blob: 0648dbf0e2340aa89485a887185596f2fb284f91 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* net-sysfs.c - network device class and attributes
*
* Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
*/
#include <linux/capability.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/slab.h>
#include <linux/sched/signal.h>
#include <linux/sched/isolation.h>
#include <linux/nsproxy.h>
#include <net/sock.h>
#include <net/net_namespace.h>
#include <linux/rtnetlink.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <linux/jiffies.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_net.h>
#include <linux/cpu.h>
#include <net/netdev_rx_queue.h>
#include <net/rps.h>
#include "dev.h"
#include "net-sysfs.h"
#ifdef CONFIG_SYSFS
static const char fmt_hex[] = "%#x\n";
static const char fmt_dec[] = "%d\n";
static const char fmt_uint[] = "%u\n";
static const char fmt_ulong[] = "%lu\n";
static const char fmt_u64[] = "%llu\n";
/* Caller holds RTNL or RCU */
static inline int dev_isalive(const struct net_device *dev)
{
return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
}
/* use same locking rules as GIF* ioctl's */
static ssize_t netdev_show(const struct device *dev,
struct device_attribute *attr, char *buf,
ssize_t (*format)(const struct net_device *, char *))
{
struct net_device *ndev = to_net_dev(dev);
ssize_t ret = -EINVAL;
rcu_read_lock();
if (dev_isalive(ndev))
ret = (*format)(ndev, buf);
rcu_read_unlock();
return ret;
}
/* generate a show function for simple field */
#define NETDEVICE_SHOW(field, format_string) \
static ssize_t format_##field(const struct net_device *dev, char *buf) \
{ \
return sysfs_emit(buf, format_string, READ_ONCE(dev->field)); \
} \
static ssize_t field##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
return netdev_show(dev, attr, buf, format_##field); \
} \
#define NETDEVICE_SHOW_RO(field, format_string) \
NETDEVICE_SHOW(field, format_string); \
static DEVICE_ATTR_RO(field)
#define NETDEVICE_SHOW_RW(field, format_string) \
NETDEVICE_SHOW(field, format_string); \
static DEVICE_ATTR_RW(field)
/* use same locking and permission rules as SIF* ioctl's */
static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len,
int (*set)(struct net_device *, unsigned long))
{
struct net_device *netdev = to_net_dev(dev);
struct net *net = dev_net(netdev);
unsigned long new;
int ret;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
ret = kstrtoul(buf, 0, &new);
if (ret)
goto err;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
ret = (*set)(netdev, new);
if (ret == 0)
ret = len;
}
rtnl_unlock();
err:
return ret;
}
NETDEVICE_SHOW_RO(dev_id, fmt_hex);
NETDEVICE_SHOW_RO(dev_port, fmt_dec);
NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
NETDEVICE_SHOW_RO(addr_len, fmt_dec);
NETDEVICE_SHOW_RO(ifindex, fmt_dec);
NETDEVICE_SHOW_RO(type, fmt_dec);
NETDEVICE_SHOW_RO(link_mode, fmt_dec);
static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct net_device *ndev = to_net_dev(dev);
return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
}
static DEVICE_ATTR_RO(iflink);
static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
{
return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
}
static ssize_t name_assign_type_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct net_device *ndev = to_net_dev(dev);
ssize_t ret = -EINVAL;
if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
ret = netdev_show(dev, attr, buf, format_name_assign_type);
return ret;
}
static DEVICE_ATTR_RO(name_assign_type);
/* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
static ssize_t address_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct net_device *ndev = to_net_dev(dev);
ssize_t ret = -EINVAL;
down_read(&dev_addr_sem);
rcu_read_lock();
if (dev_isalive(ndev))
ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
rcu_read_unlock();
up_read(&dev_addr_sem);
return ret;
}
static DEVICE_ATTR_RO(address);
static ssize_t broadcast_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *ndev = to_net_dev(dev);
int ret = -EINVAL;
rcu_read_lock();
if (dev_isalive(ndev))
ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
rcu_read_unlock();
return ret;
}
static DEVICE_ATTR_RO(broadcast);
static int change_carrier(struct net_device *dev, unsigned long new_carrier)
{
if (!netif_running(dev))
return -EINVAL;
return dev_change_carrier(dev, (bool)new_carrier);
}
static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct net_device *netdev = to_net_dev(dev);
/* The check is also done in change_carrier; this helps returning early
* without hitting the trylock/restart in netdev_store.
*/
if (!netdev->netdev_ops->ndo_change_carrier)
return -EOPNOTSUPP;
return netdev_store(dev, attr, buf, len, change_carrier);
}
static ssize_t carrier_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
int ret = -EINVAL;
if (!rtnl_trylock())
return restart_syscall();
if (netif_running(netdev)) {
/* Synchronize carrier state with link watch,
* see also rtnl_getlink().
*/
linkwatch_sync_dev(netdev);
ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RW(carrier);
static ssize_t speed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
int ret = -EINVAL;
/* The check is also done in __ethtool_get_link_ksettings; this helps
* returning early without hitting the trylock/restart below.
*/
if (!netdev->ethtool_ops->get_link_ksettings)
return ret;
if (!rtnl_trylock())
return restart_syscall();
if (netif_running(netdev)) {
struct ethtool_link_ksettings cmd;
if (!__ethtool_get_link_ksettings(netdev, &cmd))
ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(speed);
static ssize_t duplex_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
int ret = -EINVAL;
/* The check is also done in __ethtool_get_link_ksettings; this helps
* returning early without hitting the trylock/restart below.
