blob: 5f9713364693b4eacd175bad2b1531e6a91f5504 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* vpmu_counter_access - Test vPMU event counter access
*
* Copyright (c) 2023 Google LLC.
*
* This test checks if the guest can see the same number of the PMU event
* counters (PMCR_EL0.N) that userspace sets, if the guest can access
* those counters, and if the guest is prevented from accessing any
* other counters.
* It also checks if the userspace accesses to the PMU regsisters honor the
* PMCR.N value that's set for the guest.
* This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host.
*/
#include <kvm_util.h>
#include <processor.h>
#include <test_util.h>
#include <vgic.h>
#include <perf/arm_pmuv3.h>
#include <linux/bitfield.h>
/* The max number of the PMU event counters (excluding the cycle counter) */
#define ARMV8_PMU_MAX_GENERAL_COUNTERS (ARMV8_PMU_MAX_COUNTERS - 1)
/* The cycle counter bit position that's common among the PMU registers */
#define ARMV8_PMU_CYCLE_IDX 31
struct vpmu_vm {
struct kvm_vm *vm;
struct kvm_vcpu *vcpu;
int gic_fd;
};
static struct vpmu_vm vpmu_vm;
struct pmreg_sets {
uint64_t set_reg_id;
uint64_t clr_reg_id;
};
#define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr}
static uint64_t get_pmcr_n(uint64_t pmcr)
{
return FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
}
static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n)
{
u64p_replace_bits((__u64 *) pmcr, pmcr_n, ARMV8_PMU_PMCR_N);
}
static uint64_t get_counters_mask(uint64_t n)
{
uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX);
if (n)
mask |= GENMASK(n - 1, 0);
return mask;
}
/* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
static inline unsigned long read_sel_evcntr(int sel)
{
write_sysreg(sel, pmselr_el0);
isb();
return read_sysreg(pmxevcntr_el0);
}
/* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
static inline void write_sel_evcntr(int sel, unsigned long val)
{
write_sysreg(sel, pmselr_el0);
isb();
write_sysreg(val, pmxevcntr_el0);
isb();
}
/* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
static inline unsigned long read_sel_evtyper(int sel)
{
write_sysreg(sel, pmselr_el0);
isb();
return read_sysreg(pmxevtyper_el0);
}
/* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
static inline void write_sel_evtyper(int sel, unsigned long val)
{
write_sysreg(sel, pmselr_el0);
isb();
write_sysreg(val, pmxevtyper_el0);
isb();
}
static inline void enable_counter(int idx)
{
uint64_t v = read_sysreg(pmcntenset_el0);
write_sysreg(BIT(idx) | v, pmcntenset_el0);
isb();
}
static inline void disable_counter(int idx)
{
uint64_t v = read_sysreg(pmcntenset_el0);
write_sysreg(BIT(idx) | v, pmcntenclr_el0);
isb();
}
static void pmu_disable_reset(void)
{
uint64_t pmcr = read_sysreg(pmcr_el0);
/* Reset all counters, disabling them */
pmcr &= ~ARMV8_PMU_PMCR_E;
write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0);
isb();
}
#define RETURN_READ_PMEVCNTRN(n) \
return read_sysreg(pmevcntr##n##_el0)
static unsigned long read_pmevcntrn(int n)
{
PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN);
return 0;
}
#define WRITE_PMEVCNTRN(n) \
write_sysreg(val, pmevcntr##n##_el0)
static void write_pmevcntrn(int n, unsigned long val)
{
PMEVN_SWITCH(n, WRITE_PMEVCNTRN);
isb();
}
#define READ_PMEVTYPERN(n) \
return read_sysreg(pmevtyper##n##_el0)
static unsigned long read_pmevtypern(int n)
{
PMEVN_SWITCH(n, READ_PMEVTYPERN);
return 0;
}
#define WRITE_PMEVTYPERN(n) \
write_sysreg(val, pmevtyper##n##_el0)
static void write_pmevtypern(int n, unsigned long val)
{
PMEVN_SWITCH(n, WRITE_PMEVTYPERN);
isb();
}
/*
* The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0
* accessors that test cases will use. Each of the accessors will
* either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0
* (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through
* PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()).
*
* This is used to test that combinations of those accessors provide
* the consistent behavior.
