| // SPDX-License-Identifier: GPL-2.0-or-later |
| |
| #include <linux/memcontrol.h> |
| #include <linux/swap.h> |
| #include <linux/mm_inline.h> |
| #include <linux/pagewalk.h> |
| #include <linux/backing-dev.h> |
| #include <linux/swap_cgroup.h> |
| #include <linux/eventfd.h> |
| #include <linux/poll.h> |
| #include <linux/sort.h> |
| #include <linux/file.h> |
| #include <linux/seq_buf.h> |
| |
| #include "internal.h" |
| #include "swap.h" |
| #include "memcontrol-v1.h" |
| |
| /* |
| * Cgroups above their limits are maintained in a RB-Tree, independent of |
| * their hierarchy representation |
| */ |
| |
| struct mem_cgroup_tree_per_node { |
| struct rb_root rb_root; |
| struct rb_node *rb_rightmost; |
| spinlock_t lock; |
| }; |
| |
| struct mem_cgroup_tree { |
| struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; |
| }; |
| |
| static struct mem_cgroup_tree soft_limit_tree __read_mostly; |
| |
| /* |
| * Maximum loops in mem_cgroup_soft_reclaim(), used for soft |
| * limit reclaim to prevent infinite loops, if they ever occur. |
| */ |
| #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
| #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
| |
| /* Stuffs for move charges at task migration. */ |
| /* |
| * Types of charges to be moved. |
| */ |
| #define MOVE_ANON 0x1ULL |
| #define MOVE_FILE 0x2ULL |
| #define MOVE_MASK (MOVE_ANON | MOVE_FILE) |
| |
| /* "mc" and its members are protected by cgroup_mutex */ |
| static struct move_charge_struct { |
| spinlock_t lock; /* for from, to */ |
| struct mm_struct *mm; |
| struct mem_cgroup *from; |
| struct mem_cgroup *to; |
| unsigned long flags; |
| unsigned long precharge; |
| unsigned long moved_charge; |
| unsigned long moved_swap; |
| struct task_struct *moving_task; /* a task moving charges */ |
| wait_queue_head_t waitq; /* a waitq for other context */ |
| } mc = { |
| .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
| .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
| }; |
| |
| /* for OOM */ |
| struct mem_cgroup_eventfd_list { |
| struct list_head list; |
| struct eventfd_ctx *eventfd; |
| }; |
| |
| /* |
| * cgroup_event represents events which userspace want to receive. |
| */ |
| struct mem_cgroup_event { |
| /* |
| * memcg which the event belongs to. |
| */ |
| struct mem_cgroup *memcg; |
| /* |
| * eventfd to signal userspace about the event. |
| */ |
| struct eventfd_ctx *eventfd; |
| /* |
| * Each of these stored in a list by the cgroup. |
| */ |
| struct list_head list; |
| /* |
| * register_event() callback will be used to add new userspace |
| * waiter for changes related to this event. Use eventfd_signal() |
| * on eventfd to send notification to userspace. |
| */ |
| int (*register_event)(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, const char *args); |
| /* |
| * unregister_event() callback will be called when userspace closes |
| * the eventfd or on cgroup removing. This callback must be set, |
| * if you want provide notification functionality. |
| */ |
| void (*unregister_event)(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd); |
| /* |
| * All fields below needed to unregister event when |
| * userspace closes eventfd. |
| */ |
| poll_table pt; |
| wait_queue_head_t *wqh; |
| wait_queue_entry_t wait; |
| struct work_struct remove; |
| }; |
| |
| #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
| #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) |
| #define MEMFILE_ATTR(val) ((val) & 0xffff) |
| |
| enum { |
| RES_USAGE, |
| RES_LIMIT, |
| RES_MAX_USAGE, |
| RES_FAILCNT, |
| RES_SOFT_LIMIT, |
| }; |
| |
| #ifdef CONFIG_LOCKDEP |
| static struct lockdep_map memcg_oom_lock_dep_map = { |
| .name = "memcg_oom_lock", |
| }; |
| #endif |
| |
| DEFINE_SPINLOCK(memcg_oom_lock); |
| |
| static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, |
| struct mem_cgroup_tree_per_node *mctz, |
| unsigned long new_usage_in_excess) |
| { |
| struct rb_node **p = &mctz->rb_root.rb_node; |
| struct rb_node *parent = NULL; |
| struct mem_cgroup_per_node *mz_node; |
| bool rightmost = true; |
| |
| if (mz->on_tree) |
| return; |
| |
| mz->usage_in_excess = new_usage_in_excess; |
| if (!mz->usage_in_excess) |
| return; |
| while (*p) { |
| parent = *p; |
| mz_node = rb_entry(parent, struct mem_cgroup_per_node, |
| tree_node); |
