| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (C) 2021-2022 Intel Corporation */ |
| |
| #undef pr_fmt |
| #define pr_fmt(fmt) "tdx: " fmt |
| |
| #include <linux/cpufeature.h> |
| #include <linux/export.h> |
| #include <linux/io.h> |
| #include <linux/kexec.h> |
| #include <asm/coco.h> |
| #include <asm/tdx.h> |
| #include <asm/vmx.h> |
| #include <asm/ia32.h> |
| #include <asm/insn.h> |
| #include <asm/insn-eval.h> |
| #include <asm/pgtable.h> |
| #include <asm/set_memory.h> |
| |
| /* MMIO direction */ |
| #define EPT_READ 0 |
| #define EPT_WRITE 1 |
| |
| /* Port I/O direction */ |
| #define PORT_READ 0 |
| #define PORT_WRITE 1 |
| |
| /* See Exit Qualification for I/O Instructions in VMX documentation */ |
| #define VE_IS_IO_IN(e) ((e) & BIT(3)) |
| #define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1) |
| #define VE_GET_PORT_NUM(e) ((e) >> 16) |
| #define VE_IS_IO_STRING(e) ((e) & BIT(4)) |
| |
| #define ATTR_DEBUG BIT(0) |
| #define ATTR_SEPT_VE_DISABLE BIT(28) |
| |
| /* TDX Module call error codes */ |
| #define TDCALL_RETURN_CODE(a) ((a) >> 32) |
| #define TDCALL_INVALID_OPERAND 0xc0000100 |
| |
| #define TDREPORT_SUBTYPE_0 0 |
| |
| static atomic_long_t nr_shared; |
| |
| /* Called from __tdx_hypercall() for unrecoverable failure */ |
| noinstr void __noreturn __tdx_hypercall_failed(void) |
| { |
| instrumentation_begin(); |
| panic("TDVMCALL failed. TDX module bug?"); |
| } |
| |
| #ifdef CONFIG_KVM_GUEST |
| long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2, |
| unsigned long p3, unsigned long p4) |
| { |
| struct tdx_module_args args = { |
| .r10 = nr, |
| .r11 = p1, |
| .r12 = p2, |
| .r13 = p3, |
| .r14 = p4, |
| }; |
| |
| return __tdx_hypercall(&args); |
| } |
| EXPORT_SYMBOL_GPL(tdx_kvm_hypercall); |
| #endif |
| |
| /* |
| * Used for TDX guests to make calls directly to the TD module. This |
| * should only be used for calls that have no legitimate reason to fail |
| * or where the kernel can not survive the call failing. |
| */ |
| static inline void tdcall(u64 fn, struct tdx_module_args *args) |
| { |
| if (__tdcall_ret(fn, args)) |
| panic("TDCALL %lld failed (Buggy TDX module!)\n", fn); |
| } |
| |
| /** |
| * tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT |
| * subtype 0) using TDG.MR.REPORT TDCALL. |
| * @reportdata: Address of the input buffer which contains user-defined |
| * REPORTDATA to be included into TDREPORT. |
| * @tdreport: Address of the output buffer to store TDREPORT. |
| * |
| * Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module |
| * v1.0 specification for more information on TDG.MR.REPORT TDCALL. |
| * It is used in the TDX guest driver module to get the TDREPORT0. |
| * |
| * Return 0 on success, -EINVAL for invalid operands, or -EIO on |
| * other TDCALL failures. |
| */ |
| int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport) |
| { |
| struct tdx_module_args args = { |
| .rcx = virt_to_phys(tdreport), |
| .rdx = virt_to_phys(reportdata), |
| .r8 = TDREPORT_SUBTYPE_0, |
| }; |
| u64 ret; |
| |
| ret = __tdcall(TDG_MR_REPORT, &args); |
| if (ret) { |
| if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND) |
| return -EINVAL; |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(tdx_mcall_get_report0); |
| |
| /** |
| * tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote |
| * hypercall. |
| * @buf: Address of the directly mapped shared kernel buffer which |
| * contains TDREPORT. The same buffer will be used by VMM to |
| * store the generated TD Quote output. |
| * @size: size of the tdquote buffer (4KB-aligned). |