*/
if (!netdev->ethtool_ops->get_link_ksettings)
return ret;
if (!rtnl_trylock())
return restart_syscall();
if (netif_running(netdev)) {
struct ethtool_link_ksettings cmd;
if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
const char *duplex;
switch (cmd.base.duplex) {
case DUPLEX_HALF:
duplex = "half";
break;
case DUPLEX_FULL:
duplex = "full";
break;
default:
duplex = "unknown";
break;
}
ret = sysfs_emit(buf, "%s\n", duplex);
}
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(duplex);
static ssize_t testing_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
if (netif_running(netdev))
return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
return -EINVAL;
}
static DEVICE_ATTR_RO(testing);
static ssize_t dormant_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
if (netif_running(netdev))
return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
return -EINVAL;
}
static DEVICE_ATTR_RO(dormant);
static const char *const operstates[] = {
"unknown",
"notpresent", /* currently unused */
"down",
"lowerlayerdown",
"testing",
"dormant",
"up"
};
static ssize_t operstate_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct net_device *netdev = to_net_dev(dev);
unsigned char operstate;
operstate = READ_ONCE(netdev->operstate);
if (!netif_running(netdev))
operstate = IF_OPER_DOWN;
if (operstate >= ARRAY_SIZE(operstates))
return -EINVAL; /* should not happen */
return sysfs_emit(buf, "%s\n", operstates[operstate]);
}
static DEVICE_ATTR_RO(operstate);
static ssize_t carrier_changes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct net_device *netdev = to_net_dev(dev);
return sysfs_emit(buf, fmt_dec,
atomic_read(&netdev->carrier_up_count) +
atomic_read(&netdev->carrier_down_count));
}
static DEVICE_ATTR_RO(carrier_changes);
static ssize_t carrier_up_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct net_device *netdev = to_net_dev(dev);
return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
}
static DEVICE_ATTR_RO(carrier_up_count);
static ssize_t carrier_down_count_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct net_device *netdev = to_net_dev(dev);
return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
}
static DEVICE_ATTR_RO(carrier_down_count);
/* read-write attributes */
static int change_mtu(struct net_device *dev, unsigned long new_mtu)
{
return dev_set_mtu(dev, (int)new_mtu);
}
static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_mtu);
}
NETDEVICE_SHOW_RW(mtu, fmt_dec);
static int change_flags(struct net_device *dev, unsigned long new_flags)
{
return dev_change_flags(dev, (unsigned int)new_flags, NULL);
}
static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_flags);
}
NETDEVICE_SHOW_RW(flags, fmt_hex);
static ssize_t tx_queue_len_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
}
NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
{
WRITE_ONCE(dev->gro_flush_timeout, val);
return 0;
}
static ssize_t gro_flush_timeout_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
}
NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
{
if (val > S32_MAX)
return -ERANGE;
WRITE_ONCE(dev->napi_defer_hard_irqs, val);
return 0;
}
static ssize_t napi_defer_hard_irqs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
if (!capable(CAP_NET_ADMIN))
return -EPERM;
return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
}
NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
struct net_device *netdev = to_net_dev(dev);
struct net *net = dev_net(netdev);
size_t count = len;
ssize_t ret = 0;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
/* ignore trailing newline */
if (len > 0 && buf[len - 1] == '\n')
--count;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
ret = dev_set_alias(netdev, buf, count);
if (ret < 0)
goto err;
ret = len;
netdev_state_change(netdev);
}
err:
rtnl_unlock();
return ret;
}
static ssize_t ifalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
const struct net_device *netdev = to_net_dev(dev);
char tmp[IFALIASZ];
ssize_t ret = 0;
ret = dev_get_alias(netdev, tmp, sizeof(tmp));
if (ret > 0)
ret = sysfs_emit(buf, "%s\n", tmp);
return ret;
}
static DEVICE_ATTR_RW(ifalias);
static int change_group(struct net_device *dev, unsigned long new_group)
{
dev_set_group(dev, (int)new_group);
return 0;
}
static ssize_t group_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_group);
}
NETDEVICE_SHOW(group, fmt_dec);
static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
static int change_proto_down(struct net_device *dev, unsigned long proto_down)
{
return dev_change_proto_down(dev, (bool)proto_down);
}
static ssize_t proto_down_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, change_proto_down);
}
NETDEVICE_SHOW_RW(proto_down, fmt_dec);
static ssize_t phys_port_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
ssize_t ret = -EINVAL;
/* The check is also done in dev_get_phys_port_id; this helps returning
* early without hitting the trylock/restart below.
*/
if (!netdev->netdev_ops->ndo_get_phys_port_id)
return -EOPNOTSUPP;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
struct netdev_phys_item_id ppid;
ret = dev_get_phys_port_id(netdev, &ppid);
if (!ret)
ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(phys_port_id);
static ssize_t phys_port_name_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
ssize_t ret = -EINVAL;
/* The checks are also done in dev_get_phys_port_name; this helps
* returning early without hitting the trylock/restart below.
*/
if (!netdev->netdev_ops->ndo_get_phys_port_name &&
!netdev->devlink_port)
return -EOPNOTSUPP;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
char name[IFNAMSIZ];
ret = dev_get_phys_port_name(netdev, name, sizeof(name));
if (!ret)
ret = sysfs_emit(buf, "%s\n", name);
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(phys_port_name);
static ssize_t phys_switch_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
ssize_t ret = -EINVAL;
/* The checks are also done in dev_get_phys_port_name; this helps
* returning early without hitting the trylock/restart below. This works
* because recurse is false when calling dev_get_port_parent_id.
