| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * BPF JIT compiler for PA-RISC (64-bit) |
| * |
| * Copyright(c) 2023 Helge Deller <deller@gmx.de> |
| * |
| * The code is based on the BPF JIT compiler for RV64 by Björn Töpel. |
| * |
| * TODO: |
| * - check if bpf_jit_needs_zext() is needed (currently enabled) |
| * - implement arch_prepare_bpf_trampoline(), poke(), ... |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bpf.h> |
| #include <linux/filter.h> |
| #include <linux/libgcc.h> |
| #include "bpf_jit.h" |
| |
| static const int regmap[] = { |
| [BPF_REG_0] = HPPA_REG_RET0, |
| [BPF_REG_1] = HPPA_R(5), |
| [BPF_REG_2] = HPPA_R(6), |
| [BPF_REG_3] = HPPA_R(7), |
| [BPF_REG_4] = HPPA_R(8), |
| [BPF_REG_5] = HPPA_R(9), |
| [BPF_REG_6] = HPPA_R(10), |
| [BPF_REG_7] = HPPA_R(11), |
| [BPF_REG_8] = HPPA_R(12), |
| [BPF_REG_9] = HPPA_R(13), |
| [BPF_REG_FP] = HPPA_R(14), |
| [BPF_REG_AX] = HPPA_R(15), |
| }; |
| |
| /* |
| * Stack layout during BPF program execution (note: stack grows up): |
| * |
| * high |
| * HPPA64 sp => +----------+ <= HPPA64 fp |
| * | saved sp | |
| * | saved rp | |
| * | ... | HPPA64 callee-saved registers |
| * | curr args| |
| * | local var| |
| * +----------+ <= (BPF FP) |
| * | | |
| * | ... | BPF program stack |
| * | | |
| * | ... | Function call stack |
| * | | |
| * +----------+ |
| * low |
| */ |
| |
| /* Offset from fp for BPF registers stored on stack. */ |
| #define STACK_ALIGN FRAME_SIZE |
| |
| #define EXIT_PTR_LOAD(reg) hppa64_ldd_im16(-FRAME_SIZE, HPPA_REG_SP, reg) |
| #define EXIT_PTR_STORE(reg) hppa64_std_im16(reg, -FRAME_SIZE, HPPA_REG_SP) |
| #define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop) |
| |
| static u8 bpf_to_hppa_reg(int bpf_reg, struct hppa_jit_context *ctx) |
| { |
| u8 reg = regmap[bpf_reg]; |
| |
| REG_SET_SEEN(ctx, reg); |
| return reg; |
| }; |
| |
| static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx) |
| { |
| REG_SET_SEEN(ctx, rd); |
| if (OPTIMIZE_HPPA && (rs == rd)) |
| return; |
| REG_SET_SEEN(ctx, rs); |
| emit(hppa_copy(rs, rd), ctx); |
| } |
| |
| static void emit_hppa64_depd(u8 src, u8 pos, u8 len, u8 target, bool no_zero, struct hppa_jit_context *ctx) |
| { |
| int c; |
| |
| pos &= (BITS_PER_LONG - 1); |
| pos = 63 - pos; |
| len = 64 - len; |
| c = (len < 32) ? 0x4 : 0; |
| c |= (pos >= 32) ? 0x2 : 0; |
| c |= (no_zero) ? 0x1 : 0; |
| emit(hppa_t10_insn(0x3c, target, src, 0, c, pos & 0x1f, len & 0x1f), ctx); |
| } |
| |
| static void emit_hppa64_shld(u8 src, int num, u8 target, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_depd(src, 63-num, 64-num, target, 0, ctx); |
| } |
| |
| static void emit_hppa64_extrd(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx) |
| { |
| int c; |
| |
| pos &= (BITS_PER_LONG - 1); |
| len = 64 - len; |
| c = (len < 32) ? 0x4 : 0; |
| c |= (pos >= 32) ? 0x2 : 0; |
| c |= signed_op ? 0x1 : 0; |
| emit(hppa_t10_insn(0x36, src, target, 0, c, pos & 0x1f, len & 0x1f), ctx); |
| } |
| |
| static void emit_hppa64_extrw(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx) |
| { |
| int c; |
| |
| pos &= (32 - 1); |
| len = 32 - len; |
| c = 0x06 | (signed_op ? 1 : 0); |
| emit(hppa_t10_insn(0x34, src, target, 0, c, pos, len), ctx); |
| } |
| |
| #define emit_hppa64_zext32(r, target, ctx) \ |
| emit_hppa64_extrd(r, 63, 32, target, false, ctx) |
| #define emit_hppa64_sext32(r, target, ctx) \ |
| emit_hppa64_extrd(r, 63, 32, target, true, ctx) |
| |
| static void emit_hppa64_shrd(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_extrd(src, 63-num, 64-num, target, signed_op, ctx); |
| } |
| |
| static void emit_hppa64_shrw(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_extrw(src, 31-num, 32-num, target, signed_op, ctx); |
| } |
| |
| /* Emit variable-length instructions for 32-bit imm */ |
| static void emit_imm32(u8 rd, s32 imm, struct hppa_jit_context *ctx) |
| { |
| u32 lower = im11(imm); |
| |
| REG_SET_SEEN(ctx, rd); |
| if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) { |
| emit(hppa_ldi(imm, rd), ctx); |
| return; |
| } |
| if (OPTIMIZE_HPPA && lower == imm) { |
| emit(hppa_ldo(lower, HPPA_REG_ZERO, rd), ctx); |
| return; |
| } |
| emit(hppa_ldil(imm, rd), ctx); |
