| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family |
| * |
| * Copyright (c) 2014-2015 Takashi Sakamoto |
| * Copyright (C) 2012 Robin Gareus <robin@gareus.org> |
| * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com> |
| */ |
| |
| #include <sound/pcm.h> |
| #include "digi00x.h" |
| |
| #define CIP_FMT_AM 0x10 |
| |
| /* 'Clock-based rate control mode' is just supported. */ |
| #define AMDTP_FDF_AM824 0x00 |
| |
| /* |
| * Nominally 3125 bytes/second, but the MIDI port's clock might be |
| * 1% too slow, and the bus clock 100 ppm too fast. |
| */ |
| #define MIDI_BYTES_PER_SECOND 3093 |
| |
| /* |
| * Several devices look only at the first eight data blocks. |
| * In any case, this is more than enough for the MIDI data rate. |
| */ |
| #define MAX_MIDI_RX_BLOCKS 8 |
| |
| /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */ |
| #define MAX_MIDI_PORTS 3 |
| |
| /* |
| * The double-oh-three algorithm was discovered by Robin Gareus and Damien |
| * Zammit in 2012, with reverse-engineering for Digi 003 Rack. |
| */ |
| struct dot_state { |
| u8 carry; |
| u8 idx; |
| unsigned int off; |
| }; |
| |
| struct amdtp_dot { |
| unsigned int pcm_channels; |
| struct dot_state state; |
| |
| struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS]; |
| int midi_fifo_used[MAX_MIDI_PORTS]; |
| int midi_fifo_limit; |
| }; |
| |
| /* |
| * double-oh-three look up table |
| * |
| * @param idx index byte (audio-sample data) 0x00..0xff |
| * @param off channel offset shift |
| * @return salt to XOR with given data |
| */ |
| #define BYTE_PER_SAMPLE (4) |
| #define MAGIC_DOT_BYTE (2) |
| #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE) |
| static u8 dot_scrt(const u8 idx, const unsigned int off) |
| { |
| /* |
| * the length of the added pattern only depends on the lower nibble |
| * of the last non-zero data |
| */ |
| static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14, |
| 12, 10, 8, 6, 4, 2, 0}; |
| |
| /* |
| * the lower nibble of the salt. Interleaved sequence. |
| * this is walked backwards according to len[] |
| */ |
| static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4, |
| 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf}; |
| |
| /* circular list for the salt's hi nibble. */ |
| static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4, |
| 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa}; |
| |
| /* |
| * start offset for upper nibble mapping. |
| * note: 9 is /special/. In the case where the high nibble == 0x9, |
| * hir[] is not used and - coincidentally - the salt's hi nibble is |
| * 0x09 regardless of the offset. |
| */ |
| static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4, |
| 3, 0x00, 14, 13, 8, 9, 10, 2}; |
| |
| const u8 ln = idx & 0xf; |
| const u8 hn = (idx >> 4) & 0xf; |
| const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15]; |
| |
| if (len[ln] < off) |
| return 0x00; |
| |
| return ((nib[14 + off - len[ln]]) | (hr << 4)); |
| } |
| |
| static void dot_encode_step(struct dot_state *state, __be32 *const buffer) |
| { |
| u8 * const data = (u8 *) buffer; |
| |
| if (data[MAGIC_DOT_BYTE] != 0x00) { |
| state->off = 0; |
| state->idx = data[MAGIC_DOT_BYTE] ^ state->carry; |
| } |
| data[MAGIC_DOT_BYTE] ^= state->carry; |
| state->carry = dot_scrt(state->idx, ++(state->off)); |
| } |
| |
| int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate, |
| unsigned int pcm_channels) |
| { |
| struct amdtp_dot *p = s->protocol; |
| int err; |
| |
| if (amdtp_stream_running(s)) |
| return -EBUSY; |
| |
| /* |
| * A first data channel is for MIDI messages, the rest is Multi Bit |
| * Linear Audio data channel. |
| */ |
| err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1, 1); |
| if (err < 0) |
| return err; |
| |
