF_JSET) { |
| /* |
| * BPF_JSET is a special case: it has no inverse so we always |
| * treat it as a far branch. |
| */ |
| emit(hppa_and(rd, rs, HPPA_REG_T0), ctx); |
| paoff -= 1; /* reduce offset due to hppa_and() above */ |
| rd = HPPA_REG_T0; |
| rs = HPPA_REG_ZERO; |
| op = BPF_JNE; |
| } |
| |
| s = ctx->ninsns; |
| |
| if (!relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 12)) { |
| op = invert_bpf_cond(op); |
| far = true; |
| } |
| |
| /* |
| * For a far branch, the condition is negated and we jump over the |
| * branch itself, and the three instructions from emit_jump. |
| * For a near branch, just use paoff. |
| */ |
| off = far ? (HPPA_BRANCH_DISPLACEMENT - 1) : paoff - HPPA_BRANCH_DISPLACEMENT; |
| |
| switch (op) { |
| /* IF (dst COND src) JUMP off */ |
| case BPF_JEQ: |
| emit(hppa_beq(rd, rs, off), ctx); |
| break; |
| case BPF_JGT: |
| emit(hppa_bgtu(rd, rs, off), ctx); |
| break; |
| case BPF_JLT: |
| emit(hppa_bltu(rd, rs, off), ctx); |
| break; |
| case BPF_JGE: |
| emit(hppa_bgeu(rd, rs, off), ctx); |
| break; |
| case BPF_JLE: |
| emit(hppa_bleu(rd, rs, off), ctx); |
| break; |
| case BPF_JNE: |
| emit(hppa_bne(rd, rs, off), ctx); |
| break; |
| case BPF_JSGT: |
| emit(hppa_bgt(rd, rs, off), ctx); |
| break; |
| case BPF_JSLT: |
| emit(hppa_blt(rd, rs, off), ctx); |
| break; |
| case BPF_JSGE: |
| emit(hppa_bge(rd, rs, off), ctx); |
| break; |
| case BPF_JSLE: |
| emit(hppa_ble(rd, rs, off), ctx); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| if (far) { |
| e = ctx->ninsns; |
| /* Adjust for extra insns. */ |
| paoff -= (e - s); |
| emit_jump(paoff, true, ctx); |
| } |
| return 0; |
| } |
| |
| static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 paoff, |
| struct hppa_jit_context *ctx, const u8 op) |
| { |
| int e, s = ctx->ninsns; |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| |
| const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx); |
| const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx); |
| |
| e = ctx->ninsns; |
| /* Adjust for extra insns. */ |
| paoff -= (e - s); |
| |
| if (emit_bcc(op, lo(rs1), lo(rs2), paoff, ctx)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static void emit_call(bool fixed, u64 addr, struct hppa_jit_context *ctx) |
| { |
| const s8 *tmp = regmap[TMP_REG_1]; |
| const s8 *r0 = regmap[BPF_REG_0]; |
| const s8 *reg; |
| const int offset_sp = 2 * STACK_ALIGN; |
| |
| /* prepare stack */ |
| emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| /* load R1 & R2 in registers, R3-R5 to stack. */ |
| reg = bpf_get_reg64_offset(regmap[BPF_REG_5], tmp, offset_sp, ctx); |
| emit(hppa_stw(hi(reg), -0x48, HPPA_REG_SP), ctx); |
| emit(hppa_stw(lo(reg), -0x44, HPPA_REG_SP), ctx); |
| |
| reg = bpf_get_reg64_offset(regmap[BPF_REG_4], tmp, offset_sp, ctx); |
| emit(hppa_stw(hi(reg), -0x40, HPPA_REG_SP), ctx); |
| emit(hppa_stw(lo(reg), -0x3c, HPPA_REG_SP), ctx); |
| |
| reg = bpf_get_reg64_offset(regmap[BPF_REG_3], tmp, offset_sp, ctx); |
| emit(hppa_stw(hi(reg), -0x38, HPPA_REG_SP), ctx); |
| emit(hppa_stw(lo(reg), -0x34, HPPA_REG_SP), ctx); |
| |
| reg = bpf_get_reg64_offset(regmap[BPF_REG_2], tmp, offset_sp, ctx); |
| emit_hppa_copy(hi(reg), HPPA_REG_ARG3, ctx); |
| emit_hppa_copy(lo(reg), HPPA_REG_ARG2, ctx); |
| |
| reg = bpf_get_reg64_offset(regmap[BPF_REG_1], tmp, offset_sp, ctx); |
| emit_hppa_copy(hi(reg), HPPA_REG_ARG1, ctx); |
| emit_hppa_copy(lo(reg), HPPA_REG_ARG0, ctx); |
| |
| /* backup TCC */ |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx); |
| |
| /* |
| * Use ldil() to load absolute address. Don't use emit_imm as the |
| * number of emitted instructions should not depend on the value of |