| if (mz->usage_in_excess < mz_node->usage_in_excess) { |
| p = &(*p)->rb_left; |
| rightmost = false; |
| } else { |
| p = &(*p)->rb_right; |
| } |
| } |
| |
| if (rightmost) |
| mctz->rb_rightmost = &mz->tree_node; |
| |
| rb_link_node(&mz->tree_node, parent, p); |
| rb_insert_color(&mz->tree_node, &mctz->rb_root); |
| mz->on_tree = true; |
| } |
| |
| static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
| struct mem_cgroup_tree_per_node *mctz) |
| { |
| if (!mz->on_tree) |
| return; |
| |
| if (&mz->tree_node == mctz->rb_rightmost) |
| mctz->rb_rightmost = rb_prev(&mz->tree_node); |
| |
| rb_erase(&mz->tree_node, &mctz->rb_root); |
| mz->on_tree = false; |
| } |
| |
| static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, |
| struct mem_cgroup_tree_per_node *mctz) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mctz->lock, flags); |
| __mem_cgroup_remove_exceeded(mz, mctz); |
| spin_unlock_irqrestore(&mctz->lock, flags); |
| } |
| |
| static unsigned long soft_limit_excess(struct mem_cgroup *memcg) |
| { |
| unsigned long nr_pages = page_counter_read(&memcg->memory); |
| unsigned long soft_limit = READ_ONCE(memcg->soft_limit); |
| unsigned long excess = 0; |
| |
| if (nr_pages > soft_limit) |
| excess = nr_pages - soft_limit; |
| |
| return excess; |
| } |
| |
| static void memcg1_update_tree(struct mem_cgroup *memcg, int nid) |
| { |
| unsigned long excess; |
| struct mem_cgroup_per_node *mz; |
| struct mem_cgroup_tree_per_node *mctz; |
| |
| if (lru_gen_enabled()) { |
| if (soft_limit_excess(memcg)) |
| lru_gen_soft_reclaim(memcg, nid); |
| return; |
| } |
| |
| mctz = soft_limit_tree.rb_tree_per_node[nid]; |
| if (!mctz) |
| return; |
| /* |
| * Necessary to update all ancestors when hierarchy is used. |
| * because their event counter is not touched. |
| */ |
| for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
| mz = memcg->nodeinfo[nid]; |
| excess = soft_limit_excess(memcg); |
| /* |
| * We have to update the tree if mz is on RB-tree or |
| * mem is over its softlimit. |
| */ |
| if (excess || mz->on_tree) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&mctz->lock, flags); |
| /* if on-tree, remove it */ |
| if (mz->on_tree) |
| __mem_cgroup_remove_exceeded(mz, mctz); |
| /* |
| * Insert again. mz->usage_in_excess will be updated. |
| * If excess is 0, no tree ops. |
| */ |
| __mem_cgroup_insert_exceeded(mz, mctz, excess); |
| spin_unlock_irqrestore(&mctz->lock, flags); |
| } |
| } |
| } |
| |
| void memcg1_remove_from_trees(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup_tree_per_node *mctz; |
| struct mem_cgroup_per_node *mz; |
| int nid; |
| |
| for_each_node(nid) { |
| mz = memcg->nodeinfo[nid]; |
| mctz = soft_limit_tree.rb_tree_per_node[nid]; |
| if (mctz) |
| mem_cgroup_remove_exceeded(mz, mctz); |
| } |
| } |
| |
| static struct mem_cgroup_per_node * |
| __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) |
| { |
| struct mem_cgroup_per_node *mz; |
| |
| retry: |
| mz = NULL; |
| if (!mctz->rb_rightmost) |
| goto done; /* Nothing to reclaim from */ |
| |
| mz = rb_entry(mctz->rb_rightmost, |
| struct mem_cgroup_per_node, tree_node); |
| /* |
| * Remove the node now but someone else can add it back, |
| * we will to add it back at the end of reclaim to its correct |
| * position in the tree. |
| */ |
| __mem_cgroup_remove_exceeded(mz, mctz); |
| if (!soft_limit_excess(mz->memcg) || |
| !css_tryget(&mz->memcg->css)) |
| goto retry; |
| done: |
| return mz; |
| } |
| |
| static struct mem_cgroup_per_node * |
| mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) |
| { |
| struct mem_cgroup_per_node *mz; |
| |
| spin_lock_irq(&mctz->lock); |
| mz = __mem_cgroup_largest_soft_limit_node(mctz); |
| spin_unlock_irq(&mctz->lock); |
| return mz; |
| } |
| |
| static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
| pg_data_t *pgdat, |
| gfp_t gfp_mask, |
| unsigned long *total_scanned) |
| { |
| struct mem_cgroup *victim = NULL; |
| int total = 0; |
| int loop = 0; |
| unsigned long excess; |
| unsigned long nr_scanned; |
| struct mem_cgroup_reclaim_cookie reclaim = { |
| .pgdat = pgdat, |
| }; |
| |
| excess = soft_limit_excess(root_memcg); |
| |
| while (1) { |
| victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
| if (!victim) { |
| loop++; |
| if (loop >= 2) { |
| /* |