*/
if (!netdev->netdev_ops->ndo_get_port_parent_id &&
!netdev->devlink_port)
return -EOPNOTSUPP;
if (!rtnl_trylock())
return restart_syscall();
if (dev_isalive(netdev)) {
struct netdev_phys_item_id ppid = { };
ret = dev_get_port_parent_id(netdev, &ppid, false);
if (!ret)
ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
}
rtnl_unlock();
return ret;
}
static DEVICE_ATTR_RO(phys_switch_id);
static ssize_t threaded_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
ssize_t ret = -EINVAL;
rcu_read_lock();
if (dev_isalive(netdev))
ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
rcu_read_unlock();
return ret;
}
static int modify_napi_threaded(struct net_device *dev, unsigned long val)
{
int ret;
if (list_empty(&dev->napi_list))
return -EOPNOTSUPP;
if (val != 0 && val != 1)
return -EOPNOTSUPP;
ret = dev_set_threaded(dev, val);
return ret;
}
static ssize_t threaded_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
return netdev_store(dev, attr, buf, len, modify_napi_threaded);
}
static DEVICE_ATTR_RW(threaded);
static struct attribute *net_class_attrs[] __ro_after_init = {
&dev_attr_netdev_group.attr,
&dev_attr_type.attr,
&dev_attr_dev_id.attr,
&dev_attr_dev_port.attr,
&dev_attr_iflink.attr,
&dev_attr_ifindex.attr,
&dev_attr_name_assign_type.attr,
&dev_attr_addr_assign_type.attr,
&dev_attr_addr_len.attr,
&dev_attr_link_mode.attr,
&dev_attr_address.attr,
&dev_attr_broadcast.attr,
&dev_attr_speed.attr,
&dev_attr_duplex.attr,
&dev_attr_dormant.attr,
&dev_attr_testing.attr,
&dev_attr_operstate.attr,
&dev_attr_carrier_changes.attr,
&dev_attr_ifalias.attr,
&dev_attr_carrier.attr,
&dev_attr_mtu.attr,
&dev_attr_flags.attr,
&dev_attr_tx_queue_len.attr,
&dev_attr_gro_flush_timeout.attr,
&dev_attr_napi_defer_hard_irqs.attr,
&dev_attr_phys_port_id.attr,
&dev_attr_phys_port_name.attr,
&dev_attr_phys_switch_id.attr,
&dev_attr_proto_down.attr,
&dev_attr_carrier_up_count.attr,
&dev_attr_carrier_down_count.attr,
&dev_attr_threaded.attr,
NULL,
};
ATTRIBUTE_GROUPS(net_class);
/* Show a given an attribute in the statistics group */
static ssize_t netstat_show(const struct device *d,
struct device_attribute *attr, char *buf,
unsigned long offset)
{
struct net_device *dev = to_net_dev(d);
ssize_t ret = -EINVAL;
WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
offset % sizeof(u64) != 0);
rcu_read_lock();
if (dev_isalive(dev)) {
struct rtnl_link_stats64 temp;
const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
}
rcu_read_unlock();
return ret;
}
/* generate a read-only statistics attribute */
#define NETSTAT_ENTRY(name) \
static ssize_t name##_show(struct device *d, \
struct device_attribute *attr, char *buf) \
{ \
return netstat_show(d, attr, buf, \
offsetof(struct rtnl_link_stats64, name)); \
} \
static DEVICE_ATTR_RO(name)
NETSTAT_ENTRY(rx_packets);
NETSTAT_ENTRY(tx_packets);
NETSTAT_ENTRY(rx_bytes);
NETSTAT_ENTRY(tx_bytes);
NETSTAT_ENTRY(rx_errors);
NETSTAT_ENTRY(tx_errors);
NETSTAT_ENTRY(rx_dropped);
NETSTAT_ENTRY(tx_dropped);
NETSTAT_ENTRY(multicast);
NETSTAT_ENTRY(collisions);
NETSTAT_ENTRY(rx_length_errors);
NETSTAT_ENTRY(rx_over_errors);
NETSTAT_ENTRY(rx_crc_errors);
NETSTAT_ENTRY(rx_frame_errors);
NETSTAT_ENTRY(rx_fifo_errors);
NETSTAT_ENTRY(rx_missed_errors);
NETSTAT_ENTRY(tx_aborted_errors);
NETSTAT_ENTRY(tx_carrier_errors);
NETSTAT_ENTRY(tx_fifo_errors);
NETSTAT_ENTRY(tx_heartbeat_errors);
NETSTAT_ENTRY(tx_window_errors);
NETSTAT_ENTRY(rx_compressed);
NETSTAT_ENTRY(tx_compressed);
NETSTAT_ENTRY(rx_nohandler);
static struct attribute *netstat_attrs[] __ro_after_init = {
&dev_attr_rx_packets.attr,
&dev_attr_tx_packets.attr,
&dev_attr_rx_bytes.attr,
&dev_attr_tx_bytes.attr,
&dev_attr_rx_errors.attr,
&dev_attr_tx_errors.attr,
&dev_attr_rx_dropped.attr,
&dev_attr_tx_dropped.attr,
&dev_attr_multicast.attr,
&dev_attr_collisions.attr,
&dev_attr_rx_length_errors.attr,
&dev_attr_rx_over_errors.attr,
&dev_attr_rx_crc_errors.attr,
&dev_attr_rx_frame_errors.attr,
&dev_attr_rx_fifo_errors.attr,
&dev_attr_rx_missed_errors.attr,
&dev_attr_tx_aborted_errors.attr,
&dev_attr_tx_carrier_errors.attr,
&dev_attr_tx_fifo_errors.attr,
&dev_attr_tx_heartbeat_errors.attr,
&dev_attr_tx_window_errors.attr,
&dev_attr_rx_compressed.attr,
&dev_attr_tx_compressed.attr,
&dev_attr_rx_nohandler.attr,
NULL
};
static const struct attribute_group netstat_group = {
.name = "statistics",
.attrs = netstat_attrs,
};
static struct attribute *wireless_attrs[] = {
NULL
};
static const struct attribute_group wireless_group = {
.name = "wireless",
.attrs = wireless_attrs,
};
static bool wireless_group_needed(struct net_device *ndev)
{
#if IS_ENABLED(CONFIG_CFG80211)
if (ndev->ieee80211_ptr)
return true;
#endif
#if IS_ENABLED(CONFIG_WIRELESS_EXT)
if (ndev->wireless_handlers)
return true;
#endif
return false;
}
#else /* CONFIG_SYSFS */
#define net_class_groups NULL
#endif /* CONFIG_SYSFS */
#ifdef CONFIG_SYSFS
#define to_rx_queue_attr(_attr) \
container_of(_attr, struct rx_queue_attribute, attr)
#define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
struct netdev_rx_queue *queue = to_rx_queue(kobj);
if (!attribute->show)
return -EIO;
return attribute->show(queue, buf);
}
static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
struct netdev_rx_queue *queue = to_rx_queue(kobj);
if (!attribute->store)
return -EIO;
return attribute->store(queue, buf, count);
}
static const struct sysfs_ops rx_queue_sysfs_ops = {
.show = rx_queue_attr_show,
.store = rx_queue_attr_store,
};
#ifdef CONFIG_RPS
static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
{
struct rps_map *map;
cpumask_var_t mask;