| if (OPTIMIZE_HPPA && (lower == 0)) |
| return; |
| emit(hppa_ldo(lower, rd, rd), ctx); |
| } |
| |
| static bool is_32b_int(s64 val) |
| { |
| return val == (s32) val; |
| } |
| |
| /* Emit variable-length instructions for 64-bit imm */ |
| static void emit_imm(u8 rd, s64 imm, u8 tmpreg, struct hppa_jit_context *ctx) |
| { |
| u32 upper32; |
| |
| /* get lower 32-bits into rd, sign extended */ |
| emit_imm32(rd, imm, ctx); |
| |
| /* do we have upper 32-bits too ? */ |
| if (OPTIMIZE_HPPA && is_32b_int(imm)) |
| return; |
| |
| /* load upper 32-bits into lower tmpreg and deposit into rd */ |
| upper32 = imm >> 32; |
| if (upper32 || !OPTIMIZE_HPPA) { |
| emit_imm32(tmpreg, upper32, ctx); |
| emit_hppa64_depd(tmpreg, 31, 32, rd, 1, ctx); |
| } else |
| emit_hppa64_depd(HPPA_REG_ZERO, 31, 32, rd, 1, ctx); |
| |
| } |
| |
| static int emit_jump(signed long paoff, bool force_far, |
| struct hppa_jit_context *ctx) |
| { |
| unsigned long pc, addr; |
| |
| /* Note: Use 2 instructions for jumps if force_far is set. */ |
| if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 22)) { |
| /* use BL,long branch followed by nop() */ |
| emit(hppa64_bl_long(paoff - HPPA_BRANCH_DISPLACEMENT), ctx); |
| if (force_far) |
| emit(hppa_nop(), ctx); |
| return 0; |
| } |
| |
| pc = (uintptr_t) &ctx->insns[ctx->ninsns]; |
| addr = pc + (paoff * HPPA_INSN_SIZE); |
| /* even the 64-bit kernel runs in memory below 4GB */ |
| if (WARN_ON_ONCE(addr >> 32)) |
| return -E2BIG; |
| emit(hppa_ldil(addr, HPPA_REG_R31), ctx); |
| emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx); |
| return 0; |
| } |
| |
| static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx) |
| { |
| int i; |
| |
| if (is_tail_call) { |
| /* |
| * goto *(t0 + 4); |
| * Skips first instruction of prologue which initializes tail |
| * call counter. Assumes t0 contains address of target program, |
| * see emit_bpf_tail_call. |
| */ |
| emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx); |
| /* in delay slot: */ |
| emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx); |
| |
| return; |
| } |
| |
| /* load epilogue function pointer and jump to it. */ |
| /* exit point is either at next instruction, or the outest TCC exit function */ |
| emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* NOTE: we are 64-bit and big-endian, so return lower sign-extended 32-bit value */ |
| emit_hppa64_sext32(regmap[BPF_REG_0], HPPA_REG_RET0, ctx); |
| |
| /* Restore callee-saved registers. */ |
| for (i = 3; i <= 15; i++) { |
| if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) |
| continue; |
| emit(hppa64_ldd_im16(-REG_SIZE * i, HPPA_REG_SP, HPPA_R(i)), ctx); |
| } |
| |
| /* load original return pointer (stored by outest TCC function) */ |
| emit(hppa64_ldd_im16(-2*REG_SIZE, HPPA_REG_SP, HPPA_REG_RP), ctx); |
| emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx); |
| /* in delay slot: */ |
| emit(hppa64_ldd_im5(-REG_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| emit(hppa_nop(), ctx); // XXX WARUM einer zu wenig ?? |
| } |
| |
| static int emit_branch(u8 op, u8 rd, u8 rs, signed long paoff, |
| struct hppa_jit_context *ctx) |
| { |
| int e, s; |
| bool far = false; |
| int off; |
| |
| if (op == BPF_JSET) { |
| /* |
| * BPF_JSET is a special case: it has no inverse so translate |
| * to and() function and compare against zero |
| */ |
| emit(hppa_and(rd, rs, HPPA_REG_T0), ctx); |
| paoff -= 1; /* reduce offset due to hppa_and() above */ |
| rd = HPPA_REG_T0; |
| rs = HPPA_REG_ZERO; |
| op = BPF_JNE; |
| } |
| |
| /* set start after BPF_JSET */ |
| s = ctx->ninsns; |
| |
| if (!relative_branch_ok(paoff - HPPA_BRANCH_DISPLACEMENT + 1, 12)) { |
| op = invert_bpf_cond(op); |
| far = true; |
| } |
| |
| /* |
| * For a far branch, the condition is negated and we jump over the |
| * branch itself, and the two instructions from emit_jump. |
| * For a near branch, just use paoff. |
| */ |
| off = far ? (2 - HPPA_BRANCH_DISPLACEMENT) : paoff - HPPA_BRANCH_DISPLACEMENT; |
| |
| switch (op) { |
| /* IF (dst COND src) JUMP off */ |
| case BPF_JEQ: |
| emit(hppa_beq(rd, rs, off), ctx); |
| break; |
| case BPF_JGT: |
| emit(hppa_bgtu(rd, rs, off), ctx); |