| * If we have not been able to reclaim |
| * anything, it might because there are |
| * no reclaimable pages under this hierarchy |
| */ |
| if (!total) |
| break; |
| /* |
| * We want to do more targeted reclaim. |
| * excess >> 2 is not to excessive so as to |
| * reclaim too much, nor too less that we keep |
| * coming back to reclaim from this cgroup |
| */ |
| if (total >= (excess >> 2) || |
| (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
| break; |
| } |
| continue; |
| } |
| total += mem_cgroup_shrink_node(victim, gfp_mask, false, |
| pgdat, &nr_scanned); |
| *total_scanned += nr_scanned; |
| if (!soft_limit_excess(root_memcg)) |
| break; |
| } |
| mem_cgroup_iter_break(root_memcg, victim); |
| return total; |
| } |
| |
| unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order, |
| gfp_t gfp_mask, |
| unsigned long *total_scanned) |
| { |
| unsigned long nr_reclaimed = 0; |
| struct mem_cgroup_per_node *mz, *next_mz = NULL; |
| unsigned long reclaimed; |
| int loop = 0; |
| struct mem_cgroup_tree_per_node *mctz; |
| unsigned long excess; |
| |
| if (lru_gen_enabled()) |
| return 0; |
| |
| if (order > 0) |
| return 0; |
| |
| mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; |
| |
| /* |
| * Do not even bother to check the largest node if the root |
| * is empty. Do it lockless to prevent lock bouncing. Races |
| * are acceptable as soft limit is best effort anyway. |
| */ |
| if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) |
| return 0; |
| |
| /* |
| * This loop can run a while, specially if mem_cgroup's continuously |
| * keep exceeding their soft limit and putting the system under |
| * pressure |
| */ |
| do { |
| if (next_mz) |
| mz = next_mz; |
| else |
| mz = mem_cgroup_largest_soft_limit_node(mctz); |
| if (!mz) |
| break; |
| |
| reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, |
| gfp_mask, total_scanned); |
| nr_reclaimed += reclaimed; |
| spin_lock_irq(&mctz->lock); |
| |
| /* |
| * If we failed to reclaim anything from this memory cgroup |
| * it is time to move on to the next cgroup |
| */ |
| next_mz = NULL; |
| if (!reclaimed) |
| next_mz = __mem_cgroup_largest_soft_limit_node(mctz); |
| |
| excess = soft_limit_excess(mz->memcg); |
| /* |
| * One school of thought says that we should not add |
| * back the node to the tree if reclaim returns 0. |
| * But our reclaim could return 0, simply because due |
| * to priority we are exposing a smaller subset of |
| * memory to reclaim from. Consider this as a longer |
| * term TODO. |
| */ |
| /* If excess == 0, no tree ops */ |
| __mem_cgroup_insert_exceeded(mz, mctz, excess); |
| spin_unlock_irq(&mctz->lock); |
| css_put(&mz->memcg->css); |
| loop++; |
| /* |
| * Could not reclaim anything and there are no more |
| * mem cgroups to try or we seem to be looping without |
| * reclaiming anything. |
| */ |
| if (!nr_reclaimed && |
| (next_mz == NULL || |
| loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) |
| break; |
| } while (!nr_reclaimed); |
| if (next_mz) |
| css_put(&next_mz->memcg->css); |
| return nr_reclaimed; |
| } |
| |
| /* |
| * A routine for checking "mem" is under move_account() or not. |
| * |
| * Checking a cgroup is mc.from or mc.to or under hierarchy of |
| * moving cgroups. This is for waiting at high-memory pressure |
| * caused by "move". |
| */ |
| static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *from; |
| struct mem_cgroup *to; |
| bool ret = false; |
| /* |
| * Unlike task_move routines, we access mc.to, mc.from not under |
| * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. |
| */ |
| spin_lock(&mc.lock); |
| from = mc.from; |
| to = mc.to; |
| if (!from) |
| goto unlock; |
| |
| ret = mem_cgroup_is_descendant(from, memcg) || |
| mem_cgroup_is_descendant(to, memcg); |
| unlock: |
| spin_unlock(&mc.lock); |
| return ret; |
| } |
| |
| bool memcg1_wait_acct_move(struct mem_cgroup *memcg) |
| { |
| if (mc.moving_task && current != mc.moving_task) { |
| if (mem_cgroup_under_move(memcg)) { |
| DEFINE_WAIT(wait); |
| prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); |
| /* moving charge context might have finished. */ |
| if (mc.moving_task) |
| schedule(); |
| finish_wait(&mc.waitq, &wait); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * folio_memcg_lock - Bind a folio to its memcg. |