int i, len;
if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
rcu_read_lock();
map = rcu_dereference(queue->rps_map);
if (map)
for (i = 0; i < map->len; i++)
cpumask_set_cpu(map->cpus[i], mask);
len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
rcu_read_unlock();
free_cpumask_var(mask);
return len < PAGE_SIZE ? len : -EINVAL;
}
static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
cpumask_var_t mask)
{
static DEFINE_MUTEX(rps_map_mutex);
struct rps_map *old_map, *map;
int cpu, i;
map = kzalloc(max_t(unsigned int,
RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
GFP_KERNEL);
if (!map)
return -ENOMEM;
i = 0;
for_each_cpu_and(cpu, mask, cpu_online_mask)
map->cpus[i++] = cpu;
if (i) {
map->len = i;
} else {
kfree(map);
map = NULL;
}
mutex_lock(&rps_map_mutex);
old_map = rcu_dereference_protected(queue->rps_map,
mutex_is_locked(&rps_map_mutex));
rcu_assign_pointer(queue->rps_map, map);
if (map)
static_branch_inc(&rps_needed);
if (old_map)
static_branch_dec(&rps_needed);
mutex_unlock(&rps_map_mutex);
if (old_map)
kfree_rcu(old_map, rcu);
return 0;
}
int rps_cpumask_housekeeping(struct cpumask *mask)
{
if (!cpumask_empty(mask)) {
cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
if (cpumask_empty(mask))
return -EINVAL;
}
return 0;
}
static ssize_t store_rps_map(struct netdev_rx_queue *queue,
const char *buf, size_t len)
{
cpumask_var_t mask;
int err;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
if (err)
goto out;
err = rps_cpumask_housekeeping(mask);
if (err)
goto out;
err = netdev_rx_queue_set_rps_mask(queue, mask);
out:
free_cpumask_var(mask);
return err ? : len;
}
static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
char *buf)
{
struct rps_dev_flow_table *flow_table;
unsigned long val = 0;
rcu_read_lock();
flow_table = rcu_dereference(queue->rps_flow_table);
if (flow_table)
val = (unsigned long)flow_table->mask + 1;
rcu_read_unlock();
return sysfs_emit(buf, "%lu\n", val);
}
static void rps_dev_flow_table_release(struct rcu_head *rcu)
{
struct rps_dev_flow_table *table = container_of(rcu,
struct rps_dev_flow_table, rcu);
vfree(table);
}
static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
const char *buf, size_t len)
{
unsigned long mask, count;
struct rps_dev_flow_table *table, *old_table;
static DEFINE_SPINLOCK(rps_dev_flow_lock);
int rc;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
rc = kstrtoul(buf, 0, &count);
if (rc < 0)
return rc;
if (count) {
mask = count - 1;
/* mask = roundup_pow_of_two(count) - 1;
* without overflows...
*/
while ((mask | (mask >> 1)) != mask)
mask |= (mask >> 1);
/* On 64 bit arches, must check mask fits in table->mask (u32),
* and on 32bit arches, must check
* RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
*/
#if BITS_PER_LONG > 32
if (mask > (unsigned long)(u32)mask)
return -EINVAL;
#else
if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
/ sizeof(struct rps_dev_flow)) {
/* Enforce a limit to prevent overflow */
return -EINVAL;
}
#endif
table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
if (!table)
return -ENOMEM;
table->mask = mask;
for (count = 0; count <= mask; count++)
table->flows[count].cpu = RPS_NO_CPU;
} else {
table = NULL;
}
spin_lock(&rps_dev_flow_lock);
old_table = rcu_dereference_protected(queue->rps_flow_table,
lockdep_is_held(&rps_dev_flow_lock));
rcu_assign_pointer(queue->rps_flow_table, table);
spin_unlock(&rps_dev_flow_lock);
if (old_table)
call_rcu(&old_table->rcu, rps_dev_flow_table_release);
return len;
}
static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
= __ATTR(rps_flow_cnt, 0644,
show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
#endif /* CONFIG_RPS */
static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
#ifdef CONFIG_RPS
&rps_cpus_attribute.attr,
&rps_dev_flow_table_cnt_attribute.attr,
#endif
NULL
};
ATTRIBUTE_GROUPS(rx_queue_default);
static void rx_queue_release(struct kobject *kobj)
{
struct netdev_rx_queue *queue = to_rx_queue(kobj);
#ifdef CONFIG_RPS
struct rps_map *map;
struct rps_dev_flow_table *flow_table;
map = rcu_dereference_protected(queue->rps_map, 1);
if (map) {
RCU_INIT_POINTER(queue->rps_map, NULL);
kfree_rcu(map, rcu);
}
flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
if (flow_table) {
RCU_INIT_POINTER(queue->rps_flow_table, NULL);
call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
}
#endif
memset(kobj, 0, sizeof(*kobj));
netdev_put(queue->dev, &queue->dev_tracker);
}
static const void *rx_queue_namespace(const struct kobject *kobj)
{
struct netdev_rx_queue *queue = to_rx_queue(kobj);
struct device *dev = &queue->dev->dev;
const void *ns = NULL;
if (dev->class && dev->class->ns_type)
ns = dev->class->namespace(dev);
return ns;
}
static void rx_queue_get_ownership(const struct kobject *kobj,
kuid_t *uid, kgid_t *gid)
{
const struct net *net = rx_queue_namespace(kobj);
net_ns_get_ownership(net, uid, gid);
}
static const struct kobj_type rx_queue_ktype = {
.sysfs_ops = &rx_queue_sysfs_ops,
.release = rx_queue_release,
.default_groups = rx_queue_default_groups,
.namespace = rx_queue_namespace,
.get_ownership = rx_queue_get_ownership,
};
static int rx_queue_default_mask(struct net_device *dev,
struct netdev_rx_queue *queue)
{
#if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
if (rps_default_mask && !cpumask_empty(rps_default_mask))
return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
#endif
return 0;
}
static int rx_queue_add_kobject(struct net_device *dev, int index)
{
struct netdev_rx_queue *queue = dev->_rx + index;
struct kobject *kobj = &queue->kobj;