| break; |
| case BPF_JLT: |
| emit(hppa_bltu(rd, rs, off), ctx); |
| break; |
| case BPF_JGE: |
| emit(hppa_bgeu(rd, rs, off), ctx); |
| break; |
| case BPF_JLE: |
| emit(hppa_bleu(rd, rs, off), ctx); |
| break; |
| case BPF_JNE: |
| emit(hppa_bne(rd, rs, off), ctx); |
| break; |
| case BPF_JSGT: |
| emit(hppa_bgt(rd, rs, off), ctx); |
| break; |
| case BPF_JSLT: |
| emit(hppa_blt(rd, rs, off), ctx); |
| break; |
| case BPF_JSGE: |
| emit(hppa_bge(rd, rs, off), ctx); |
| break; |
| case BPF_JSLE: |
| emit(hppa_ble(rd, rs, off), ctx); |
| break; |
| default: |
| WARN_ON(1); |
| } |
| |
| if (far) { |
| int ret; |
| e = ctx->ninsns; |
| /* Adjust for extra insns. */ |
| paoff -= (e - s); |
| ret = emit_jump(paoff, true, ctx); |
| if (ret) |
| return ret; |
| } else { |
| /* |
| * always allocate 2 nops instead of the far branch to |
| * reduce translation loops |
| */ |
| emit(hppa_nop(), ctx); |
| emit(hppa_nop(), ctx); |
| } |
| return 0; |
| } |
| |
| static void emit_zext_32(u8 reg, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_zext32(reg, reg, ctx); |
| } |
| |
| static void emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx) |
| { |
| /* |
| * R1 -> &ctx |
| * R2 -> &array |
| * R3 -> index |
| */ |
| int off; |
| const s8 arr_reg = regmap[BPF_REG_2]; |
| const s8 idx_reg = regmap[BPF_REG_3]; |
| struct bpf_array bpfa; |
| struct bpf_prog bpfp; |
| |
| /* if there is any tail call, we need to save & restore all registers */ |
| REG_SET_SEEN_ALL(ctx); |
| |
| /* get address of TCC main exit function for error case into rp */ |
| emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx); |
| |
| /* max_entries = array->map.max_entries; */ |
| off = offsetof(struct bpf_array, map.max_entries); |
| BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4); |
| emit(hppa_ldw(off, arr_reg, HPPA_REG_T1), ctx); |
| |
| /* |
| * if (index >= max_entries) |
| * goto out; |
| */ |
| emit(hppa_bltu(idx_reg, HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * if (--tcc < 0) |
| * goto out; |
| */ |
| REG_FORCE_SEEN(ctx, HPPA_REG_TCC); |
| emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx); |
| emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * prog = array->ptrs[index]; |
| * if (!prog) |
| * goto out; |
| */ |
| BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 8); |
| emit(hppa64_shladd(idx_reg, 3, arr_reg, HPPA_REG_T0), ctx); |
| off = offsetof(struct bpf_array, ptrs); |
| BUILD_BUG_ON(off < 16); |
| emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx); |
| |
| /* |
| * tcc = temp_tcc; |
| * goto *(prog->bpf_func + 4); |
| */ |
| off = offsetof(struct bpf_prog, bpf_func); |
| BUILD_BUG_ON(off < 16); |
| BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 8); |
| emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx); |
| /* Epilogue jumps to *(t0 + 4). */ |
| __build_epilogue(true, ctx); |
| } |
| |
| static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn, |
| struct hppa_jit_context *ctx) |
| { |
| u8 code = insn->code; |
| |
| switch (code) { |
| case BPF_JMP | BPF_JA: |
| case BPF_JMP | BPF_CALL: |
| case BPF_JMP | BPF_EXIT: |
| case BPF_JMP | BPF_TAIL_CALL: |
| break; |
| default: |
| *rd = bpf_to_hppa_reg(insn->dst_reg, ctx); |
| } |
| |
| if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) || |
| code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) || |
| code & BPF_LDX || code & BPF_STX) |
| *rs = bpf_to_hppa_reg(insn->src_reg, ctx); |
| } |
| |
| static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx); |
| *rd = HPPA_REG_T2; |
| emit_hppa64_zext32(*rs, HPPA_REG_T1, ctx); |
| *rs = HPPA_REG_T1; |
| } |
| |
| static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx); |
| *rd = HPPA_REG_T2; |
| emit_hppa64_sext32(*rs, HPPA_REG_T1, ctx); |
| *rs = HPPA_REG_T1; |
| } |
| |
| static void emit_zext_32_rd_t1(u8 *rd, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx); |
| *rd = HPPA_REG_T2; |
| emit_zext_32(HPPA_REG_T1, ctx); |
| } |
| |
| static void emit_sext_32_rd(u8 *rd, struct hppa_jit_context *ctx) |
| { |
| emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx); |
| *rd = HPPA_REG_T2; |
| } |
| |
| static bool is_signed_bpf_cond(u8 cond) |