| * addr. |
| */ |
| emit(hppa_ldil(addr, HPPA_REG_R31), ctx); |
| emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, EXEC_NEXT_INSTR), ctx); |
| /* set return address in delay slot */ |
| emit_hppa_copy(HPPA_REG_R31, HPPA_REG_RP, ctx); |
| |
| /* restore TCC */ |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx); |
| |
| /* restore stack */ |
| emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| /* set return value. */ |
| emit_hppa_copy(HPPA_REG_RET0, hi(r0), ctx); |
| emit_hppa_copy(HPPA_REG_RET1, lo(r0), ctx); |
| } |
| |
| static int emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx) |
| { |
| /* |
| * R1 -> &ctx |
| * R2 -> &array |
| * R3 -> index |
| */ |
| int off; |
| const s8 *arr_reg = regmap[BPF_REG_2]; |
| const s8 *idx_reg = regmap[BPF_REG_3]; |
| struct bpf_array bpfa; |
| struct bpf_prog bpfp; |
| |
| /* get address of TCC main exit function for error case into rp */ |
| emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); |
| |
| /* max_entries = array->map.max_entries; */ |
| off = offsetof(struct bpf_array, map.max_entries); |
| BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4); |
| emit(hppa_ldw(off, lo(arr_reg), HPPA_REG_T1), ctx); |
| |
| /* |
| * if (index >= max_entries) |
| * goto out; |
| */ |
| emit(hppa_bltu(lo(idx_reg), HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * if (--tcc < 0) |
| * goto out; |
| */ |
| REG_FORCE_SEEN(ctx, HPPA_REG_TCC); |
| emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx); |
| emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * prog = array->ptrs[index]; |
| * if (!prog) |
| * goto out; |
| */ |
| BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 4); |
| emit(hppa_sh2add(lo(idx_reg), lo(arr_reg), HPPA_REG_T0), ctx); |
| off = offsetof(struct bpf_array, ptrs); |
| BUILD_BUG_ON(!relative_bits_ok(off, 11)); |
| emit(hppa_ldw(off, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * tcc = temp_tcc; |
| * goto *(prog->bpf_func + 4); |
| */ |
| off = offsetof(struct bpf_prog, bpf_func); |
| BUILD_BUG_ON(!relative_bits_ok(off, 11)); |
| BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 4); |
| emit(hppa_ldw(off, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| /* Epilogue jumps to *(t0 + 4). */ |
| __build_epilogue(true, ctx); |
| return 0; |
| } |
| |
| static int emit_load_r64(const s8 *dst, const s8 *src, s16 off, |
| struct hppa_jit_context *ctx, const u8 size) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| const s8 *rd = bpf_get_reg64_ref(dst, tmp1, ctx->prog->aux->verifier_zext, ctx); |
| const s8 *rs = bpf_get_reg64(src, tmp2, ctx); |
| s8 srcreg; |
| |
| /* need to calculate address since offset does not fit in 14 bits? */ |
| if (relative_bits_ok(off, 14)) |
| srcreg = lo(rs); |
| else { |
| /* need to use R1 here, since addil puts result into R1 */ |
| srcreg = HPPA_REG_R1; |
| emit(hppa_addil(off, lo(rs)), ctx); |
| off = im11(off); |
| } |
| |
| /* LDX: dst = *(size *)(src + off) */ |
| switch (size) { |
| case BPF_B: |
| emit(hppa_ldb(off + 0, srcreg, lo(rd)), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case BPF_H: |
| emit(hppa_ldh(off + 0, srcreg, lo(rd)), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case BPF_W: |
| emit(hppa_ldw(off + 0, srcreg, lo(rd)), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case BPF_DW: |
| emit(hppa_ldw(off + 0, srcreg, hi(rd)), ctx); |
| emit(hppa_ldw(off + 4, srcreg, lo(rd)), ctx); |
| break; |
| } |
| |
| bpf_put_reg64(dst, rd, ctx); |
| return 0; |
| } |
| |
| static int emit_store_r64(const s8 *dst, const s8 *src, s16 off, |
| struct hppa_jit_context *ctx, const u8 size, |
| const u8 mode) |
| { |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); |