| * |
| * Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI |
| * v1.0 specification for more information on GetQuote hypercall. |
| * It is used in the TDX guest driver module to get the TD Quote. |
| * |
| * Return 0 on success or error code on failure. |
| */ |
| u64 tdx_hcall_get_quote(u8 *buf, size_t size) |
| { |
| /* Since buf is a shared memory, set the shared (decrypted) bits */ |
| return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0); |
| } |
| EXPORT_SYMBOL_GPL(tdx_hcall_get_quote); |
| |
| static void __noreturn tdx_panic(const char *msg) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = TDVMCALL_REPORT_FATAL_ERROR, |
| .r12 = 0, /* Error code: 0 is Panic */ |
| }; |
| union { |
| /* Define register order according to the GHCI */ |
| struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; }; |
| |
| char str[64]; |
| } message; |
| |
| /* VMM assumes '\0' in byte 65, if the message took all 64 bytes */ |
| strtomem_pad(message.str, msg, '\0'); |
| |
| args.r8 = message.r8; |
| args.r9 = message.r9; |
| args.r14 = message.r14; |
| args.r15 = message.r15; |
| args.rdi = message.rdi; |
| args.rsi = message.rsi; |
| args.rbx = message.rbx; |
| args.rdx = message.rdx; |
| |
| /* |
| * This hypercall should never return and it is not safe |
| * to keep the guest running. Call it forever if it |
| * happens to return. |
| */ |
| while (1) |
| __tdx_hypercall(&args); |
| } |
| |
| static void tdx_parse_tdinfo(u64 *cc_mask) |
| { |
| struct tdx_module_args args = {}; |
| unsigned int gpa_width; |
| u64 td_attr; |
| |
| /* |
| * TDINFO TDX module call is used to get the TD execution environment |
| * information like GPA width, number of available vcpus, debug mode |
| * information, etc. More details about the ABI can be found in TDX |
| * Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL |
| * [TDG.VP.INFO]. |
| */ |
| tdcall(TDG_VP_INFO, &args); |
| |
| /* |
| * The highest bit of a guest physical address is the "sharing" bit. |
| * Set it for shared pages and clear it for private pages. |
| * |
| * The GPA width that comes out of this call is critical. TDX guests |
| * can not meaningfully run without it. |
| */ |
| gpa_width = args.rcx & GENMASK(5, 0); |
| *cc_mask = BIT_ULL(gpa_width - 1); |
| |
| /* |
| * The kernel can not handle #VE's when accessing normal kernel |
| * memory. Ensure that no #VE will be delivered for accesses to |
| * TD-private memory. Only VMM-shared memory (MMIO) will #VE. |
| */ |
| td_attr = args.rdx; |
| if (!(td_attr & ATTR_SEPT_VE_DISABLE)) { |
| const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set."; |
| |
| /* Relax SEPT_VE_DISABLE check for debug TD. */ |
| if (td_attr & ATTR_DEBUG) |
| pr_warn("%s\n", msg); |
| else |
| tdx_panic(msg); |
| } |
| } |
| |
| /* |
| * The TDX module spec states that #VE may be injected for a limited set of |
| * reasons: |
| * |
| * - Emulation of the architectural #VE injection on EPT violation; |
| * |
| * - As a result of guest TD execution of a disallowed instruction, |
| * a disallowed MSR access, or CPUID virtualization; |
| * |
| * - A notification to the guest TD about anomalous behavior; |
| * |
| * The last one is opt-in and is not used by the kernel. |
| * |
| * The Intel Software Developer's Manual describes cases when instruction |
| * length field can be used in section "Information for VM Exits Due to |
| * Instruction Execution". |
| * |
| * For TDX, it ultimately means GET_VEINFO provides reliable instruction length |