int error = 0;
/* Kobject_put later will trigger rx_queue_release call which
* decreases dev refcount: Take that reference here
*/
netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
kobj->kset = dev->queues_kset;
error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
"rx-%u", index);
if (error)
goto err;
if (dev->sysfs_rx_queue_group) {
error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
if (error)
goto err;
}
error = rx_queue_default_mask(dev, queue);
if (error)
goto err;
kobject_uevent(kobj, KOBJ_ADD);
return error;
err:
kobject_put(kobj);
return error;
}
static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
kgid_t kgid)
{
struct netdev_rx_queue *queue = dev->_rx + index;
struct kobject *kobj = &queue->kobj;
int error;
error = sysfs_change_owner(kobj, kuid, kgid);
if (error)
return error;
if (dev->sysfs_rx_queue_group)
error = sysfs_group_change_owner(
kobj, dev->sysfs_rx_queue_group, kuid, kgid);
return error;
}
#endif /* CONFIG_SYSFS */
int
net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
{
#ifdef CONFIG_SYSFS
int i;
int error = 0;
#ifndef CONFIG_RPS
if (!dev->sysfs_rx_queue_group)
return 0;
#endif
for (i = old_num; i < new_num; i++) {
error = rx_queue_add_kobject(dev, i);
if (error) {
new_num = old_num;
break;
}
}
while (--i >= new_num) {
struct kobject *kobj = &dev->_rx[i].kobj;
if (!refcount_read(&dev_net(dev)->ns.count))
kobj->uevent_suppress = 1;
if (dev->sysfs_rx_queue_group)
sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
kobject_put(kobj);
}
return error;
#else
return 0;
#endif
}
static int net_rx_queue_change_owner(struct net_device *dev, int num,
kuid_t kuid, kgid_t kgid)
{
#ifdef CONFIG_SYSFS
int error = 0;
int i;
#ifndef CONFIG_RPS
if (!dev->sysfs_rx_queue_group)
return 0;
#endif
for (i = 0; i < num; i++) {
error = rx_queue_change_owner(dev, i, kuid, kgid);
if (error)
break;
}
return error;
#else
return 0;
#endif
}
#ifdef CONFIG_SYSFS
/*
* netdev_queue sysfs structures and functions.
*/
struct netdev_queue_attribute {
struct attribute attr;
ssize_t (*show)(struct netdev_queue *queue, char *buf);
ssize_t (*store)(struct netdev_queue *queue,
const char *buf, size_t len);
};
#define to_netdev_queue_attr(_attr) \
container_of(_attr, struct netdev_queue_attribute, attr)
#define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
static ssize_t netdev_queue_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
const struct netdev_queue_attribute *attribute
= to_netdev_queue_attr(attr);
struct netdev_queue *queue = to_netdev_queue(kobj);
if (!attribute->show)
return -EIO;
return attribute->show(queue, buf);
}
static ssize_t netdev_queue_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t count)
{
const struct netdev_queue_attribute *attribute
= to_netdev_queue_attr(attr);
struct netdev_queue *queue = to_netdev_queue(kobj);
if (!attribute->store)
return -EIO;
return attribute->store(queue, buf, count);
}
static const struct sysfs_ops netdev_queue_sysfs_ops = {
.show = netdev_queue_attr_show,
.store = netdev_queue_attr_store,
};
static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
{
unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
return sysfs_emit(buf, fmt_ulong, trans_timeout);
}
static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
{
struct net_device *dev = queue->dev;
unsigned int i;
i = queue - dev->_tx;
BUG_ON(i >= dev->num_tx_queues);
return i;
}
static ssize_t traffic_class_show(struct netdev_queue *queue,
char *buf)
{
struct net_device *dev = queue->dev;
int num_tc, tc;
int index;
if (!netif_is_multiqueue(dev))
return -ENOENT;
if (!rtnl_trylock())
return restart_syscall();
index = get_netdev_queue_index(queue);
/* If queue belongs to subordinate dev use its TC mapping */
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
num_tc = dev->num_tc;
tc = netdev_txq_to_tc(dev, index);
rtnl_unlock();
if (tc < 0)
return -EINVAL;
/* We can report the traffic class one of two ways:
* Subordinate device traffic classes are reported with the traffic
* class first, and then the subordinate class so for example TC0 on
* subordinate device 2 will be reported as "0-2". If the queue
* belongs to the root device it will be reported with just the
* traffic class, so just "0" for TC 0 for example.
*/
return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
sysfs_emit(buf, "%d\n", tc);
}
#ifdef CONFIG_XPS
static ssize_t tx_maxrate_show(struct netdev_queue *queue,
char *buf)
{
return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
}
static ssize_t tx_maxrate_store(struct netdev_queue *queue,
const char *buf, size_t len)
{
struct net_device *dev = queue->dev;
int err, index = get_netdev_queue_index(queue);
u32 rate = 0;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
/* The check is also done later; this helps returning early without
* hitting the trylock/restart below.
*/
if (!dev->netdev_ops->ndo_set_tx_maxrate)
return -EOPNOTSUPP;
err = kstrtou32(buf, 10, &rate);
if (err < 0)
return err;
if (!rtnl_trylock())
return restart_syscall();
err = -EOPNOTSUPP;
if (dev->netdev_ops->ndo_set_tx_maxrate)
err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
rtnl_unlock();
if (!err) {
queue->tx_maxrate = rate;
return len;
}
return err;
}
static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
= __ATTR_RW(tx_maxrate);
#endif
static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
= __ATTR_RO(tx_timeout);
static struct netdev_queue_attribute queue_traffic_class __ro_after_init
= __ATTR_RO(traffic_class);
#ifdef CONFIG_BQL
/*
* Byte queue limits sysfs structures and functions.