| * @folio: The folio. |
| * |
| * This function prevents unlocked LRU folios from being moved to |
| * another cgroup. |
| * |
| * It ensures lifetime of the bound memcg. The caller is responsible |
| * for the lifetime of the folio. |
| */ |
| void folio_memcg_lock(struct folio *folio) |
| { |
| struct mem_cgroup *memcg; |
| unsigned long flags; |
| |
| /* |
| * The RCU lock is held throughout the transaction. The fast |
| * path can get away without acquiring the memcg->move_lock |
| * because page moving starts with an RCU grace period. |
| */ |
| rcu_read_lock(); |
| |
| if (mem_cgroup_disabled()) |
| return; |
| again: |
| memcg = folio_memcg(folio); |
| if (unlikely(!memcg)) |
| return; |
| |
| #ifdef CONFIG_PROVE_LOCKING |
| local_irq_save(flags); |
| might_lock(&memcg->move_lock); |
| local_irq_restore(flags); |
| #endif |
| |
| if (atomic_read(&memcg->moving_account) <= 0) |
| return; |
| |
| spin_lock_irqsave(&memcg->move_lock, flags); |
| if (memcg != folio_memcg(folio)) { |
| spin_unlock_irqrestore(&memcg->move_lock, flags); |
| goto again; |
| } |
| |
| /* |
| * When charge migration first begins, we can have multiple |
| * critical sections holding the fast-path RCU lock and one |
| * holding the slowpath move_lock. Track the task who has the |
| * move_lock for folio_memcg_unlock(). |
| */ |
| memcg->move_lock_task = current; |
| memcg->move_lock_flags = flags; |
| } |
| |
| static void __folio_memcg_unlock(struct mem_cgroup *memcg) |
| { |
| if (memcg && memcg->move_lock_task == current) { |
| unsigned long flags = memcg->move_lock_flags; |
| |
| memcg->move_lock_task = NULL; |
| memcg->move_lock_flags = 0; |
| |
| spin_unlock_irqrestore(&memcg->move_lock, flags); |
| } |
| |
| rcu_read_unlock(); |
| } |
| |
| /** |
| * folio_memcg_unlock - Release the binding between a folio and its memcg. |
| * @folio: The folio. |
| * |
| * This releases the binding created by folio_memcg_lock(). This does |
| * not change the accounting of this folio to its memcg, but it does |
| * permit others to change it. |
| */ |
| void folio_memcg_unlock(struct folio *folio) |
| { |
| __folio_memcg_unlock(folio_memcg(folio)); |
| } |
| |
| #ifdef CONFIG_SWAP |
| /** |
| * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. |
| * @entry: swap entry to be moved |
| * @from: mem_cgroup which the entry is moved from |
| * @to: mem_cgroup which the entry is moved to |
| * |
| * It succeeds only when the swap_cgroup's record for this entry is the same |
| * as the mem_cgroup's id of @from. |
| * |
| * Returns 0 on success, -EINVAL on failure. |
| * |
| * The caller must have charged to @to, IOW, called page_counter_charge() about |
| * both res and memsw, and called css_get(). |
| */ |
| static int mem_cgroup_move_swap_account(swp_entry_t entry, |
| struct mem_cgroup *from, struct mem_cgroup *to) |
| { |
| unsigned short old_id, new_id; |
| |
| old_id = mem_cgroup_id(from); |
| new_id = mem_cgroup_id(to); |
| |
| if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { |
| mod_memcg_state(from, MEMCG_SWAP, -1); |
| mod_memcg_state(to, MEMCG_SWAP, 1); |
| return 0; |
| } |
| return -EINVAL; |
| } |
| #else |
| static inline int mem_cgroup_move_swap_account(swp_entry_t entry, |
| struct mem_cgroup *from, struct mem_cgroup *to) |
| { |
| return -EINVAL; |
| } |
| #endif |
| |
| static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
| } |
| |
| #ifdef CONFIG_MMU |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| |
| pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. " |
| "Please report your usecase to linux-mm@kvack.org if you " |
| "depend on this functionality.\n"); |
| |
| if (val & ~MOVE_MASK) |
| return -EINVAL; |
| |
| /* |
| * No kind of locking is needed in here, because ->can_attach() will |
| * check this value once in the beginning of the process, and then carry |
| * on with stale data. This means that changes to this value will only |
| * affect task migrations starting after the change. |
| */ |
| memcg->move_charge_at_immigrate = val; |
| return 0; |
| } |
| #else |
| static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| return -ENOSYS; |
| } |
| #endif |
| |
| #ifdef CONFIG_MMU |
| /* Handlers for move charge at task migration. */ |
| static int mem_cgroup_do_precharge(unsigned long count) |
| { |
| int ret; |