| { |
| return cond == BPF_JSGT || cond == BPF_JSLT || |
| cond == BPF_JSGE || cond == BPF_JSLE; |
| } |
| |
| static void emit_call(u64 addr, bool fixed, struct hppa_jit_context *ctx) |
| { |
| const int offset_sp = 2*FRAME_SIZE; |
| |
| emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| emit_hppa_copy(regmap[BPF_REG_1], HPPA_REG_ARG0, ctx); |
| emit_hppa_copy(regmap[BPF_REG_2], HPPA_REG_ARG1, ctx); |
| emit_hppa_copy(regmap[BPF_REG_3], HPPA_REG_ARG2, ctx); |
| emit_hppa_copy(regmap[BPF_REG_4], HPPA_REG_ARG3, ctx); |
| emit_hppa_copy(regmap[BPF_REG_5], HPPA_REG_ARG4, ctx); |
| |
| /* Backup TCC. */ |
| REG_FORCE_SEEN(ctx, HPPA_REG_TCC_SAVED); |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx); |
| |
| /* |
| * Use ldil() to load absolute address. Don't use emit_imm as the |
| * number of emitted instructions should not depend on the value of |
| * addr. |
| */ |
| WARN_ON(addr >> 32); |
| /* load function address and gp from Elf64_Fdesc descriptor */ |
| emit(hppa_ldil(addr, HPPA_REG_R31), ctx); |
| emit(hppa_ldo(im11(addr), HPPA_REG_R31, HPPA_REG_R31), ctx); |
| emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr), |
| HPPA_REG_R31, HPPA_REG_RP), ctx); |
| emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx); |
| emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp), |
| HPPA_REG_R31, HPPA_REG_GP), ctx); |
| |
| /* Restore TCC. */ |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx); |
| |
| emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| /* Set return value. */ |
| emit_hppa_copy(HPPA_REG_RET0, regmap[BPF_REG_0], ctx); |
| } |
| |
| static void emit_call_libgcc_ll(void *func, const s8 arg0, |
| const s8 arg1, u8 opcode, struct hppa_jit_context *ctx) |
| { |
| u64 func_addr; |
| |
| if (BPF_CLASS(opcode) == BPF_ALU) { |
| emit_hppa64_zext32(arg0, HPPA_REG_ARG0, ctx); |
| emit_hppa64_zext32(arg1, HPPA_REG_ARG1, ctx); |
| } else { |
| emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx); |
| emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx); |
| } |
| |
| /* libcgcc overwrites HPPA_REG_RET0, so keep copy in HPPA_REG_TCC_SAVED */ |
| if (arg0 != HPPA_REG_RET0) { |
| REG_SET_SEEN(ctx, HPPA_REG_TCC_SAVED); |
| emit(hppa_copy(HPPA_REG_RET0, HPPA_REG_TCC_SAVED), ctx); |
| } |
| |
| /* set up stack */ |
| emit(hppa_ldo(FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| func_addr = (uintptr_t) func; |
| /* load function func_address and gp from Elf64_Fdesc descriptor */ |
| emit_imm(HPPA_REG_R31, func_addr, arg0, ctx); |
| emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr), |
| HPPA_REG_R31, HPPA_REG_RP), ctx); |
| /* skip the following bve_l instruction if divisor is 0. */ |
| if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) { |
| if (BPF_OP(opcode) == BPF_DIV) |
| emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx); |
| else { |
| emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET0, ctx); |
| } |
| emit(hppa_beq(HPPA_REG_ARG1, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| } |
| emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx); |
| emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp), |
| HPPA_REG_R31, HPPA_REG_GP), ctx); |
| |
| emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| |
| emit_hppa_copy(HPPA_REG_RET0, arg0, ctx); |
| |
| /* restore HPPA_REG_RET0 */ |
| if (arg0 != HPPA_REG_RET0) |
| emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_RET0), ctx); |
| } |
| |
| static void emit_store(const s8 rd, const s8 rs, s16 off, |
| struct hppa_jit_context *ctx, const u8 size, |
| const u8 mode) |
| { |
| s8 dstreg; |
| |
| /* need to calculate address since offset does not fit in 14 bits? */ |
| if (relative_bits_ok(off, 14)) |
| dstreg = rd; |
| else { |
| /* need to use R1 here, since addil puts result into R1 */ |
| dstreg = HPPA_REG_R1; |
| emit(hppa_addil(off, rd), ctx); |
| off = im11(off); |
| } |
| |
| switch (size) { |
| case BPF_B: |
| emit(hppa_stb(rs, off, dstreg), ctx); |
| break; |
| case BPF_H: |
| emit(hppa_sth(rs, off, dstreg), ctx); |
| break; |
| case BPF_W: |
| emit(hppa_stw(rs, off, dstreg), ctx); |
| break; |
| case BPF_DW: |
| if (off & 7) { |