*/
static ssize_t bql_show(char *buf, unsigned int value)
{
return sysfs_emit(buf, "%u\n", value);
}
static ssize_t bql_set(const char *buf, const size_t count,
unsigned int *pvalue)
{
unsigned int value;
int err;
if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
value = DQL_MAX_LIMIT;
} else {
err = kstrtouint(buf, 10, &value);
if (err < 0)
return err;
if (value > DQL_MAX_LIMIT)
return -EINVAL;
}
*pvalue = value;
return count;
}
static ssize_t bql_show_hold_time(struct netdev_queue *queue,
char *buf)
{
struct dql *dql = &queue->dql;
return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
}
static ssize_t bql_set_hold_time(struct netdev_queue *queue,
const char *buf, size_t len)
{
struct dql *dql = &queue->dql;
unsigned int value;
int err;
err = kstrtouint(buf, 10, &value);
if (err < 0)
return err;
dql->slack_hold_time = msecs_to_jiffies(value);
return len;
}
static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
= __ATTR(hold_time, 0644,
bql_show_hold_time, bql_set_hold_time);
static ssize_t bql_show_stall_thrs(struct netdev_queue *queue, char *buf)
{
struct dql *dql = &queue->dql;
return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
}
static ssize_t bql_set_stall_thrs(struct netdev_queue *queue,
const char *buf, size_t len)
{
struct dql *dql = &queue->dql;
unsigned int value;
int err;
err = kstrtouint(buf, 10, &value);
if (err < 0)
return err;
value = msecs_to_jiffies(value);
if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
return -ERANGE;
if (!dql->stall_thrs && value)
dql->last_reap = jiffies;
/* Force last_reap to be live */
smp_wmb();
dql->stall_thrs = value;
return len;
}
static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
static ssize_t bql_show_stall_max(struct netdev_queue *queue, char *buf)
{
return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
}
static ssize_t bql_set_stall_max(struct netdev_queue *queue,
const char *buf, size_t len)
{
WRITE_ONCE(queue->dql.stall_max, 0);
return len;
}
static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
static ssize_t bql_show_stall_cnt(struct netdev_queue *queue, char *buf)
{
struct dql *dql = &queue->dql;
return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
}
static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
static ssize_t bql_show_inflight(struct netdev_queue *queue,
char *buf)
{
struct dql *dql = &queue->dql;
return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
}
static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
__ATTR(inflight, 0444, bql_show_inflight, NULL);
#define BQL_ATTR(NAME, FIELD) \
static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \
char *buf) \
{ \
return bql_show(buf, queue->dql.FIELD); \
} \
\
static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \
const char *buf, size_t len) \
{ \
return bql_set(buf, len, &queue->dql.FIELD); \
} \
\
static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
= __ATTR(NAME, 0644, \
bql_show_ ## NAME, bql_set_ ## NAME)
BQL_ATTR(limit, limit);
BQL_ATTR(limit_max, max_limit);
BQL_ATTR(limit_min, min_limit);
static struct attribute *dql_attrs[] __ro_after_init = {
&bql_limit_attribute.attr,
&bql_limit_max_attribute.attr,
&bql_limit_min_attribute.attr,
&bql_hold_time_attribute.attr,
&bql_inflight_attribute.attr,
&bql_stall_thrs_attribute.attr,
&bql_stall_cnt_attribute.attr,
&bql_stall_max_attribute.attr,
NULL
};
static const struct attribute_group dql_group = {
.name = "byte_queue_limits",
.attrs = dql_attrs,
};
#else
/* Fake declaration, all the code using it should be dead */
static const struct attribute_group dql_group = {};
#endif /* CONFIG_BQL */
#ifdef CONFIG_XPS
static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
int tc, char *buf, enum xps_map_type type)
{
struct xps_dev_maps *dev_maps;
unsigned long *mask;
unsigned int nr_ids;
int j, len;
rcu_read_lock();
dev_maps = rcu_dereference(dev->xps_maps[type]);
/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
* when dev_maps hasn't been allocated yet, to be backward compatible.
*/
nr_ids = dev_maps ? dev_maps->nr_ids :
(type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
if (!mask) {
rcu_read_unlock();
return -ENOMEM;
}
if (!dev_maps || tc >= dev_maps->num_tc)
goto out_no_maps;
for (j = 0; j < nr_ids; j++) {
int i, tci = j * dev_maps->num_tc + tc;
struct xps_map *map;
map = rcu_dereference(dev_maps->attr_map[tci]);
if (!map)
continue;
for (i = map->len; i--;) {
if (map->queues[i] == index) {
__set_bit(j, mask);
break;
}
}
}
out_no_maps:
rcu_read_unlock();
len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
bitmap_free(mask);
return len < PAGE_SIZE ? len : -EINVAL;
}
static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
{
struct net_device *dev = queue->dev;
unsigned int index;
int len, tc;
if (!netif_is_multiqueue(dev))
return -ENOENT;
index = get_netdev_queue_index(queue);
if (!rtnl_trylock())
return restart_syscall();
/* If queue belongs to subordinate dev use its map */
dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
tc = netdev_txq_to_tc(dev, index);
if (tc < 0) {
rtnl_unlock();
return -EINVAL;
}
/* Make sure the subordinate device can't be freed */
get_device(&dev->dev);
rtnl_unlock();
len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
put_device(&dev->dev);
return len;
}
static ssize_t xps_cpus_store(struct netdev_queue *queue,
const char *buf, size_t len)
{
struct net_device *dev = queue->dev;
unsigned int index;
cpumask_var_t mask;
int err;
if (!netif_is_multiqueue(dev))
return -ENOENT;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (!alloc_cpumask_var(&mask, GFP_KERNEL))
return -ENOMEM;
index = get_netdev_queue_index(queue);
err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
if (err) {
free_cpumask_var(mask);
return err;
}
if (!rtnl_trylock()) {
free_cpumask_var(mask);
return restart_syscall();
}
err = netif_set_xps_queue(dev, mask, index);
rtnl_unlock();
free_cpumask_var(mask);
return err ? : len;
}
static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
= __ATTR_RW(xps_cpus);
static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
{
struct net_device *dev = queue->dev;
unsigned int index;
int tc;
index = get_netdev_queue_index(queue);
if (!rtnl_trylock())
return restart_syscall();
tc = netdev_txq_to_tc(dev, index);
rtnl_unlock();
if (tc < 0)
return -EINVAL;
return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
}
static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
size_t len)
{
struct net_device *dev = queue->dev;
struct net *net = dev_net(dev);
unsigned long *mask;
unsigned int index;
int err;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