| |
| /* Try a single bulk charge without reclaim first, kswapd may wake */ |
| ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); |
| if (!ret) { |
| mc.precharge += count; |
| return ret; |
| } |
| |
| /* Try charges one by one with reclaim, but do not retry */ |
| while (count--) { |
| ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); |
| if (ret) |
| return ret; |
| mc.precharge++; |
| cond_resched(); |
| } |
| return 0; |
| } |
| |
| union mc_target { |
| struct folio *folio; |
| swp_entry_t ent; |
| }; |
| |
| enum mc_target_type { |
| MC_TARGET_NONE = 0, |
| MC_TARGET_PAGE, |
| MC_TARGET_SWAP, |
| MC_TARGET_DEVICE, |
| }; |
| |
| static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
| unsigned long addr, pte_t ptent) |
| { |
| struct page *page = vm_normal_page(vma, addr, ptent); |
| |
| if (!page) |
| return NULL; |
| if (PageAnon(page)) { |
| if (!(mc.flags & MOVE_ANON)) |
| return NULL; |
| } else { |
| if (!(mc.flags & MOVE_FILE)) |
| return NULL; |
| } |
| get_page(page); |
| |
| return page; |
| } |
| |
| #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) |
| static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
| pte_t ptent, swp_entry_t *entry) |
| { |
| struct page *page = NULL; |
| swp_entry_t ent = pte_to_swp_entry(ptent); |
| |
| if (!(mc.flags & MOVE_ANON)) |
| return NULL; |
| |
| /* |
| * Handle device private pages that are not accessible by the CPU, but |
| * stored as special swap entries in the page table. |
| */ |
| if (is_device_private_entry(ent)) { |
| page = pfn_swap_entry_to_page(ent); |
| if (!get_page_unless_zero(page)) |
| return NULL; |
| return page; |
| } |
| |
| if (non_swap_entry(ent)) |
| return NULL; |
| |
| /* |
| * Because swap_cache_get_folio() updates some statistics counter, |
| * we call find_get_page() with swapper_space directly. |
| */ |
| page = find_get_page(swap_address_space(ent), swap_cache_index(ent)); |
| entry->val = ent.val; |
| |
| return page; |
| } |
| #else |
| static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
| pte_t ptent, swp_entry_t *entry) |
| { |
| return NULL; |
| } |
| #endif |
| |
| static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
| unsigned long addr, pte_t ptent) |
| { |
| unsigned long index; |
| struct folio *folio; |
| |
| if (!vma->vm_file) /* anonymous vma */ |
| return NULL; |
| if (!(mc.flags & MOVE_FILE)) |
| return NULL; |
| |
| /* folio is moved even if it's not RSS of this task(page-faulted). */ |
| /* shmem/tmpfs may report page out on swap: account for that too. */ |
| index = linear_page_index(vma, addr); |
| folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); |
| if (IS_ERR(folio)) |
| return NULL; |
| return folio_file_page(folio, index); |
| } |
| |
| /** |
| * mem_cgroup_move_account - move account of the folio |
| * @folio: The folio. |
| * @compound: charge the page as compound or small page |
| * @from: mem_cgroup which the folio is moved from. |
| * @to: mem_cgroup which the folio is moved to. @from != @to. |
| * |
| * The folio must be locked and not on the LRU. |
| * |
| * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
| * from old cgroup. |
| */ |
| static int mem_cgroup_move_account(struct folio *folio, |
| bool compound, |
| struct mem_cgroup *from, |
| struct mem_cgroup *to) |
| { |
| struct lruvec *from_vec, *to_vec; |
| struct pglist_data *pgdat; |
| unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; |
| int nid, ret; |
| |
| VM_BUG_ON(from == to); |
| VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
| VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); |
| VM_BUG_ON(compound && !folio_test_large(folio)); |
| |
| ret = -EINVAL; |
| if (folio_memcg(folio) != from) |
| goto out; |
| |
| pgdat = folio_pgdat(folio); |
| from_vec = mem_cgroup_lruvec(from, pgdat); |
| to_vec = mem_cgroup_lruvec(to, pgdat); |
| |
| folio_memcg_lock(folio); |
| |
| if (folio_test_anon(folio)) { |
| if (folio_mapped(folio)) { |
| __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); |
| if (folio_test_pmd_mappable(folio)) { |
| __mod_lruvec_state(from_vec, NR_ANON_THPS, |
| -nr_pages); |
| __mod_lruvec_state(to_vec, NR_ANON_THPS, |
| nr_pages); |
| } |
| } |
| } else { |
| __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); |
| |
| if (folio_test_swapbacked(folio)) { |