| const s8 *rs = bpf_get_reg64(src, tmp2, ctx); |
| s8 dstreg; |
| |
| /* need to calculate address since offset does not fit in 14 bits? */ |
| if (relative_bits_ok(off, 14)) |
| dstreg = lo(rd); |
| else { |
| /* need to use R1 here, since addil puts result into R1 */ |
| dstreg = HPPA_REG_R1; |
| emit(hppa_addil(off, lo(rd)), ctx); |
| off = im11(off); |
| } |
| |
| /* ST: *(size *)(dst + off) = imm */ |
| switch (size) { |
| case BPF_B: |
| emit(hppa_stb(lo(rs), off + 0, dstreg), ctx); |
| break; |
| case BPF_H: |
| emit(hppa_sth(lo(rs), off + 0, dstreg), ctx); |
| break; |
| case BPF_W: |
| emit(hppa_stw(lo(rs), off + 0, dstreg), ctx); |
| break; |
| case BPF_DW: |
| emit(hppa_stw(hi(rs), off + 0, dstreg), ctx); |
| emit(hppa_stw(lo(rs), off + 4, dstreg), ctx); |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static void emit_rev16(const s8 rd, struct hppa_jit_context *ctx) |
| { |
| emit(hppa_extru(rd, 23, 8, HPPA_REG_T1), ctx); |
| emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx); |
| emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx); |
| } |
| |
| static void emit_rev32(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) |
| { |
| emit(hppa_shrpw(rs, rs, 16, HPPA_REG_T1), ctx); |
| emit(hppa_depwz(HPPA_REG_T1, 15, 8, HPPA_REG_T1), ctx); |
| emit(hppa_shrpw(rs, HPPA_REG_T1, 8, rd), ctx); |
| } |
| |
| static void emit_zext64(const s8 *dst, struct hppa_jit_context *ctx) |
| { |
| const s8 *rd; |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| |
| rd = bpf_get_reg64(dst, tmp1, ctx); |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| bpf_put_reg64(dst, rd, ctx); |
| } |
| |
| int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx, |
| bool extra_pass) |
| { |
| bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || |
| BPF_CLASS(insn->code) == BPF_JMP; |
| int s, e, paoff, i = insn - ctx->prog->insnsi; |
| u8 code = insn->code; |
| s16 off = insn->off; |
| s32 imm = insn->imm; |
| |
| const s8 *dst = regmap[insn->dst_reg]; |
| const s8 *src = regmap[insn->src_reg]; |
| const s8 *tmp1 = regmap[TMP_REG_1]; |
| const s8 *tmp2 = regmap[TMP_REG_2]; |
| |
| if (0) printk("CLASS %03d CODE %#02x ALU64:%d BPF_SIZE %#02x " |
| "BPF_CODE %#02x src_reg %d dst_reg %d\n", |
| BPF_CLASS(code), code, (code & BPF_ALU64) ? 1:0, BPF_SIZE(code), |
| BPF_OP(code), insn->src_reg, insn->dst_reg); |
| |
| switch (code) { |
| /* dst = src */ |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| |
| case BPF_ALU64 | BPF_MOD | BPF_X: |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| if (BPF_SRC(code) == BPF_K) { |
| emit_imm32(tmp2, imm, ctx); |
| src = tmp2; |
| } |
| emit_alu_r64(dst, src, ctx, BPF_OP(code)); |
| break; |
| |
| /* dst = -dst */ |
| case BPF_ALU64 | BPF_NEG: |
| emit_alu_r64(dst, tmp2, ctx, BPF_OP(code)); |
| break; |
| |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| emit_alu_i64(dst, imm, ctx, BPF_OP(code)); |
| break; |
| |
| case BPF_ALU | BPF_MOV | BPF_X: |
| if (imm == 1) { |
| /* Special mov32 for zext. */ |
| emit_zext64(dst, ctx); |
| break; |
| } |
| fallthrough; |
| /* dst = dst OP src */ |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU | BPF_XOR | BPF_X: |
| |
| case BPF_ALU | BPF_MUL | BPF_X: |
| case BPF_ALU | BPF_MUL | BPF_K: |
| |
| case BPF_ALU | BPF_DIV | BPF_X: |
| case BPF_ALU | BPF_DIV | BPF_K: |
| |
| case BPF_ALU | BPF_MOD | BPF_X: |
| case BPF_ALU | BPF_MOD | BPF_K: |
| |
| case BPF_ALU | BPF_LSH | BPF_X: |
| case BPF_ALU | BPF_RSH | BPF_X: |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| if (BPF_SRC(code) == BPF_K) { |
| emit_imm32(tmp2, imm, ctx); |
| src = tmp2; |
| } |
| emit_alu_r32(dst, src, ctx, BPF_OP(code)); |