if (!mask)
return -ENOMEM;
index = get_netdev_queue_index(queue);
err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
if (err) {
bitmap_free(mask);
return err;
}
if (!rtnl_trylock()) {
bitmap_free(mask);
return restart_syscall();
}
cpus_read_lock();
err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
cpus_read_unlock();
rtnl_unlock();
bitmap_free(mask);
return err ? : len;
}
static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
= __ATTR_RW(xps_rxqs);
#endif /* CONFIG_XPS */
static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
&queue_trans_timeout.attr,
&queue_traffic_class.attr,
#ifdef CONFIG_XPS
&xps_cpus_attribute.attr,
&xps_rxqs_attribute.attr,
&queue_tx_maxrate.attr,
#endif
NULL
};
ATTRIBUTE_GROUPS(netdev_queue_default);
static void netdev_queue_release(struct kobject *kobj)
{
struct netdev_queue *queue = to_netdev_queue(kobj);
memset(kobj, 0, sizeof(*kobj));
netdev_put(queue->dev, &queue->dev_tracker);
}
static const void *netdev_queue_namespace(const struct kobject *kobj)
{
struct netdev_queue *queue = to_netdev_queue(kobj);
struct device *dev = &queue->dev->dev;
const void *ns = NULL;
if (dev->class && dev->class->ns_type)
ns = dev->class->namespace(dev);
return ns;
}
static void netdev_queue_get_ownership(const struct kobject *kobj,
kuid_t *uid, kgid_t *gid)
{
const struct net *net = netdev_queue_namespace(kobj);
net_ns_get_ownership(net, uid, gid);
}
static const struct kobj_type netdev_queue_ktype = {
.sysfs_ops = &netdev_queue_sysfs_ops,
.release = netdev_queue_release,
.default_groups = netdev_queue_default_groups,
.namespace = netdev_queue_namespace,
.get_ownership = netdev_queue_get_ownership,
};
static bool netdev_uses_bql(const struct net_device *dev)
{
if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
return false;
return IS_ENABLED(CONFIG_BQL);
}
static int netdev_queue_add_kobject(struct net_device *dev, int index)
{
struct netdev_queue *queue = dev->_tx + index;
struct kobject *kobj = &queue->kobj;
int error = 0;
/* Kobject_put later will trigger netdev_queue_release call
* which decreases dev refcount: Take that reference here
*/
netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
kobj->kset = dev->queues_kset;
error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
"tx-%u", index);
if (error)
goto err;
if (netdev_uses_bql(dev)) {
error = sysfs_create_group(kobj, &dql_group);
if (error)
goto err;
}
kobject_uevent(kobj, KOBJ_ADD);
return 0;
err:
kobject_put(kobj);
return error;
}
static int tx_queue_change_owner(struct net_device *ndev, int index,
kuid_t kuid, kgid_t kgid)
{
struct netdev_queue *queue = ndev->_tx + index;
struct kobject *kobj = &queue->kobj;
int error;
error = sysfs_change_owner(kobj, kuid, kgid);
if (error)
return error;
if (netdev_uses_bql(ndev))
error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
return error;
}
#endif /* CONFIG_SYSFS */
int
netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
{
#ifdef CONFIG_SYSFS
int i;
int error = 0;
/* Tx queue kobjects are allowed to be updated when a device is being
* unregistered, but solely to remove queues from qdiscs. Any path
* adding queues should be fixed.
*/
WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
"New queues can't be registered after device unregistration.");
for (i = old_num; i < new_num; i++) {
error = netdev_queue_add_kobject(dev, i);
if (error) {
new_num = old_num;
break;
}
}
while (--i >= new_num) {
struct netdev_queue *queue = dev->_tx + i;
if (!refcount_read(&dev_net(dev)->ns.count))
queue->kobj.uevent_suppress = 1;
if (netdev_uses_bql(dev))
sysfs_remove_group(&queue->kobj, &dql_group);
kobject_put(&queue->kobj);
}
return error;
#else
return 0;
#endif /* CONFIG_SYSFS */
}
static int net_tx_queue_change_owner(struct net_device *dev, int num,
kuid_t kuid, kgid_t kgid)
{
#ifdef CONFIG_SYSFS
int error = 0;
int i;
for (i = 0; i < num; i++) {
error = tx_queue_change_owner(dev, i, kuid, kgid);
if (error)
break;
}
return error;
#else
return 0;
#endif /* CONFIG_SYSFS */
}
static int register_queue_kobjects(struct net_device *dev)
{
int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
#ifdef CONFIG_SYSFS
dev->queues_kset = kset_create_and_add("queues",
NULL, &dev->dev.kobj);
if (!dev->queues_kset)
return -ENOMEM;
real_rx = dev->real_num_rx_queues;
#endif
real_tx = dev->real_num_tx_queues;
error = net_rx_queue_update_kobjects(dev, 0, real_rx);
if (error)
goto error;
rxq = real_rx;
error = netdev_queue_update_kobjects(dev, 0, real_tx);
if (error)
goto error;
txq = real_tx;
return 0;
error:
netdev_queue_update_kobjects(dev, txq, 0);
net_rx_queue_update_kobjects(dev, rxq, 0);
#ifdef CONFIG_SYSFS
kset_unregister(dev->queues_kset);
#endif
return error;
}
static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
{
int error = 0, real_rx = 0, real_tx = 0;
#ifdef CONFIG_SYSFS
if (ndev->queues_kset) {
error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
if (error)
return error;
}
real_rx = ndev->real_num_rx_queues;
#endif
real_tx = ndev->real_num_tx_queues;
error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
if (error)
return error;
error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
if (error)
return error;
return 0;
}
static void remove_queue_kobjects(struct net_device *dev)
{
int real_rx = 0, real_tx = 0;
#ifdef CONFIG_SYSFS
real_rx = dev->real_num_rx_queues;
#endif
real_tx = dev->real_num_tx_queues;
net_rx_queue_update_kobjects(dev, real_rx, 0);
netdev_queue_update_kobjects(dev, real_tx, 0);
dev->real_num_rx_queues = 0;
dev->real_num_tx_queues = 0;
#ifdef CONFIG_SYSFS
kset_unregister(dev->queues_kset);
#endif
}
static bool net_current_may_mount(void)
{
struct net *net = current->nsproxy->net_ns;
return ns_capable(net->user_ns, CAP_SYS_ADMIN);
}
static void *net_grab_current_ns(void)
{
struct net *ns = current->nsproxy->net_ns;
#ifdef CONFIG_NET_NS
if (ns)
refcount_inc(&ns->passive);
#endif
return ns;
}
static const void *net_initial_ns(void)
{
return &init_net;
}
static const void *net_netlink_ns(struct sock *sk)
{
return sock_net(sk);
}
const struct kobj_ns_type_operations net_ns_type_operations = {
.type = KOBJ_NS_TYPE_NET,
.current_may_mount = net_current_may_mount,
.grab_current_ns = net_grab_current_ns,
.netlink_ns = net_netlink_ns,
.initial_ns = net_initial_ns,
.drop_ns = net_drop_ns,
};
EXPORT_SYMBOL_GPL(net_ns_type_operations);
static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
{
const struct net_device *dev = to_net_dev(d);
int retval;
/* pass interface to uevent. */
retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
if (retval)
goto exit;
/* pass ifindex to uevent.