| emit(hppa_ldo(off, dstreg, HPPA_REG_R1), ctx); |
| emit(hppa64_std_im5(rs, 0, HPPA_REG_R1), ctx); |
| } else if (off >= -16 && off <= 15) |
| emit(hppa64_std_im5(rs, off, dstreg), ctx); |
| else |
| emit(hppa64_std_im16(rs, off, dstreg), ctx); |
| break; |
| } |
| } |
| |
| int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx, |
| bool extra_pass) |
| { |
| bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || |
| BPF_CLASS(insn->code) == BPF_JMP; |
| int s, e, ret, i = insn - ctx->prog->insnsi; |
| s64 paoff; |
| struct bpf_prog_aux *aux = ctx->prog->aux; |
| u8 rd = -1, rs = -1, code = insn->code; |
| s16 off = insn->off; |
| s32 imm = insn->imm; |
| |
| init_regs(&rd, &rs, insn, ctx); |
| |
| switch (code) { |
| /* dst = src */ |
| case BPF_ALU | BPF_MOV | BPF_X: |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| if (imm == 1) { |
| /* Special mov32 for zext */ |
| emit_zext_32(rd, ctx); |
| break; |
| } |
| if (!is64 && !aux->verifier_zext) |
| emit_hppa64_zext32(rs, rd, ctx); |
| else |
| emit_hppa_copy(rs, rd, ctx); |
| break; |
| |
| /* dst = dst OP src */ |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| emit(hppa_add(rd, rs, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| emit(hppa_sub(rd, rs, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| emit(hppa_and(rd, rs, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| emit(hppa_or(rd, rs, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| emit(hppa_xor(rd, rs, rd), ctx); |
| if (!is64 && !aux->verifier_zext && rs != rd) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_MUL | BPF_K: |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); |
| rs = HPPA_REG_T1; |
| fallthrough; |
| case BPF_ALU | BPF_MUL | BPF_X: |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| emit_call_libgcc_ll(__muldi3, rd, rs, code, ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_DIV | BPF_K: |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); |
| rs = HPPA_REG_T1; |
| fallthrough; |
| case BPF_ALU | BPF_DIV | BPF_X: |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| emit_call_libgcc_ll(&hppa_div64, rd, rs, code, ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_MOD | BPF_K: |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx); |
| rs = HPPA_REG_T1; |
| fallthrough; |
| case BPF_ALU | BPF_MOD | BPF_X: |
| case BPF_ALU64 | BPF_MOD | BPF_X: |
| emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, code, ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| |
| case BPF_ALU | BPF_LSH | BPF_X: |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| emit_hppa64_sext32(rs, HPPA_REG_T0, ctx); |
| emit(hppa64_mtsarcm(HPPA_REG_T0), ctx); |
| if (is64) |
| emit(hppa64_depdz_sar(rd, rd), ctx); |
| else |
| emit(hppa_depwz_sar(rd, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_X: |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| emit(hppa_mtsar(rs), ctx); |
| if (is64) |
| emit(hppa64_shrpd_sar(rd, rd), ctx); |
| else |
| emit(hppa_shrpw_sar(rd, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| emit_hppa64_sext32(rs, HPPA_REG_T0, ctx); |
| emit(hppa64_mtsarcm(HPPA_REG_T0), ctx); |
| if (is64) |
| emit(hppa_extrd_sar(rd, rd, 1), ctx); |
| else |
| emit(hppa_extrws_sar(rd, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| |
| /* dst = -dst */ |
| case BPF_ALU | BPF_NEG: |
| case BPF_ALU64 | BPF_NEG: |
| emit(hppa_sub(HPPA_REG_ZERO, rd, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| |
| /* dst = BSWAP##imm(dst) */ |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| switch (imm) { |
| case 16: |
| /* zero-extend 16 bits into 64 bits */ |
| emit_hppa64_depd(HPPA_REG_ZERO, 63-16, 64-16, rd, 1, ctx); |
| break; |
| case 32: |
| if (!aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case 64: |
| /* Do nothing */ |
| break; |
| } |
| break; |
| |
| case BPF_ALU | BPF_END | BPF_FROM_LE: |
| switch (imm) { |
| case 16: |
| emit(hppa_extru(rd, 31 - 8, 8, HPPA_REG_T1), ctx); |
| emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx); |
| emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx); |
| emit_hppa64_extrd(HPPA_REG_T1, 63, 16, rd, 0, ctx); |
| break; |
| case 32: |
| emit(hppa_shrpw(rd, rd, 16, HPPA_REG_T1), ctx); |