| * information if #VE occurred due to instruction execution, but not for EPT |
| * violations. |
| */ |
| static int ve_instr_len(struct ve_info *ve) |
| { |
| switch (ve->exit_reason) { |
| case EXIT_REASON_HLT: |
| case EXIT_REASON_MSR_READ: |
| case EXIT_REASON_MSR_WRITE: |
| case EXIT_REASON_CPUID: |
| case EXIT_REASON_IO_INSTRUCTION: |
| /* It is safe to use ve->instr_len for #VE due instructions */ |
| return ve->instr_len; |
| case EXIT_REASON_EPT_VIOLATION: |
| /* |
| * For EPT violations, ve->insn_len is not defined. For those, |
| * the kernel must decode instructions manually and should not |
| * be using this function. |
| */ |
| WARN_ONCE(1, "ve->instr_len is not defined for EPT violations"); |
| return 0; |
| default: |
| WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason); |
| return ve->instr_len; |
| } |
| } |
| |
| static u64 __cpuidle __halt(const bool irq_disabled) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_HLT), |
| .r12 = irq_disabled, |
| }; |
| |
| /* |
| * Emulate HLT operation via hypercall. More info about ABI |
| * can be found in TDX Guest-Host-Communication Interface |
| * (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>. |
| * |
| * The VMM uses the "IRQ disabled" param to understand IRQ |
| * enabled status (RFLAGS.IF) of the TD guest and to determine |
| * whether or not it should schedule the halted vCPU if an |
| * IRQ becomes pending. E.g. if IRQs are disabled, the VMM |
| * can keep the vCPU in virtual HLT, even if an IRQ is |
| * pending, without hanging/breaking the guest. |
| */ |
| return __tdx_hypercall(&args); |
| } |
| |
| static int handle_halt(struct ve_info *ve) |
| { |
| const bool irq_disabled = irqs_disabled(); |
| |
| if (__halt(irq_disabled)) |
| return -EIO; |
| |
| return ve_instr_len(ve); |
| } |
| |
| void __cpuidle tdx_safe_halt(void) |
| { |
| const bool irq_disabled = false; |
| |
| /* |
| * Use WARN_ONCE() to report the failure. |
| */ |
| if (__halt(irq_disabled)) |
| WARN_ONCE(1, "HLT instruction emulation failed\n"); |
| } |
| |
| static int read_msr(struct pt_regs *regs, struct ve_info *ve) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_MSR_READ), |
| .r12 = regs->cx, |
| }; |
| |
| /* |
| * Emulate the MSR read via hypercall. More info about ABI |
| * can be found in TDX Guest-Host-Communication Interface |
| * (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>". |
| */ |
| if (__tdx_hypercall(&args)) |
| return -EIO; |
| |
| regs->ax = lower_32_bits(args.r11); |
| regs->dx = upper_32_bits(args.r11); |
| return ve_instr_len(ve); |
| } |
| |
| static int write_msr(struct pt_regs *regs, struct ve_info *ve) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_MSR_WRITE), |
| .r12 = regs->cx, |
| .r13 = (u64)regs->dx << 32 | regs->ax, |
| }; |
| |
| /* |
| * Emulate the MSR write via hypercall. More info about ABI |
| * can be found in TDX Guest-Host-Communication Interface |
| * (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>". |
| */ |
| if (__tdx_hypercall(&args)) |
| return -EIO; |
| |
| return ve_instr_len(ve); |
| } |
| |
| static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_CPUID), |
| .r12 = regs->ax, |
| .r13 = regs->cx, |
| }; |
| |
| /* |
| * Only allow VMM to control range reserved for hypervisor |
| * communication. |
| * |
| * Return all-zeros for any CPUID outside the range. It matches CPU |
| * behaviour for non-supported leaf. |
| */ |
| if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) { |
| regs->ax = regs->bx = regs->cx = regs->dx = 0; |
| return ve_instr_len(ve); |
| } |
| |
| /* |