| __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); |
| } |
| |
| if (folio_mapped(folio)) { |
| __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); |
| } |
| |
| if (folio_test_dirty(folio)) { |
| struct address_space *mapping = folio_mapping(folio); |
| |
| if (mapping_can_writeback(mapping)) { |
| __mod_lruvec_state(from_vec, NR_FILE_DIRTY, |
| -nr_pages); |
| __mod_lruvec_state(to_vec, NR_FILE_DIRTY, |
| nr_pages); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_SWAP |
| if (folio_test_swapcache(folio)) { |
| __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); |
| } |
| #endif |
| if (folio_test_writeback(folio)) { |
| __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); |
| __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); |
| } |
| |
| /* |
| * All state has been migrated, let's switch to the new memcg. |
| * |
| * It is safe to change page's memcg here because the page |
| * is referenced, charged, isolated, and locked: we can't race |
| * with (un)charging, migration, LRU putback, or anything else |
| * that would rely on a stable page's memory cgroup. |
| * |
| * Note that folio_memcg_lock is a memcg lock, not a page lock, |
| * to save space. As soon as we switch page's memory cgroup to a |
| * new memcg that isn't locked, the above state can change |
| * concurrently again. Make sure we're truly done with it. |
| */ |
| smp_mb(); |
| |
| css_get(&to->css); |
| css_put(&from->css); |
| |
| folio->memcg_data = (unsigned long)to; |
| |
| __folio_memcg_unlock(from); |
| |
| ret = 0; |
| nid = folio_nid(folio); |
| |
| local_irq_disable(); |
| mem_cgroup_charge_statistics(to, nr_pages); |
| memcg1_check_events(to, nid); |
| mem_cgroup_charge_statistics(from, -nr_pages); |
| memcg1_check_events(from, nid); |
| local_irq_enable(); |
| out: |
| return ret; |
| } |
| |
| /** |
| * get_mctgt_type - get target type of moving charge |
| * @vma: the vma the pte to be checked belongs |
| * @addr: the address corresponding to the pte to be checked |
| * @ptent: the pte to be checked |
| * @target: the pointer the target page or swap ent will be stored(can be NULL) |
| * |
| * Context: Called with pte lock held. |
| * Return: |
| * * MC_TARGET_NONE - If the pte is not a target for move charge. |
| * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for |
| * move charge. If @target is not NULL, the folio is stored in target->folio |
| * with extra refcnt taken (Caller should release it). |
| * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a |
| * target for charge migration. If @target is not NULL, the entry is |
| * stored in target->ent. |
| * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and |
| * thus not on the lru. For now such page is charged like a regular page |
| * would be as it is just special memory taking the place of a regular page. |
| * See Documentations/vm/hmm.txt and include/linux/hmm.h |
| */ |
| static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
| unsigned long addr, pte_t ptent, union mc_target *target) |
| { |
| struct page *page = NULL; |
| struct folio *folio; |
| enum mc_target_type ret = MC_TARGET_NONE; |
| swp_entry_t ent = { .val = 0 }; |
| |
| if (pte_present(ptent)) |
| page = mc_handle_present_pte(vma, addr, ptent); |
| else if (pte_none_mostly(ptent)) |
| /* |
| * PTE markers should be treated as a none pte here, separated |
| * from other swap handling below. |
| */ |
| page = mc_handle_file_pte(vma, addr, ptent); |
| else if (is_swap_pte(ptent)) |
| page = mc_handle_swap_pte(vma, ptent, &ent); |
| |
| if (page) |
| folio = page_folio(page); |
| if (target && page) { |
| if (!folio_trylock(folio)) { |
| folio_put(folio); |
| return ret; |
| } |
| /* |
| * page_mapped() must be stable during the move. This |
| * pte is locked, so if it's present, the page cannot |
| * become unmapped. If it isn't, we have only partial |
| * control over the mapped state: the page lock will |
| * prevent new faults against pagecache and swapcache, |
| * so an unmapped page cannot become mapped. However, |
| * if the page is already mapped elsewhere, it can |
| * unmap, and there is nothing we can do about it. |
| * Alas, skip moving the page in this case. |
| */ |
| if (!pte_present(ptent) && page_mapped(page)) { |
| folio_unlock(folio); |
| folio_put(folio); |
| return ret; |