| emit_hppa64_depd(HPPA_REG_T1, 63-16, 8, HPPA_REG_T1, 1, ctx); |
| emit(hppa_shrpw(rd, HPPA_REG_T1, 8, HPPA_REG_T1), ctx); |
| emit_hppa64_extrd(HPPA_REG_T1, 63, 32, rd, 0, ctx); |
| break; |
| case 64: |
| emit(hppa64_permh_3210(rd, HPPA_REG_T1), ctx); |
| emit(hppa64_hshl(HPPA_REG_T1, 8, HPPA_REG_T2), ctx); |
| emit(hppa64_hshr_u(HPPA_REG_T1, 8, HPPA_REG_T1), ctx); |
| emit(hppa_or(HPPA_REG_T2, HPPA_REG_T1, rd), ctx); |
| break; |
| default: |
| pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); |
| return -1; |
| } |
| break; |
| |
| /* dst = imm */ |
| case BPF_ALU | BPF_MOV | BPF_K: |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| emit_imm(rd, imm, HPPA_REG_T2, ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| |
| /* dst = dst OP imm */ |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| if (relative_bits_ok(imm, 14)) { |
| emit(hppa_ldo(imm, rd, rd), ctx); |
| } else { |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_add(rd, HPPA_REG_T1, rd), ctx); |
| } |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| if (relative_bits_ok(-imm, 14)) { |
| emit(hppa_ldo(-imm, rd, rd), ctx); |
| } else { |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_sub(rd, HPPA_REG_T1, rd), ctx); |
| } |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_and(rd, HPPA_REG_T1, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_or(rd, HPPA_REG_T1, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_xor(rd, HPPA_REG_T1, rd), ctx); |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_LSH | BPF_K: |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| if (imm != 0) { |
| emit_hppa64_shld(rd, imm, rd, ctx); |
| } |
| |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_RSH | BPF_K: |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| if (imm != 0) { |
| if (is64) |
| emit_hppa64_shrd(rd, imm, rd, false, ctx); |
| else |
| emit_hppa64_shrw(rd, imm, rd, false, ctx); |
| } |
| |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| if (imm != 0) { |
| if (is64) |
| emit_hppa64_shrd(rd, imm, rd, true, ctx); |
| else |
| emit_hppa64_shrw(rd, imm, rd, true, ctx); |
| } |
| |
| if (!is64 && !aux->verifier_zext) |
| emit_zext_32(rd, ctx); |
| break; |
| |
| /* JUMP off */ |
| case BPF_JMP | BPF_JA: |
| paoff = hppa_offset(i, off, ctx); |
| ret = emit_jump(paoff, false, ctx); |
| if (ret) |
| return ret; |
| break; |
| |
| /* IF (dst COND src) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP32 | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP32 | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP32 | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP32 | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP32 | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP32 | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP32 | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP32 | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP32 | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP32 | BPF_JSLE | BPF_X: |
| case BPF_JMP | BPF_JSET | BPF_X: |
| case BPF_JMP32 | BPF_JSET | BPF_X: |
| paoff = hppa_offset(i, off, ctx); |
| if (!is64) { |
| s = ctx->ninsns; |
| if (is_signed_bpf_cond(BPF_OP(code))) |
| emit_sext_32_rd_rs(&rd, &rs, ctx); |
| else |
| emit_zext_32_rd_rs(&rd, &rs, ctx); |
| e = ctx->ninsns; |
| |
| /* Adjust for extra insns */ |
| paoff -= (e - s); |
| } |
| if (BPF_OP(code) == BPF_JSET) { |
| /* Adjust for and */ |
| paoff -= 1; |
| emit(hppa_and(rs, rd, HPPA_REG_T1), ctx); |
| emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, |
| ctx); |
| } else { |
| emit_branch(BPF_OP(code), rd, rs, paoff, ctx); |
| } |
| break; |
| |
| /* IF (dst COND imm) JUMP off */ |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP32 | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP32 | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP32 | BPF_JLT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP32 | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP32 | BPF_JLE | BPF_K: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP32 | BPF_JNE | BPF_K: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP32 | BPF_JSGT | BPF_K: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP32 | BPF_JSLT | BPF_K: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP32 | BPF_JSGE | BPF_K: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP32 | BPF_JSLE | BPF_K: |