| break; |
| |
| /* dst = dst OP imm */ |
| case BPF_ALU | BPF_MOV | BPF_K: |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU | BPF_LSH | BPF_K: |
| case BPF_ALU | BPF_RSH | BPF_K: |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| /* |
| * mul,div,mod are handled in the BPF_X case. |
| */ |
| emit_alu_i32(dst, imm, ctx, BPF_OP(code)); |
| break; |
| |
| /* dst = -dst */ |
| case BPF_ALU | BPF_NEG: |
| /* |
| * src is ignored---choose tmp2 as a dummy register since it |
| * is not on the stack. |
| */ |
| emit_alu_r32(dst, tmp2, ctx, BPF_OP(code)); |
| break; |
| |
| /* dst = BSWAP##imm(dst) */ |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| { |
| const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); |
| |
| switch (imm) { |
| case 16: |
| /* zero-extend 16 bits into 64 bits */ |
| emit(hppa_extru(lo(rd), 31, 16, lo(rd)), ctx); |
| fallthrough; |
| case 32: |
| /* zero-extend 32 bits into 64 bits */ |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case 64: |
| /* Do nothing. */ |
| break; |
| default: |
| pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); |
| return -1; |
| } |
| |
| bpf_put_reg64(dst, rd, ctx); |
| break; |
| } |
| |
| case BPF_ALU | BPF_END | BPF_FROM_LE: |
| { |
| const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); |
| |
| switch (imm) { |
| case 16: |
| emit_rev16(lo(rd), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case 32: |
| emit_rev32(lo(rd), lo(rd), ctx); |
| if (!ctx->prog->aux->verifier_zext) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(rd), ctx); |
| break; |
| case 64: |
| /* Swap upper and lower halves, then each half. */ |
| emit_hppa_copy(hi(rd), HPPA_REG_T0, ctx); |
| emit_rev32(lo(rd), hi(rd), ctx); |
| emit_rev32(HPPA_REG_T0, lo(rd), ctx); |
| break; |
| default: |
| pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); |
| return -1; |
| } |
| |
| bpf_put_reg64(dst, rd, ctx); |
| break; |
| } |
| /* JUMP off */ |
| case BPF_JMP | BPF_JA: |
| paoff = hppa_offset(i, off, ctx); |
| emit_jump(paoff, false, ctx); |
| break; |
| /* function call */ |
| case BPF_JMP | BPF_CALL: |
| { |
| bool fixed; |
| int ret; |
| u64 addr; |
| |
| ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, |
| &fixed); |
| if (ret < 0) |
| return ret; |
| emit_call(fixed, addr, ctx); |
| break; |
| } |
| /* tail call */ |
| case BPF_JMP | BPF_TAIL_CALL: |
| REG_SET_SEEN_ALL(ctx); |
| if (emit_bpf_tail_call(i, ctx)) |
| return -1; |
| break; |
| /* IF (dst COND imm) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP32 | BPF_JEQ | BPF_X: |
| case BPF_JMP32 | BPF_JEQ | BPF_K: |
| |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP32 | BPF_JNE | BPF_X: |
| case BPF_JMP32 | BPF_JNE | BPF_K: |
| |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP32 | BPF_JLE | BPF_X: |
| case BPF_JMP32 | BPF_JLE | BPF_K: |
| |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP32 | BPF_JLT | BPF_X: |
| case BPF_JMP32 | BPF_JLT | BPF_K: |
| |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP32 | BPF_JGE | BPF_X: |
| case BPF_JMP32 | BPF_JGE | BPF_K: |
| |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP32 | BPF_JGT | BPF_X: |
| case BPF_JMP32 | BPF_JGT | BPF_K: |
| |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP32 | BPF_JSLE | BPF_X: |
| case BPF_JMP32 | BPF_JSLE | BPF_K: |
| |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP32 | BPF_JSLT | BPF_X: |
| case BPF_JMP32 | BPF_JSLT | BPF_K: |
| |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP32 | BPF_JSGE | BPF_X: |
| case BPF_JMP32 | BPF_JSGE | BPF_K: |
| |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP32 | BPF_JSGT | BPF_X: |
| case BPF_JMP32 | BPF_JSGT | BPF_K: |