* ifindex is useful as it won't change (interface name may change)
* and is what RtNetlink uses natively.
*/
retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
exit:
return retval;
}
/*
* netdev_release -- destroy and free a dead device.
* Called when last reference to device kobject is gone.
*/
static void netdev_release(struct device *d)
{
struct net_device *dev = to_net_dev(d);
BUG_ON(dev->reg_state != NETREG_RELEASED);
/* no need to wait for rcu grace period:
* device is dead and about to be freed.
*/
kfree(rcu_access_pointer(dev->ifalias));
kvfree(dev);
}
static const void *net_namespace(const struct device *d)
{
const struct net_device *dev = to_net_dev(d);
return dev_net(dev);
}
static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
{
const struct net_device *dev = to_net_dev(d);
const struct net *net = dev_net(dev);
net_ns_get_ownership(net, uid, gid);
}
static const struct class net_class = {
.name = "net",
.dev_release = netdev_release,
.dev_groups = net_class_groups,
.dev_uevent = netdev_uevent,
.ns_type = &net_ns_type_operations,
.namespace = net_namespace,
.get_ownership = net_get_ownership,
};
#ifdef CONFIG_OF
static int of_dev_node_match(struct device *dev, const void *data)
{
for (; dev; dev = dev->parent) {
if (dev->of_node == data)
return 1;
}
return 0;
}
/*
* of_find_net_device_by_node - lookup the net device for the device node
* @np: OF device node
*
* Looks up the net_device structure corresponding with the device node.
* If successful, returns a pointer to the net_device with the embedded
* struct device refcount incremented by one, or NULL on failure. The
* refcount must be dropped when done with the net_device.
*/
struct net_device *of_find_net_device_by_node(struct device_node *np)
{
struct device *dev;
dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
if (!dev)
return NULL;
return to_net_dev(dev);
}
EXPORT_SYMBOL(of_find_net_device_by_node);
#endif
/* Delete sysfs entries but hold kobject reference until after all
* netdev references are gone.
*/
void netdev_unregister_kobject(struct net_device *ndev)
{
struct device *dev = &ndev->dev;
if (!refcount_read(&dev_net(ndev)->ns.count))
dev_set_uevent_suppress(dev, 1);
kobject_get(&dev->kobj);
remove_queue_kobjects(ndev);
pm_runtime_set_memalloc_noio(dev, false);
device_del(dev);
}
/* Create sysfs entries for network device. */
int netdev_register_kobject(struct net_device *ndev)
{
struct device *dev = &ndev->dev;
const struct attribute_group **groups = ndev->sysfs_groups;
int error = 0;
device_initialize(dev);
dev->class = &net_class;
dev->platform_data = ndev;
dev->groups = groups;
dev_set_name(dev, "%s", ndev->name);
#ifdef CONFIG_SYSFS
/* Allow for a device specific group */
if (*groups)
groups++;
*groups++ = &netstat_group;
if (wireless_group_needed(ndev))
*groups++ = &wireless_group;
#endif /* CONFIG_SYSFS */
error = device_add(dev);
if (error)
return error;
error = register_queue_kobjects(ndev);
if (error) {
device_del(dev);
return error;
}
pm_runtime_set_memalloc_noio(dev, true);
return error;
}
/* Change owner for sysfs entries when moving network devices across network
* namespaces owned by different user namespaces.
*/
int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
const struct net *net_new)
{
kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
struct device *dev = &ndev->dev;
int error;
net_ns_get_ownership(net_old, &old_uid, &old_gid);
net_ns_get_ownership(net_new, &new_uid, &new_gid);
/* The network namespace was changed but the owning user namespace is
* identical so there's no need to change the owner of sysfs entries.
*/
if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
return 0;
error = device_change_owner(dev, new_uid, new_gid);
if (error)
return error;
error = queue_change_owner(ndev, new_uid, new_gid);
if (error)
return error;
return 0;
}
int netdev_class_create_file_ns(const struct class_attribute *class_attr,
const void *ns)
{
return class_create_file_ns(&net_class, class_attr, ns);
}
EXPORT_SYMBOL(netdev_class_create_file_ns);
void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
const void *ns)
{
class_remove_file_ns(&net_class, class_attr, ns);
}
EXPORT_SYMBOL(netdev_class_remove_file_ns);
int __init netdev_kobject_init(void)
{
kobj_ns_type_register(&net_ns_type_operations);
return class_register(&net_class);
}