*/
struct pmc_accessor {
/* A function to be used to read PMEVTCNTR<n>_EL0 */
unsigned long (*read_cntr)(int idx);
/* A function to be used to write PMEVTCNTR<n>_EL0 */
void (*write_cntr)(int idx, unsigned long val);
/* A function to be used to read PMEVTYPER<n>_EL0 */
unsigned long (*read_typer)(int idx);
/* A function to be used to write PMEVTYPER<n>_EL0 */
void (*write_typer)(int idx, unsigned long val);
};
struct pmc_accessor pmc_accessors[] = {
/* test with all direct accesses */
{ read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern },
/* test with all indirect accesses */
{ read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper },
/* read with direct accesses, and write with indirect accesses */
{ read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper },
/* read with indirect accesses, and write with direct accesses */
{ read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern },
};
/*
* Convert a pointer of pmc_accessor to an index in pmc_accessors[],
* assuming that the pointer is one of the entries in pmc_accessors[].
*/
#define PMC_ACC_TO_IDX(acc) (acc - &pmc_accessors[0])
#define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected) \
{ \
uint64_t _tval = read_sysreg(regname); \
\
if (set_expected) \
__GUEST_ASSERT((_tval & mask), \
"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
_tval, mask, set_expected); \
else \
__GUEST_ASSERT(!(_tval & mask), \
"tval: 0x%lx; mask: 0x%lx; set_expected: 0x%lx", \
_tval, mask, set_expected); \
}
/*
* Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers
* are set or cleared as specified in @set_expected.
*/
static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected)
{
GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected);
GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected);
}
/*
* Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding
* to the specified counter (@pmc_idx) can be read/written as expected.
* When @set_op is true, it tries to set the bit for the counter in
* those registers by writing the SET registers (the bit won't be set
* if the counter is not implemented though).
* Otherwise, it tries to clear the bits in the registers by writing
* the CLR registers.
* Then, it checks if the values indicated in the registers are as expected.
*/
static void test_bitmap_pmu_regs(int pmc_idx, bool set_op)
{
uint64_t pmcr_n, test_bit = BIT(pmc_idx);
bool set_expected = false;
if (set_op) {
write_sysreg(test_bit, pmcntenset_el0);
write_sysreg(test_bit, pmintenset_el1);
write_sysreg(test_bit, pmovsset_el0);
/* The bit will be set only if the counter is implemented */
pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0));
set_expected = (pmc_idx < pmcr_n) ? true : false;
} else {
write_sysreg(test_bit, pmcntenclr_el0);
write_sysreg(test_bit, pmintenclr_el1);
write_sysreg(test_bit, pmovsclr_el0);
}
check_bitmap_pmu_regs(test_bit, set_expected);
}
/*
* Tests for reading/writing registers for the (implemented) event counter
* specified by @pmc_idx.
*/
static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
{
uint64_t write_data, read_data;
/* Disable all PMCs and reset all PMCs to zero. */
pmu_disable_reset();
/*
* Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1.
*/
/* Make sure that the bit in those registers are set to 0 */
test_bitmap_pmu_regs(pmc_idx, false);
/* Test if setting the bit in those registers works */
test_bitmap_pmu_regs(pmc_idx, true);
/* Test if clearing the bit in those registers works */
test_bitmap_pmu_regs(pmc_idx, false);
/*
* Tests for reading/writing the event type register.
*/
/*
* Set the event type register to an arbitrary value just for testing
* of reading/writing the register.
* Arm ARM says that for the event from 0x0000 to 0x003F,
* the value indicated in the PMEVTYPER<n>_EL0.evtCount field is
* the value written to the field even when the specified event
* is not supported.
*/
write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED);
acc->write_typer(pmc_idx, write_data);
read_data = acc->read_typer(pmc_idx);
__GUEST_ASSERT(read_data == write_data,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
/*
* Tests for reading/writing the event count register.