| * Emulate the CPUID instruction via a hypercall. More info about |
| * ABI can be found in TDX Guest-Host-Communication Interface |
| * (GHCI), section titled "VP.VMCALL<Instruction.CPUID>". |
| */ |
| if (__tdx_hypercall(&args)) |
| return -EIO; |
| |
| /* |
| * As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of |
| * EAX, EBX, ECX, EDX registers after the CPUID instruction execution. |
| * So copy the register contents back to pt_regs. |
| */ |
| regs->ax = args.r12; |
| regs->bx = args.r13; |
| regs->cx = args.r14; |
| regs->dx = args.r15; |
| |
| return ve_instr_len(ve); |
| } |
| |
| static bool mmio_read(int size, unsigned long addr, unsigned long *val) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_EPT_VIOLATION), |
| .r12 = size, |
| .r13 = EPT_READ, |
| .r14 = addr, |
| }; |
| |
| if (__tdx_hypercall(&args)) |
| return false; |
| |
| *val = args.r11; |
| return true; |
| } |
| |
| static bool mmio_write(int size, unsigned long addr, unsigned long val) |
| { |
| return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size, |
| EPT_WRITE, addr, val); |
| } |
| |
| static int handle_mmio(struct pt_regs *regs, struct ve_info *ve) |
| { |
| unsigned long *reg, val, vaddr; |
| char buffer[MAX_INSN_SIZE]; |
| enum insn_mmio_type mmio; |
| struct insn insn = {}; |
| int size, extend_size; |
| u8 extend_val = 0; |
| |
| /* Only in-kernel MMIO is supported */ |
| if (WARN_ON_ONCE(user_mode(regs))) |
| return -EFAULT; |
| |
| if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE)) |
| return -EFAULT; |
| |
| if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64)) |
| return -EINVAL; |
| |
| mmio = insn_decode_mmio(&insn, &size); |
| if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED)) |
| return -EINVAL; |
| |
| if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) { |
| reg = insn_get_modrm_reg_ptr(&insn, regs); |
| if (!reg) |
| return -EINVAL; |
| } |
| |
| /* |
| * Reject EPT violation #VEs that split pages. |
| * |
| * MMIO accesses are supposed to be naturally aligned and therefore |
| * never cross page boundaries. Seeing split page accesses indicates |
| * a bug or a load_unaligned_zeropad() that stepped into an MMIO page. |
| * |
| * load_unaligned_zeropad() will recover using exception fixups. |
| */ |
| vaddr = (unsigned long)insn_get_addr_ref(&insn, regs); |
| if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE) |
| return -EFAULT; |
| |
| /* Handle writes first */ |
| switch (mmio) { |
| case INSN_MMIO_WRITE: |
| memcpy(&val, reg, size); |
| if (!mmio_write(size, ve->gpa, val)) |
| return -EIO; |
| return insn.length; |
| case INSN_MMIO_WRITE_IMM: |
| val = insn.immediate.value; |
| if (!mmio_write(size, ve->gpa, val)) |
| return -EIO; |
| return insn.length; |
| case INSN_MMIO_READ: |
| case INSN_MMIO_READ_ZERO_EXTEND: |
| case INSN_MMIO_READ_SIGN_EXTEND: |
| /* Reads are handled below */ |
| break; |
| case INSN_MMIO_MOVS: |
| case INSN_MMIO_DECODE_FAILED: |
| /* |
| * MMIO was accessed with an instruction that could not be |
| * decoded or handled properly. It was likely not using io.h |
| * helpers or accessed MMIO accidentally. |
| */ |
| return -EINVAL; |
| default: |
| WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?"); |
| return -EINVAL; |
| } |
| |
| /* Handle reads */ |
| if (!mmio_read(size, ve->gpa, &val)) |
| return -EIO; |
| |
| switch (mmio) { |
| case INSN_MMIO_READ: |
| /* Zero-extend for 32-bit operation */ |
| extend_size = size == 4 ? sizeof(*reg) : 0; |
| break; |
| case INSN_MMIO_READ_ZERO_EXTEND: |
| /* Zero extend based on operand size */ |