| } |
| } |
| |
| if (!page && !ent.val) |
| return ret; |
| if (page) { |
| /* |
| * Do only loose check w/o serialization. |
| * mem_cgroup_move_account() checks the page is valid or |
| * not under LRU exclusion. |
| */ |
| if (folio_memcg(folio) == mc.from) { |
| ret = MC_TARGET_PAGE; |
| if (folio_is_device_private(folio) || |
| folio_is_device_coherent(folio)) |
| ret = MC_TARGET_DEVICE; |
| if (target) |
| target->folio = folio; |
| } |
| if (!ret || !target) { |
| if (target) |
| folio_unlock(folio); |
| folio_put(folio); |
| } |
| } |
| /* |
| * There is a swap entry and a page doesn't exist or isn't charged. |
| * But we cannot move a tail-page in a THP. |
| */ |
| if (ent.val && !ret && (!page || !PageTransCompound(page)) && |
| mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { |
| ret = MC_TARGET_SWAP; |
| if (target) |
| target->ent = ent; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| /* |
| * We don't consider PMD mapped swapping or file mapped pages because THP does |
| * not support them for now. |
| * Caller should make sure that pmd_trans_huge(pmd) is true. |
| */ |
| static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t pmd, union mc_target *target) |
| { |
| struct page *page = NULL; |
| struct folio *folio; |
| enum mc_target_type ret = MC_TARGET_NONE; |
| |
| if (unlikely(is_swap_pmd(pmd))) { |
| VM_BUG_ON(thp_migration_supported() && |
| !is_pmd_migration_entry(pmd)); |
| return ret; |
| } |
| page = pmd_page(pmd); |
| VM_BUG_ON_PAGE(!page || !PageHead(page), page); |
| folio = page_folio(page); |
| if (!(mc.flags & MOVE_ANON)) |
| return ret; |
| if (folio_memcg(folio) == mc.from) { |
| ret = MC_TARGET_PAGE; |
| if (target) { |
| folio_get(folio); |
| if (!folio_trylock(folio)) { |
| folio_put(folio); |
| return MC_TARGET_NONE; |
| } |
| target->folio = folio; |
| } |
| } |
| return ret; |
| } |
| #else |
| static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, |
| unsigned long addr, pmd_t pmd, union mc_target *target) |
| { |
| return MC_TARGET_NONE; |
| } |
| #endif |
| |
| static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *pte; |
| spinlock_t *ptl; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| /* |
| * Note their can not be MC_TARGET_DEVICE for now as we do not |
| * support transparent huge page with MEMORY_DEVICE_PRIVATE but |
| * this might change. |
| */ |
| if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
| mc.precharge += HPAGE_PMD_NR; |
| spin_unlock(ptl); |
| return 0; |
| } |
| |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| if (!pte) |
| return 0; |
| for (; addr != end; pte++, addr += PAGE_SIZE) |
| if (get_mctgt_type(vma, addr, ptep_get(pte), NULL)) |
| mc.precharge++; /* increment precharge temporarily */ |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| |
| return 0; |
| } |
| |
| static const struct mm_walk_ops precharge_walk_ops = { |
| .pmd_entry = mem_cgroup_count_precharge_pte_range, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
| { |
| unsigned long precharge; |
| |
| mmap_read_lock(mm); |
| walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); |
| mmap_read_unlock(mm); |
| |
| precharge = mc.precharge; |
| mc.precharge = 0; |
| |
| return precharge; |
| } |
| |
| static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
| { |
| unsigned long precharge = mem_cgroup_count_precharge(mm); |
| |
| VM_BUG_ON(mc.moving_task); |
| mc.moving_task = current; |
| return mem_cgroup_do_precharge(precharge); |
| } |
| |
| /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
| static void __mem_cgroup_clear_mc(void) |
| { |
| struct mem_cgroup *from = mc.from; |
| struct mem_cgroup *to = mc.to; |
| |
| /* we must uncharge all the leftover precharges from mc.to */ |
| if (mc.precharge) { |
| mem_cgroup_cancel_charge(mc.to, mc.precharge); |
| mc.precharge = 0; |
| } |
| /* |
| * we didn't uncharge from mc.from at mem_cgroup_move_account(), so |
| * we must uncharge here. |
| */ |
| if (mc.moved_charge) { |
| mem_cgroup_cancel_charge(mc.from, mc.moved_charge); |
| mc.moved_charge = 0; |
| } |
| /* we must fixup refcnts and charges */ |
| if (mc.moved_swap) { |
| /* uncharge swap account from the old cgroup */ |
| if (!mem_cgroup_is_root(mc.from)) |
| page_counter_uncharge(&mc.from->memsw, mc.moved_swap); |
| |