| |
| case BPF_JMP | BPF_JSET | BPF_X: |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP32 | BPF_JSET | BPF_X: |
| case BPF_JMP32 | BPF_JSET | BPF_K: |
| paoff = hppa_offset(i, off, ctx); |
| if (BPF_SRC(code) == BPF_K) { |
| s = ctx->ninsns; |
| emit_imm32(tmp2, imm, ctx); |
| src = tmp2; |
| e = ctx->ninsns; |
| paoff -= (e - s); |
| } |
| if (is64) |
| emit_branch_r64(dst, src, paoff, ctx, BPF_OP(code)); |
| else |
| emit_branch_r32(dst, src, paoff, ctx, BPF_OP(code)); |
| break; |
| /* function return */ |
| case BPF_JMP | BPF_EXIT: |
| if (i == ctx->prog->len - 1) |
| break; |
| /* load epilogue function pointer and jump to it. */ |
| emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| break; |
| |
| /* dst = imm64 */ |
| case BPF_LD | BPF_IMM | BPF_DW: |
| { |
| struct bpf_insn insn1 = insn[1]; |
| u32 upper = insn1.imm; |
| u32 lower = imm; |
| const s8 *rd = bpf_get_reg64_ref(dst, tmp1, false, ctx); |
| |
| if (0 && bpf_pseudo_func(insn)) { |
| WARN_ON(upper); /* we are 32-bit! */ |
| upper = 0; |
| lower = (uintptr_t) dereference_function_descriptor(lower); |
| } |
| |
| emit_imm64(rd, upper, lower, ctx); |
| bpf_put_reg64(dst, rd, ctx); |
| return 1; |
| } |
| |
| /* LDX: dst = *(size *)(src + off) */ |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_DW: |
| if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code))) |
| return -1; |
| break; |
| |
| /* speculation barrier */ |
| case BPF_ST | BPF_NOSPEC: |
| break; |
| |
| /* ST: *(size *)(dst + off) = imm */ |
| case BPF_ST | BPF_MEM | BPF_B: |
| case BPF_ST | BPF_MEM | BPF_H: |
| case BPF_ST | BPF_MEM | BPF_W: |
| case BPF_ST | BPF_MEM | BPF_DW: |
| |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_DW: |
| if (BPF_CLASS(code) == BPF_ST) { |
| emit_imm32(tmp2, imm, ctx); |
| src = tmp2; |
| } |
| |
| if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), |
| BPF_MODE(code))) |
| return -1; |
| break; |
| |
| case BPF_STX | BPF_ATOMIC | BPF_W: |
| case BPF_STX | BPF_ATOMIC | BPF_DW: |
| pr_info_once( |
| "bpf-jit: not supported: atomic operation %02x ***\n", |
| insn->imm); |
| return -EFAULT; |
| |
| default: |
| pr_err("bpf-jit: unknown opcode %02x\n", code); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| void bpf_jit_build_prologue(struct hppa_jit_context *ctx) |
| { |
| const s8 *tmp = regmap[TMP_REG_1]; |
| const s8 *dst, *reg; |
| int stack_adjust = 0; |
| int i; |
| unsigned long addr; |
| int bpf_stack_adjust; |
| |
| /* |
| * stack on hppa grows up, so if tail calls are used we need to |
| * allocate the maximum stack size |
| */ |
| if (REG_ALL_SEEN(ctx)) |
| bpf_stack_adjust = MAX_BPF_STACK; |
| else |
| bpf_stack_adjust = ctx->prog->aux->stack_depth; |
| bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN); |
| |
| /* make space for callee-saved registers. */ |
| stack_adjust += NR_SAVED_REGISTERS * REG_SIZE; |
| /* make space for BPF registers on stack. */ |
| stack_adjust += BPF_JIT_SCRATCH_REGS * REG_SIZE; |
| /* make space for BPF stack. */ |
| stack_adjust += bpf_stack_adjust; |
| /* round up for stack alignment. */ |
| stack_adjust = round_up(stack_adjust, STACK_ALIGN); |
| |
| /* |
| * The first instruction sets the tail-call-counter (TCC) register. |
| * This instruction is skipped by tail calls. |
| * Use a temporary register instead of a caller-saved register initially. |
| */ |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx); |
| |
| /* |
| * skip all initializations when called as BPF TAIL call. |
| */ |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx); |
| emit(hppa_bne(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, ctx->prologue_len - 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| |