| extend_size = insn.opnd_bytes; |
| break; |
| case INSN_MMIO_READ_SIGN_EXTEND: |
| /* Sign extend based on operand size */ |
| extend_size = insn.opnd_bytes; |
| if (size == 1 && val & BIT(7)) |
| extend_val = 0xFF; |
| else if (size > 1 && val & BIT(15)) |
| extend_val = 0xFF; |
| break; |
| default: |
| /* All other cases has to be covered with the first switch() */ |
| WARN_ON_ONCE(1); |
| return -EINVAL; |
| } |
| |
| if (extend_size) |
| memset(reg, extend_val, extend_size); |
| memcpy(reg, &val, size); |
| return insn.length; |
| } |
| |
| static bool handle_in(struct pt_regs *regs, int size, int port) |
| { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION), |
| .r12 = size, |
| .r13 = PORT_READ, |
| .r14 = port, |
| }; |
| u64 mask = GENMASK(BITS_PER_BYTE * size, 0); |
| bool success; |
| |
| /* |
| * Emulate the I/O read via hypercall. More info about ABI can be found |
| * in TDX Guest-Host-Communication Interface (GHCI) section titled |
| * "TDG.VP.VMCALL<Instruction.IO>". |
| */ |
| success = !__tdx_hypercall(&args); |
| |
| /* Update part of the register affected by the emulated instruction */ |
| regs->ax &= ~mask; |
| if (success) |
| regs->ax |= args.r11 & mask; |
| |
| return success; |
| } |
| |
| static bool handle_out(struct pt_regs *regs, int size, int port) |
| { |
| u64 mask = GENMASK(BITS_PER_BYTE * size, 0); |
| |
| /* |
| * Emulate the I/O write via hypercall. More info about ABI can be found |
| * in TDX Guest-Host-Communication Interface (GHCI) section titled |
| * "TDG.VP.VMCALL<Instruction.IO>". |
| */ |
| return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size, |
| PORT_WRITE, port, regs->ax & mask); |
| } |
| |
| /* |
| * Emulate I/O using hypercall. |
| * |
| * Assumes the IO instruction was using ax, which is enforced |
| * by the standard io.h macros. |
| * |
| * Return True on success or False on failure. |
| */ |
| static int handle_io(struct pt_regs *regs, struct ve_info *ve) |
| { |
| u32 exit_qual = ve->exit_qual; |
| int size, port; |
| bool in, ret; |
| |
| if (VE_IS_IO_STRING(exit_qual)) |
| return -EIO; |
| |
| in = VE_IS_IO_IN(exit_qual); |
| size = VE_GET_IO_SIZE(exit_qual); |
| port = VE_GET_PORT_NUM(exit_qual); |
| |
| |
| if (in) |
| ret = handle_in(regs, size, port); |
| else |
| ret = handle_out(regs, size, port); |
| if (!ret) |
| return -EIO; |
| |
| return ve_instr_len(ve); |
| } |
| |
| /* |
| * Early #VE exception handler. Only handles a subset of port I/O. |
| * Intended only for earlyprintk. If failed, return false. |
| */ |
| __init bool tdx_early_handle_ve(struct pt_regs *regs) |
| { |
| struct ve_info ve; |
| int insn_len; |
| |
| tdx_get_ve_info(&ve); |
| |
| if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION) |
| return false; |
| |
| insn_len = handle_io(regs, &ve); |
| if (insn_len < 0) |
| return false; |
| |
| regs->ip += insn_len; |
| return true; |
| } |
| |
| void tdx_get_ve_info(struct ve_info *ve) |
| { |
| struct tdx_module_args args = {}; |
| |
| /* |
| * Called during #VE handling to retrieve the #VE info from the |
| * TDX module. |
| * |
| * This has to be called early in #VE handling. A "nested" #VE which |
| * occurs before this will raise a #DF and is not recoverable. |
| * |
| * The call retrieves the #VE info from the TDX module, which also |
| * clears the "#VE valid" flag. This must be done before anything else |
| * because any #VE that occurs while the valid flag is set will lead to |
| * #DF. |
| * |
| * Note, the TDX module treats virtual NMIs as inhibited if the #VE |