| paoff = hppa_offset(i, off, ctx); |
| s = ctx->ninsns; |
| if (imm) { |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| rs = HPPA_REG_T1; |
| } else { |
| rs = HPPA_REG_ZERO; |
| } |
| if (!is64) { |
| if (is_signed_bpf_cond(BPF_OP(code))) |
| emit_sext_32_rd(&rd, ctx); |
| else |
| emit_zext_32_rd_t1(&rd, ctx); |
| } |
| e = ctx->ninsns; |
| |
| /* Adjust for extra insns */ |
| paoff -= (e - s); |
| emit_branch(BPF_OP(code), rd, rs, paoff, ctx); |
| break; |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP32 | BPF_JSET | BPF_K: |
| paoff = hppa_offset(i, off, ctx); |
| s = ctx->ninsns; |
| emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx); |
| emit(hppa_and(HPPA_REG_T1, rd, HPPA_REG_T1), ctx); |
| /* For jset32, we should clear the upper 32 bits of t1, but |
| * sign-extension is sufficient here and saves one instruction, |
| * as t1 is used only in comparison against zero. |
| */ |
| if (!is64 && imm < 0) |
| emit_hppa64_sext32(HPPA_REG_T1, HPPA_REG_T1, ctx); |
| e = ctx->ninsns; |
| paoff -= (e - s); |
| emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx); |
| break; |
| /* function call */ |
| case BPF_JMP | BPF_CALL: |
| { |
| bool fixed_addr; |
| u64 addr; |
| |
| ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, |
| &addr, &fixed_addr); |
| if (ret < 0) |
| return ret; |
| |
| REG_SET_SEEN_ALL(ctx); |
| emit_call(addr, fixed_addr, ctx); |
| break; |
| } |
| /* tail call */ |
| case BPF_JMP | BPF_TAIL_CALL: |
| emit_bpf_tail_call(i, ctx); |
| break; |
| |
| /* function return */ |
| case BPF_JMP | BPF_EXIT: |
| if (i == ctx->prog->len - 1) |
| break; |
| |
| paoff = epilogue_offset(ctx); |
| ret = emit_jump(paoff, false, ctx); |
| if (ret) |
| return ret; |
| break; |
| |
| /* dst = imm64 */ |
| case BPF_LD | BPF_IMM | BPF_DW: |
| { |
| struct bpf_insn insn1 = insn[1]; |
| u64 imm64 = (u64)insn1.imm << 32 | (u32)imm; |
| if (bpf_pseudo_func(insn)) |
| imm64 = (uintptr_t)dereference_function_descriptor((void*)imm64); |
| emit_imm(rd, imm64, HPPA_REG_T2, ctx); |
| |
| return 1; |
| } |
| |
| /* LDX: dst = *(size *)(src + off) */ |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_DW: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_B: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_H: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_W: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_DW: |
| { |
| u8 srcreg; |
| |
| /* need to calculate address since offset does not fit in 14 bits? */ |
| if (relative_bits_ok(off, 14)) |
| srcreg = rs; |
| else { |
| /* need to use R1 here, since addil puts result into R1 */ |
| srcreg = HPPA_REG_R1; |
| BUG_ON(rs == HPPA_REG_R1); |
| BUG_ON(rd == HPPA_REG_R1); |
| emit(hppa_addil(off, rs), ctx); |
| off = im11(off); |
| } |
| |
| switch (BPF_SIZE(code)) { |
| case BPF_B: |
| emit(hppa_ldb(off, srcreg, rd), ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_H: |
| emit(hppa_ldh(off, srcreg, rd), ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_W: |
| emit(hppa_ldw(off, srcreg, rd), ctx); |
| if (insn_is_zext(&insn[1])) |
| return 1; |
| break; |
| case BPF_DW: |
| if (off & 7) { |
| emit(hppa_ldo(off, srcreg, HPPA_REG_R1), ctx); |
| emit(hppa64_ldd_reg(HPPA_REG_ZERO, HPPA_REG_R1, rd), ctx); |
| } else if (off >= -16 && off <= 15) |
| emit(hppa64_ldd_im5(off, srcreg, rd), ctx); |
| else |
| emit(hppa64_ldd_im16(off, srcreg, rd), ctx); |
| break; |
| } |
| break; |
| } |
| /* speculation barrier */ |
| case BPF_ST | BPF_NOSPEC: |
| break; |
| |
| /* ST: *(size *)(dst + off) = imm */ |
| /* STX: *(size *)(dst + off) = src */ |
| case BPF_ST | BPF_MEM | BPF_B: |
| case BPF_ST | BPF_MEM | BPF_H: |
| case BPF_ST | BPF_MEM | BPF_W: |
| case BPF_ST | BPF_MEM | BPF_DW: |
| |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_DW: |
| if (BPF_CLASS(code) == BPF_ST) { |
| emit_imm(HPPA_REG_T2, imm, HPPA_REG_T1, ctx); |
| rs = HPPA_REG_T2; |
| } |
| |
| emit_store(rd, rs, off, ctx, BPF_SIZE(code), BPF_MODE(code)); |
| break; |
| |