*/
read_data = acc->read_cntr(pmc_idx);
/* The count value must be 0, as it is disabled and reset */
__GUEST_ASSERT(read_data == 0,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data);
write_data = read_data + pmc_idx + 0x12345;
acc->write_cntr(pmc_idx, write_data);
read_data = acc->read_cntr(pmc_idx);
__GUEST_ASSERT(read_data == write_data,
"pmc_idx: 0x%lx; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
}
#define INVALID_EC (-1ul)
uint64_t expected_ec = INVALID_EC;
static void guest_sync_handler(struct ex_regs *regs)
{
uint64_t esr, ec;
esr = read_sysreg(esr_el1);
ec = (esr >> ESR_EC_SHIFT) & ESR_EC_MASK;
__GUEST_ASSERT(expected_ec == ec,
"PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx",
regs->pc, esr, ec, expected_ec);
/* skip the trapping instruction */
regs->pc += 4;
/* Use INVALID_EC to indicate an exception occurred */
expected_ec = INVALID_EC;
}
/*
* Run the given operation that should trigger an exception with the
* given exception class. The exception handler (guest_sync_handler)
* will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip
* the instruction that trapped.
*/
#define TEST_EXCEPTION(ec, ops) \
({ \
GUEST_ASSERT(ec != INVALID_EC); \
WRITE_ONCE(expected_ec, ec); \
dsb(ish); \
ops; \
GUEST_ASSERT(expected_ec == INVALID_EC); \
})
/*
* Tests for reading/writing registers for the unimplemented event counter
* specified by @pmc_idx (>= PMCR_EL0.N).
*/
static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
{
/*
* Reading/writing the event count/type registers should cause
* an UNDEFINED exception.
*/
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_cntr(pmc_idx));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->read_typer(pmc_idx));
TEST_EXCEPTION(ESR_EC_UNKNOWN, acc->write_typer(pmc_idx, 0));
/*
* The bit corresponding to the (unimplemented) counter in
* {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ.
*/
test_bitmap_pmu_regs(pmc_idx, 1);
test_bitmap_pmu_regs(pmc_idx, 0);
}
/*
* The guest is configured with PMUv3 with @expected_pmcr_n number of
* event counters.
* Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and
* if reading/writing PMU registers for implemented or unimplemented
* counters works as expected.
*/
static void guest_code(uint64_t expected_pmcr_n)
{
uint64_t pmcr, pmcr_n, unimp_mask;
int i, pmc;
__GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS,
"Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%lx",
expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS);
pmcr = read_sysreg(pmcr_el0);
pmcr_n = get_pmcr_n(pmcr);
/* Make sure that PMCR_EL0.N indicates the value userspace set */
__GUEST_ASSERT(pmcr_n == expected_pmcr_n,
"Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx",
expected_pmcr_n, pmcr_n);
/*
* Make sure that (RAZ) bits corresponding to unimplemented event
* counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset
* to zero.
* (NOTE: bits for implemented event counters are reset to UNKNOWN)
*/
unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n);
check_bitmap_pmu_regs(unimp_mask, false);
/*
* Tests for reading/writing PMU registers for implemented counters.
* Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
*/
for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
for (pmc = 0; pmc < pmcr_n; pmc++)
test_access_pmc_regs(&pmc_accessors[i], pmc);
}
/*
* Tests for reading/writing PMU registers for unimplemented counters.
* Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
*/
for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++)
test_access_invalid_pmc_regs(&pmc_accessors[i], pmc);
}
GUEST_DONE();
}
#define GICD_BASE_GPA 0x8000000ULL
#define GICR_BASE_GPA 0x80A0000ULL
/* Create a VM that has one vCPU with PMUv3 configured. */
static void create_vpmu_vm(void *guest_code)
{
struct kvm_vcpu_init init;
uint8_t pmuver, ec;
uint64_t dfr0, irq = 23;
struct kvm_device_attr irq_attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
.addr = (uint64_t)&irq,
};
struct kvm_device_attr init_attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
/* The test creates the vpmu_vm multiple times. Ensure a clean state */
memset(&vpmu_vm, 0, sizeof(vpmu_vm));
vpmu_vm.vm = vm_create(1);
vm_init_descriptor_tables(vpmu_vm.vm);
for (ec = 0; ec < ESR_EC_NUM; ec++) {
vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec,
guest_sync_handler);
}
/* Create vCPU with PMUv3 */
vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code);
vcpu_init_descriptor_tables(vpmu_vm.vcpu);
vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64,
GICD_BASE_GPA, GICR_BASE_GPA);
__TEST_REQUIRE(vpmu_vm.gic_fd >= 0,
"Failed to create vgic-v3, skipping");
/* Make sure that PMUv3 support is indicated in the ID register */
vcpu_get_reg(vpmu_vm.vcpu,
KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &dfr0);
pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
"Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);
/* Initialize vPMU */
vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr);
vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr);
}
static void destroy_vpmu_vm(void)
{
close(vpmu_vm.gic_fd);
kvm_vm_free(vpmu_vm.vm);
}
static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n)
{
struct ucall uc;
vcpu_args_set(vcpu, 1, pmcr_n);
vcpu_run(vcpu);
switch (get_ucall(vcpu, &uc)) {
case UCALL_ABORT:
REPORT_GUEST_ASSERT(uc);
break;
case UCALL_DONE:
break;
default:
TEST_FAIL("Unknown ucall %lu", uc.cmd);
break;
}
}
static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail)
{
struct kvm_vcpu *vcpu;
uint64_t pmcr, pmcr_orig;
create_vpmu_vm(guest_code);
vcpu = vpmu_vm.vcpu;
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr_orig);
pmcr = pmcr_orig;
/*
* Setting a larger value of PMCR.N should not modify the field, and
* return a success.