| * valid flag is set. It means that NMI=>#VE will not result in a #DF. |
| */ |
| tdcall(TDG_VP_VEINFO_GET, &args); |
| |
| /* Transfer the output parameters */ |
| ve->exit_reason = args.rcx; |
| ve->exit_qual = args.rdx; |
| ve->gla = args.r8; |
| ve->gpa = args.r9; |
| ve->instr_len = lower_32_bits(args.r10); |
| ve->instr_info = upper_32_bits(args.r10); |
| } |
| |
| /* |
| * Handle the user initiated #VE. |
| * |
| * On success, returns the number of bytes RIP should be incremented (>=0) |
| * or -errno on error. |
| */ |
| static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve) |
| { |
| switch (ve->exit_reason) { |
| case EXIT_REASON_CPUID: |
| return handle_cpuid(regs, ve); |
| default: |
| pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); |
| return -EIO; |
| } |
| } |
| |
| static inline bool is_private_gpa(u64 gpa) |
| { |
| return gpa == cc_mkenc(gpa); |
| } |
| |
| /* |
| * Handle the kernel #VE. |
| * |
| * On success, returns the number of bytes RIP should be incremented (>=0) |
| * or -errno on error. |
| */ |
| static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve) |
| { |
| switch (ve->exit_reason) { |
| case EXIT_REASON_HLT: |
| return handle_halt(ve); |
| case EXIT_REASON_MSR_READ: |
| return read_msr(regs, ve); |
| case EXIT_REASON_MSR_WRITE: |
| return write_msr(regs, ve); |
| case EXIT_REASON_CPUID: |
| return handle_cpuid(regs, ve); |
| case EXIT_REASON_EPT_VIOLATION: |
| if (is_private_gpa(ve->gpa)) |
| panic("Unexpected EPT-violation on private memory."); |
| return handle_mmio(regs, ve); |
| case EXIT_REASON_IO_INSTRUCTION: |
| return handle_io(regs, ve); |
| default: |
| pr_warn("Unexpected #VE: %lld\n", ve->exit_reason); |
| return -EIO; |
| } |
| } |
| |
| bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve) |
| { |
| int insn_len; |
| |
| if (user_mode(regs)) |
| insn_len = virt_exception_user(regs, ve); |
| else |
| insn_len = virt_exception_kernel(regs, ve); |
| if (insn_len < 0) |
| return false; |
| |
| /* After successful #VE handling, move the IP */ |
| regs->ip += insn_len; |
| |
| return true; |
| } |
| |
| static bool tdx_tlb_flush_required(bool private) |
| { |
| /* |
| * TDX guest is responsible for flushing TLB on private->shared |
| * transition. VMM is responsible for flushing on shared->private. |
| * |
| * The VMM _can't_ flush private addresses as it can't generate PAs |
| * with the guest's HKID. Shared memory isn't subject to integrity |
| * checking, i.e. the VMM doesn't need to flush for its own protection. |
| * |
| * There's no need to flush when converting from shared to private, |
| * as flushing is the VMM's responsibility in this case, e.g. it must |
| * flush to avoid integrity failures in the face of a buggy or |
| * malicious guest. |
| */ |
| return !private; |
| } |
| |
| static bool tdx_cache_flush_required(void) |
| { |
| /* |
| * AMD SME/SEV can avoid cache flushing if HW enforces cache coherence. |
| * TDX doesn't have such capability. |
| * |
| * Flush cache unconditionally. |
| */ |
| return true; |
| } |
| |
| /* |
| * Notify the VMM about page mapping conversion. More info about ABI |
| * can be found in TDX Guest-Host-Communication Interface (GHCI), |
| * section "TDG.VP.VMCALL<MapGPA>". |
| */ |
| static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc) |
| { |
| /* Retrying the hypercall a second time should succeed; use 3 just in case */ |
| const int max_retries_per_page = 3; |
| int retry_count = 0; |
| |
| if (!enc) { |
| /* Set the shared (decrypted) bits: */ |
| start |= cc_mkdec(0); |