| /* set up hppa stack frame. */ |
| emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx); // copy sp,r1 (=prev_sp) |
| emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx); // ldo stack_adjust(sp),sp (increase stack) |
| emit(hppa_stw(HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx); // stw prev_sp,-0x04(sp) |
| emit(hppa_stw(HPPA_REG_RP, -0x14, HPPA_REG_SP), ctx); // stw rp,-0x14(sp) |
| |
| REG_FORCE_SEEN(ctx, HPPA_REG_T0); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T1); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T2); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T3); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T4); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T5); |
| |
| /* save callee-save registers. */ |
| for (i = 3; i <= 18; i++) { |
| if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) |
| continue; |
| emit(hppa_stw(HPPA_R(i), -REG_SIZE * (8 + (i-3)), HPPA_REG_SP), ctx); // stw ri,-save_area(sp) |
| } |
| |
| /* |
| * now really set the tail call counter (TCC) register. |
| */ |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx); |
| |
| /* |
| * save epilogue function pointer for outer TCC call chain. |
| * The main TCC call stores the final RP on stack. |
| */ |
| addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset]; |
| /* skip first two instructions of exit function, which jump to exit */ |
| addr += 2 * HPPA_INSN_SIZE; |
| emit(hppa_ldil(addr, HPPA_REG_T2), ctx); |
| emit(hppa_ldo(im11(addr), HPPA_REG_T2, HPPA_REG_T2), ctx); |
| emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx); |
| |
| /* load R1 & R2 from registers, R3-R5 from stack. */ |
| /* use HPPA_REG_R1 which holds the old stack value */ |
| dst = regmap[BPF_REG_5]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit(hppa_ldw(-0x48, HPPA_REG_R1, hi(reg)), ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit(hppa_ldw(-0x44, HPPA_REG_R1, lo(reg)), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| dst = regmap[BPF_REG_4]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit(hppa_ldw(-0x40, HPPA_REG_R1, hi(reg)), ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit(hppa_ldw(-0x3c, HPPA_REG_R1, lo(reg)), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| dst = regmap[BPF_REG_3]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit(hppa_ldw(-0x38, HPPA_REG_R1, hi(reg)), ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit(hppa_ldw(-0x34, HPPA_REG_R1, lo(reg)), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| dst = regmap[BPF_REG_2]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit_hppa_copy(HPPA_REG_ARG3, hi(reg), ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit_hppa_copy(HPPA_REG_ARG2, lo(reg), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| dst = regmap[BPF_REG_1]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit_hppa_copy(HPPA_REG_ARG1, hi(reg), ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit_hppa_copy(HPPA_REG_ARG0, lo(reg), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| /* Set up BPF frame pointer. */ |
| dst = regmap[BPF_REG_FP]; |
| reg = bpf_get_reg64_ref(dst, tmp, false, ctx); |
| if (REG_WAS_SEEN(ctx, lo(reg)) | REG_WAS_SEEN(ctx, hi(reg))) { |
| if (REG_WAS_SEEN(ctx, lo(reg))) |
| emit(hppa_ldo(-REG_SIZE * (NR_SAVED_REGISTERS + BPF_JIT_SCRATCH_REGS), |
| HPPA_REG_SP, lo(reg)), ctx); |
| if (REG_WAS_SEEN(ctx, hi(reg))) |
| emit_hppa_copy(HPPA_REG_ZERO, hi(reg), ctx); |
| bpf_put_reg64(dst, tmp, ctx); |
| } |
| |
| emit(hppa_nop(), ctx); |
| } |
| |
| void bpf_jit_build_epilogue(struct hppa_jit_context *ctx) |
| { |
| __build_epilogue(false, ctx); |
| } |