*/
set_pmcr_n(&pmcr, pmcr_n);
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
if (expect_fail)
TEST_ASSERT(pmcr_orig == pmcr,
"PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx",
pmcr, pmcr_n);
else
TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr),
"Failed to update PMCR.N to %lu (received: %lu)",
pmcr_n, get_pmcr_n(pmcr));
}
/*
* Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n,
* and run the test.
*/
static void run_access_test(uint64_t pmcr_n)
{
uint64_t sp;
struct kvm_vcpu *vcpu;
struct kvm_vcpu_init init;
pr_debug("Test with pmcr_n %lu\n", pmcr_n);
test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
vcpu = vpmu_vm.vcpu;
/* Save the initial sp to restore them later to run the guest again */
vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1), &sp);
run_vcpu(vcpu, pmcr_n);
/*
* Reset and re-initialize the vCPU, and run the guest code again to
* check if PMCR_EL0.N is preserved.
*/
vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
aarch64_vcpu_setup(vcpu, &init);
vcpu_init_descriptor_tables(vcpu);
vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp);
vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
run_vcpu(vcpu, pmcr_n);
destroy_vpmu_vm();
}
static struct pmreg_sets validity_check_reg_sets[] = {
PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0),
PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1),
PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0),
};
/*
* Create a VM, and check if KVM handles the userspace accesses of
* the PMU register sets in @validity_check_reg_sets[] correctly.
*/
static void run_pmregs_validity_test(uint64_t pmcr_n)
{
int i;
struct kvm_vcpu *vcpu;
uint64_t set_reg_id, clr_reg_id, reg_val;
uint64_t valid_counters_mask, max_counters_mask;
test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
vcpu = vpmu_vm.vcpu;
valid_counters_mask = get_counters_mask(pmcr_n);
max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS);
for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) {
set_reg_id = validity_check_reg_sets[i].set_reg_id;
clr_reg_id = validity_check_reg_sets[i].clr_reg_id;
/*
* Test if the 'set' and 'clr' variants of the registers
* are initialized based on the number of valid counters.
*/
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
/*
* Using the 'set' variant, force-set the register to the
* max number of possible counters and test if KVM discards
* the bits for unimplemented counters as it should.
*/
vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(set_reg_id), reg_val);
vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id), &reg_val);
TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
"Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
}
destroy_vpmu_vm();
}
/*
* Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for
* the vCPU to @pmcr_n, which is larger than the host value.
* The attempt should fail as @pmcr_n is too big to set for the vCPU.
*/
static void run_error_test(uint64_t pmcr_n)
{
pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n);
test_create_vpmu_vm_with_pmcr_n(pmcr_n, true);
destroy_vpmu_vm();
}
/*
* Return the default number of implemented PMU event counters excluding
* the cycle counter (i.e. PMCR_EL0.N value) for the guest.
*/
static uint64_t get_pmcr_n_limit(void)
{
uint64_t pmcr;
create_vpmu_vm(guest_code);
vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), &pmcr);
destroy_vpmu_vm();
return get_pmcr_n(pmcr);
}
int main(void)
{
uint64_t i, pmcr_n;
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3));
pmcr_n = get_pmcr_n_limit();
for (i = 0; i <= pmcr_n; i++) {
run_access_test(i);
run_pmregs_validity_test(i);
}
for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++)
run_error_test(i);
return 0;
}