| s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc; |
| |
| p->pcm_channels = pcm_channels; |
| |
| /* |
| * We do not know the actual MIDI FIFO size of most devices. Just |
| * assume two bytes, i.e., one byte can be received over the bus while |
| * the previous one is transmitted over MIDI. |
| * (The value here is adjusted for midi_ratelimit_per_packet().) |
| */ |
| p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; |
| |
| return 0; |
| } |
| |
| static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, |
| __be32 *buffer, unsigned int frames, |
| unsigned int pcm_frames) |
| { |
| struct amdtp_dot *p = s->protocol; |
| unsigned int channels = p->pcm_channels; |
| struct snd_pcm_runtime *runtime = pcm->runtime; |
| unsigned int pcm_buffer_pointer; |
| int remaining_frames; |
| const u32 *src; |
| int i, c; |
| |
| pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; |
| pcm_buffer_pointer %= runtime->buffer_size; |
| |
| src = (void *)runtime->dma_area + |
| frames_to_bytes(runtime, pcm_buffer_pointer); |
| remaining_frames = runtime->buffer_size - pcm_buffer_pointer; |
| |
| buffer++; |
| for (i = 0; i < frames; ++i) { |
| for (c = 0; c < channels; ++c) { |
| buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000); |
| dot_encode_step(&p->state, &buffer[c]); |
| src++; |
| } |
| buffer += s->data_block_quadlets; |
| if (--remaining_frames == 0) |
| src = (void *)runtime->dma_area; |
| } |
| } |
| |
| static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, |
| __be32 *buffer, unsigned int frames, |
| unsigned int pcm_frames) |
| { |
| struct amdtp_dot *p = s->protocol; |
| unsigned int channels = p->pcm_channels; |
| struct snd_pcm_runtime *runtime = pcm->runtime; |
| unsigned int pcm_buffer_pointer; |
| int remaining_frames; |
| u32 *dst; |
| int i, c; |
| |
| pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames; |
| pcm_buffer_pointer %= runtime->buffer_size; |
| |
| dst = (void *)runtime->dma_area + |
| frames_to_bytes(runtime, pcm_buffer_pointer); |
| remaining_frames = runtime->buffer_size - pcm_buffer_pointer; |
| |
| buffer++; |
| for (i = 0; i < frames; ++i) { |
| for (c = 0; c < channels; ++c) { |
| *dst = be32_to_cpu(buffer[c]) << 8; |
| dst++; |
| } |
| buffer += s->data_block_quadlets; |
| if (--remaining_frames == 0) |
| dst = (void *)runtime->dma_area; |
| } |
| } |
| |
| static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, |
| unsigned int data_blocks) |
| { |
| struct amdtp_dot *p = s->protocol; |
| unsigned int channels, i, c; |
| |
| channels = p->pcm_channels; |
| |
| buffer++; |
| for (i = 0; i < data_blocks; ++i) { |
| for (c = 0; c < channels; ++c) |
| buffer[c] = cpu_to_be32(0x40000000); |
| buffer += s->data_block_quadlets; |
| } |
| } |
| |
| static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) |
| { |
| struct amdtp_dot *p = s->protocol; |
| int used; |
| |
| used = p->midi_fifo_used[port]; |
| if (used == 0) |
| return true; |
| |
| used -= MIDI_BYTES_PER_SECOND * s->syt_interval; |
| used = max(used, 0); |
| p->midi_fifo_used[port] = used; |
| |
| return used < p->midi_fifo_limit; |
| } |
| |
| static inline void midi_use_bytes(struct amdtp_stream *s, |
| unsigned int port, unsigned int count) |
| { |
| struct amdtp_dot *p = s->protocol; |
| |
| p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count; |
| } |
| |
| static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, |
| unsigned int data_blocks, unsigned int data_block_counter) |
| { |
| struct amdtp_dot *p = s->protocol; |
| unsigned int f, port; |
| int len; |
| u8 *b; |
| |
| for (f = 0; f < data_blocks; f++) { |
| port = (data_block_counter + f) % 8; |
| b = (u8 *)&buffer[0]; |
| |
| len = 0; |
| if (port < MAX_MIDI_PORTS && |
| midi_ratelimit_per_packet(s, port) && |