| end |= cc_mkdec(0); |
| } |
| |
| while (retry_count < max_retries_per_page) { |
| struct tdx_module_args args = { |
| .r10 = TDX_HYPERCALL_STANDARD, |
| .r11 = TDVMCALL_MAP_GPA, |
| .r12 = start, |
| .r13 = end - start }; |
| |
| u64 map_fail_paddr; |
| u64 ret = __tdx_hypercall(&args); |
| |
| if (ret != TDVMCALL_STATUS_RETRY) |
| return !ret; |
| /* |
| * The guest must retry the operation for the pages in the |
| * region starting at the GPA specified in R11. R11 comes |
| * from the untrusted VMM. Sanity check it. |
| */ |
| map_fail_paddr = args.r11; |
| if (map_fail_paddr < start || map_fail_paddr >= end) |
| return false; |
| |
| /* "Consume" a retry without forward progress */ |
| if (map_fail_paddr == start) { |
| retry_count++; |
| continue; |
| } |
| |
| start = map_fail_paddr; |
| retry_count = 0; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * Inform the VMM of the guest's intent for this physical page: shared with |
| * the VMM or private to the guest. The VMM is expected to change its mapping |
| * of the page in response. |
| */ |
| static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc) |
| { |
| phys_addr_t start = __pa(vaddr); |
| phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE); |
| |
| if (!tdx_map_gpa(start, end, enc)) |
| return false; |
| |
| /* shared->private conversion requires memory to be accepted before use */ |
| if (enc) |
| return tdx_accept_memory(start, end); |
| |
| return true; |
| } |
| |
| static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages, |
| bool enc) |
| { |
| /* |
| * Only handle shared->private conversion here. |
| * See the comment in tdx_early_init(). |
| */ |
| if (enc && !tdx_enc_status_changed(vaddr, numpages, enc)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages, |
| bool enc) |
| { |
| /* |
| * Only handle private->shared conversion here. |
| * See the comment in tdx_early_init(). |
| */ |
| if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc)) |
| return -EIO; |
| |
| if (enc) |
| atomic_long_sub(numpages, &nr_shared); |
| else |
| atomic_long_add(numpages, &nr_shared); |
| |
| return 0; |
| } |
| |
| /* Stop new private<->shared conversions */ |
| static void tdx_kexec_begin(void) |
| { |
| if (!IS_ENABLED(CONFIG_KEXEC_CORE)) |
| return; |
| |
| /* |
| * Crash kernel reaches here with interrupts disabled: can't wait for |
| * conversions to finish. |
| * |
| * If race happened, just report and proceed. |
| */ |
| if (!set_memory_enc_stop_conversion()) |
| pr_warn("Failed to stop shared<->private conversions\n"); |
| } |
| |
| /* Walk direct mapping and convert all shared memory back to private */ |
| static void tdx_kexec_finish(void) |
| { |
| unsigned long addr, end; |
| long found = 0, shared; |
| |
| if (!IS_ENABLED(CONFIG_KEXEC_CORE)) |
| return; |
| |
| lockdep_assert_irqs_disabled(); |
| |
| addr = PAGE_OFFSET; |
| end = PAGE_OFFSET + get_max_mapped(); |
| |
| while (addr < end) { |
| unsigned long size; |
| unsigned int level; |
| pte_t *pte; |
| |
| pte = lookup_address(addr, &level); |
| size = page_level_size(level); |
| |
| if (pte && pte_decrypted(*pte)) { |
| int pages = size / PAGE_SIZE; |
| |
| /* |
| * Touching memory with shared bit set triggers implicit |
| * conversion to shared. |
| * |
| * Make sure nobody touches the shared range from |
| * now on. |
| */ |
| set_pte(pte, __pte(0)); |
| |
| /* |
| * Memory encryption state persists across kexec. |
| * If tdx_enc_status_changed() fails in the first |
| * kernel, it leaves memory in an unknown state. |
| * |