| case BPF_STX | BPF_ATOMIC | BPF_W: |
| case BPF_STX | BPF_ATOMIC | BPF_DW: |
| pr_info_once( |
| "bpf-jit: not supported: atomic operation %02x ***\n", |
| insn->imm); |
| return -EFAULT; |
| |
| default: |
| pr_err("bpf-jit: unknown opcode %02x\n", code); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| void bpf_jit_build_prologue(struct hppa_jit_context *ctx) |
| { |
| int bpf_stack_adjust, stack_adjust, i; |
| unsigned long addr; |
| s8 reg; |
| |
| /* |
| * stack on hppa grows up, so if tail calls are used we need to |
| * allocate the maximum stack size |
| */ |
| if (REG_ALL_SEEN(ctx)) |
| bpf_stack_adjust = MAX_BPF_STACK; |
| else |
| bpf_stack_adjust = ctx->prog->aux->stack_depth; |
| bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN); |
| |
| stack_adjust = FRAME_SIZE + bpf_stack_adjust; |
| stack_adjust = round_up(stack_adjust, STACK_ALIGN); |
| |
| /* |
| * NOTE: We construct an Elf64_Fdesc descriptor here. |
| * The first 4 words initialize the TCC and compares them. |
| * Then follows the virtual address of the eBPF function, |
| * and the gp for this function. |
| * |
| * The first instruction sets the tail-call-counter (TCC) register. |
| * This instruction is skipped by tail calls. |
| * Use a temporary register instead of a caller-saved register initially. |
| */ |
| REG_FORCE_SEEN(ctx, HPPA_REG_TCC_IN_INIT); |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx); |
| |
| /* |
| * Skip all initializations when called as BPF TAIL call. |
| */ |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx); |
| emit(hppa_beq(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, 6 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| emit(hppa64_bl_long(ctx->prologue_len - 3 - HPPA_BRANCH_DISPLACEMENT), ctx); |
| |
| /* store entry address of this eBPF function */ |
| addr = (uintptr_t) &ctx->insns[0]; |
| emit(addr >> 32, ctx); |
| emit(addr & 0xffffffff, ctx); |
| |
| /* store gp of this eBPF function */ |
| asm("copy %%r27,%0" : "=r" (addr) ); |
| emit(addr >> 32, ctx); |
| emit(addr & 0xffffffff, ctx); |
| |
| /* Set up hppa stack frame. */ |
| emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx); |
| emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx); |
| emit(hppa64_std_im5 (HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx); |
| emit(hppa64_std_im16(HPPA_REG_RP, -2*REG_SIZE, HPPA_REG_SP), ctx); |
| |
| /* Save callee-save registers. */ |
| for (i = 3; i <= 15; i++) { |
| if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i))) |
| continue; |
| emit(hppa64_std_im16(HPPA_R(i), -REG_SIZE * i, HPPA_REG_SP), ctx); |
| } |
| |
| /* load function parameters; load all if we use tail functions */ |
| #define LOAD_PARAM(arg, dst) \ |
| if (REG_WAS_SEEN(ctx, regmap[dst]) || \ |
| REG_WAS_SEEN(ctx, HPPA_REG_TCC)) \ |
| emit_hppa_copy(arg, regmap[dst], ctx) |
| LOAD_PARAM(HPPA_REG_ARG0, BPF_REG_1); |
| LOAD_PARAM(HPPA_REG_ARG1, BPF_REG_2); |
| LOAD_PARAM(HPPA_REG_ARG2, BPF_REG_3); |
| LOAD_PARAM(HPPA_REG_ARG3, BPF_REG_4); |
| LOAD_PARAM(HPPA_REG_ARG4, BPF_REG_5); |
| #undef LOAD_PARAM |
| |
| REG_FORCE_SEEN(ctx, HPPA_REG_T0); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T1); |
| REG_FORCE_SEEN(ctx, HPPA_REG_T2); |
| |
| /* |
| * Now really set the tail call counter (TCC) register. |
| */ |
| if (REG_WAS_SEEN(ctx, HPPA_REG_TCC)) |
| emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx); |
| |
| /* |
| * Save epilogue function pointer for outer TCC call chain. |
| * The main TCC call stores the final RP on stack. |
| */ |
| addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset]; |
| /* skip first two instructions which jump to exit */ |
| addr += 2 * HPPA_INSN_SIZE; |
| emit_imm(HPPA_REG_T2, addr, HPPA_REG_T1, ctx); |
| emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx); |
| |
| /* Set up BPF frame pointer. */ |
| reg = regmap[BPF_REG_FP]; /* -> HPPA_REG_FP */ |
| if (REG_WAS_SEEN(ctx, reg)) { |
| emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, reg), ctx); |
| } |
| } |
| |
| void bpf_jit_build_epilogue(struct hppa_jit_context *ctx) |
| { |
| __build_epilogue(false, ctx); |
| } |
| |
| bool bpf_jit_supports_kfunc_call(void) |
| { |
| return true; |
| } |