| p->midi[port] != NULL) |
| len = snd_rawmidi_transmit(p->midi[port], b + 1, 2); |
| |
| if (len > 0) { |
| /* |
| * Upper 4 bits of LSB represent port number. |
| * - 0000b: physical MIDI port 1. |
| * - 0010b: physical MIDI port 2. |
| * - 1110b: console MIDI port. |
| */ |
| if (port == 2) |
| b[3] = 0xe0; |
| else if (port == 1) |
| b[3] = 0x20; |
| else |
| b[3] = 0x00; |
| b[3] |= len; |
| midi_use_bytes(s, port, len); |
| } else { |
| b[1] = 0; |
| b[2] = 0; |
| b[3] = 0; |
| } |
| b[0] = 0x80; |
| |
| buffer += s->data_block_quadlets; |
| } |
| } |
| |
| static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, |
| unsigned int data_blocks) |
| { |
| struct amdtp_dot *p = s->protocol; |
| unsigned int f, port, len; |
| u8 *b; |
| |
| for (f = 0; f < data_blocks; f++) { |
| b = (u8 *)&buffer[0]; |
| |
| len = b[3] & 0x0f; |
| if (len > 0) { |
| /* |
| * Upper 4 bits of LSB represent port number. |
| * - 0000b: physical MIDI port 1. Use port 0. |
| * - 1110b: console MIDI port. Use port 2. |
| */ |
| if (b[3] >> 4 > 0) |
| port = 2; |
| else |
| port = 0; |
| |
| if (port < MAX_MIDI_PORTS && p->midi[port]) |
| snd_rawmidi_receive(p->midi[port], b + 1, len); |
| } |
| |
| buffer += s->data_block_quadlets; |
| } |
| } |
| |
| int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s, |
| struct snd_pcm_runtime *runtime) |
| { |
| int err; |
| |
| /* This protocol delivers 24 bit data in 32bit data channel. */ |
| err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); |
| if (err < 0) |
| return err; |
| |
| return amdtp_stream_add_pcm_hw_constraints(s, runtime); |
| } |
| |
| void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port, |
| struct snd_rawmidi_substream *midi) |
| { |
| struct amdtp_dot *p = s->protocol; |
| |
| if (port < MAX_MIDI_PORTS) |
| WRITE_ONCE(p->midi[port], midi); |
| } |
| |
| static void process_ir_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, |
| unsigned int count, struct snd_pcm_substream *pcm) |
| { |
| unsigned int pcm_frames = 0; |
| int i; |
| |
| for (i = 0; i < count; ++i) { |
| __be32 *buf = desc->ctx_payload; |
| unsigned int data_blocks = desc->data_blocks; |
| |
| if (pcm) { |
| read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); |
| pcm_frames += data_blocks; |
| } |
| |
| read_midi_messages(s, buf, data_blocks); |
| |
| desc = amdtp_stream_next_packet_desc(s, desc); |
| } |
| } |
| |
| static void process_it_ctx_payloads(struct amdtp_stream *s, const struct pkt_desc *desc, |
| unsigned int count, struct snd_pcm_substream *pcm) |
| { |
| unsigned int pcm_frames = 0; |
| int i; |
| |
| for (i = 0; i < count; ++i) { |
| __be32 *buf = desc->ctx_payload; |
| unsigned int data_blocks = desc->data_blocks; |
| |
| if (pcm) { |
| write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames); |
| pcm_frames += data_blocks; |
| } else { |
| write_pcm_silence(s, buf, data_blocks); |
| } |
| |
| write_midi_messages(s, buf, data_blocks, |
| desc->data_block_counter); |
| |
| desc = amdtp_stream_next_packet_desc(s, desc); |
| } |
| } |
| |
| int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit, |
| enum amdtp_stream_direction dir) |
| { |
| amdtp_stream_process_ctx_payloads_t process_ctx_payloads; |
| unsigned int flags = CIP_NONBLOCKING | CIP_UNAWARE_SYT; |
| |
| // Use different mode between incoming/outgoing. |
| if (dir == AMDTP_IN_STREAM) |
| process_ctx_payloads = process_ir_ctx_payloads; |
| else |
| process_ctx_payloads = process_it_ctx_payloads; |
| |
| return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM, |
| process_ctx_payloads, sizeof(struct amdtp_dot)); |
| } |
| |
| void amdtp_dot_reset(struct amdtp_stream *s) |
| { |
| struct amdtp_dot *p = s->protocol; |
| |
| p->state.carry = 0x00; |
| p->state.idx = 0x00; |
| p->state.off = 0; |
| } |