| * If that memory remains shared, accessing it in the |
| * *next* kernel through a private mapping will result |
| * in an unrecoverable guest shutdown. |
| * |
| * The kdump kernel boot is not impacted as it uses |
| * a pre-reserved memory range that is always private. |
| * However, gathering crash information could lead to |
| * a crash if it accesses unconverted memory through |
| * a private mapping which is possible when accessing |
| * that memory through /proc/vmcore, for example. |
| * |
| * In all cases, print error info in order to leave |
| * enough bread crumbs for debugging. |
| */ |
| if (!tdx_enc_status_changed(addr, pages, true)) { |
| pr_err("Failed to unshare range %#lx-%#lx\n", |
| addr, addr + size); |
| } |
| |
| found += pages; |
| } |
| |
| addr += size; |
| } |
| |
| __flush_tlb_all(); |
| |
| shared = atomic_long_read(&nr_shared); |
| if (shared != found) { |
| pr_err("shared page accounting is off\n"); |
| pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found); |
| } |
| } |
| |
| void __init tdx_early_init(void) |
| { |
| struct tdx_module_args args = { |
| .rdx = TDCS_NOTIFY_ENABLES, |
| .r9 = -1ULL, |
| }; |
| u64 cc_mask; |
| u32 eax, sig[3]; |
| |
| cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]); |
| |
| if (memcmp(TDX_IDENT, sig, sizeof(sig))) |
| return; |
| |
| setup_force_cpu_cap(X86_FEATURE_TDX_GUEST); |
| |
| /* TSC is the only reliable clock in TDX guest */ |
| setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); |
| |
| cc_vendor = CC_VENDOR_INTEL; |
| tdx_parse_tdinfo(&cc_mask); |
| cc_set_mask(cc_mask); |
| |
| /* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */ |
| tdcall(TDG_VM_WR, &args); |
| |
| /* |
| * All bits above GPA width are reserved and kernel treats shared bit |
| * as flag, not as part of physical address. |
| * |
| * Adjust physical mask to only cover valid GPA bits. |
| */ |
| physical_mask &= cc_mask - 1; |
| |
| /* |
| * The kernel mapping should match the TDX metadata for the page. |
| * load_unaligned_zeropad() can touch memory *adjacent* to that which is |
| * owned by the caller and can catch even _momentary_ mismatches. Bad |
| * things happen on mismatch: |
| * |
| * - Private mapping => Shared Page == Guest shutdown |
| * - Shared mapping => Private Page == Recoverable #VE |
| * |
| * guest.enc_status_change_prepare() converts the page from |
| * shared=>private before the mapping becomes private. |
| * |
| * guest.enc_status_change_finish() converts the page from |
| * private=>shared after the mapping becomes private. |
| * |
| * In both cases there is a temporary shared mapping to a private page, |
| * which can result in a #VE. But, there is never a private mapping to |
| * a shared page. |
| */ |
| x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare; |
| x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish; |
| |
| x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required; |
| x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required; |
| |
| x86_platform.guest.enc_kexec_begin = tdx_kexec_begin; |
| x86_platform.guest.enc_kexec_finish = tdx_kexec_finish; |
| |
| /* |
| * TDX intercepts the RDMSR to read the X2APIC ID in the parallel |
| * bringup low level code. That raises #VE which cannot be handled |
| * there. |
| * |
| * Intel-TDX has a secure RDMSR hypercall, but that needs to be |
| * implemented separately in the low level startup ASM code. |
| * Until that is in place, disable parallel bringup for TDX. |
| */ |
| x86_cpuinit.parallel_bringup = false; |
| |
| pr_info("Guest detected\n"); |
| } |