| mem_cgroup_id_put_many(mc.from, mc.moved_swap); |
| |
| /* |
| * we charged both to->memory and to->memsw, so we |
| * should uncharge to->memory. |
| */ |
| if (!mem_cgroup_is_root(mc.to)) |
| page_counter_uncharge(&mc.to->memory, mc.moved_swap); |
| |
| mc.moved_swap = 0; |
| } |
| memcg1_oom_recover(from); |
| memcg1_oom_recover(to); |
| wake_up_all(&mc.waitq); |
| } |
| |
| static void mem_cgroup_clear_mc(void) |
| { |
| struct mm_struct *mm = mc.mm; |
| |
| /* |
| * we must clear moving_task before waking up waiters at the end of |
| * task migration. |
| */ |
| mc.moving_task = NULL; |
| __mem_cgroup_clear_mc(); |
| spin_lock(&mc.lock); |
| mc.from = NULL; |
| mc.to = NULL; |
| mc.mm = NULL; |
| spin_unlock(&mc.lock); |
| |
| mmput(mm); |
| } |
| |
| int memcg1_can_attach(struct cgroup_taskset *tset) |
| { |
| struct cgroup_subsys_state *css; |
| struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ |
| struct mem_cgroup *from; |
| struct task_struct *leader, *p; |
| struct mm_struct *mm; |
| unsigned long move_flags; |
| int ret = 0; |
| |
| /* charge immigration isn't supported on the default hierarchy */ |
| if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
| return 0; |
| |
| /* |
| * Multi-process migrations only happen on the default hierarchy |
| * where charge immigration is not used. Perform charge |
| * immigration if @tset contains a leader and whine if there are |
| * multiple. |
| */ |
| p = NULL; |
| cgroup_taskset_for_each_leader(leader, css, tset) { |
| WARN_ON_ONCE(p); |
| p = leader; |
| memcg = mem_cgroup_from_css(css); |
| } |
| if (!p) |
| return 0; |
| |
| /* |
| * We are now committed to this value whatever it is. Changes in this |
| * tunable will only affect upcoming migrations, not the current one. |
| * So we need to save it, and keep it going. |
| */ |
| move_flags = READ_ONCE(memcg->move_charge_at_immigrate); |
| if (!move_flags) |
| return 0; |
| |
| from = mem_cgroup_from_task(p); |
| |
| VM_BUG_ON(from == memcg); |
| |
| mm = get_task_mm(p); |
| if (!mm) |
| return 0; |
| /* We move charges only when we move a owner of the mm */ |
| if (mm->owner == p) { |
| VM_BUG_ON(mc.from); |
| VM_BUG_ON(mc.to); |
| VM_BUG_ON(mc.precharge); |
| VM_BUG_ON(mc.moved_charge); |
| VM_BUG_ON(mc.moved_swap); |
| |
| spin_lock(&mc.lock); |
| mc.mm = mm; |
| mc.from = from; |
| mc.to = memcg; |
| mc.flags = move_flags; |
| spin_unlock(&mc.lock); |
| /* We set mc.moving_task later */ |
| |
| ret = mem_cgroup_precharge_mc(mm); |
| if (ret) |
| mem_cgroup_clear_mc(); |
| } else { |
| mmput(mm); |
| } |
| return ret; |
| } |
| |
| void memcg1_cancel_attach(struct cgroup_taskset *tset) |
| { |
| if (mc.to) |
| mem_cgroup_clear_mc(); |
| } |
| |
| static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
| unsigned long addr, unsigned long end, |
| struct mm_walk *walk) |
| { |
| int ret = 0; |
| struct vm_area_struct *vma = walk->vma; |
| pte_t *pte; |
| spinlock_t *ptl; |
| enum mc_target_type target_type; |
| union mc_target target; |
| struct folio *folio; |
| |
| ptl = pmd_trans_huge_lock(pmd, vma); |
| if (ptl) { |
| if (mc.precharge < HPAGE_PMD_NR) { |
| spin_unlock(ptl); |
| return 0; |
| } |
| target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); |
| if (target_type == MC_TARGET_PAGE) { |
| folio = target.folio; |
| if (folio_isolate_lru(folio)) { |
| if (!mem_cgroup_move_account(folio, true, |
| mc.from, mc.to)) { |
| mc.precharge -= HPAGE_PMD_NR; |
| mc.moved_charge += HPAGE_PMD_NR; |
| } |
| folio_putback_lru(folio); |
| } |
| folio_unlock(folio); |
| folio_put(folio); |
| } else if (target_type == MC_TARGET_DEVICE) { |
| folio = target.folio; |
| if (!mem_cgroup_move_account(folio, true, |
| mc.from, mc.to)) { |
| mc.precharge -= HPAGE_PMD_NR; |
| mc.moved_charge += HPAGE_PMD_NR; |
| } |
| folio_unlock(folio); |
| folio_put(folio); |
| } |
| spin_unlock(ptl); |
| return 0; |
| } |
| |
| retry: |
| pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
| if (!pte) |
| return 0; |
| for (; addr != end; addr += PAGE_SIZE) { |
| pte_t ptent = ptep_get(pte++); |
| bool device = false; |
| swp_entry_t ent; |
| |
| if (!mc.precharge) |
| break; |
| |
| switch (get_mctgt_type(vma, addr, ptent, &target)) { |
| case MC_TARGET_DEVICE: |
| device = true; |
| fallthrough; |
| case MC_TARGET_PAGE: |
| folio = target.folio; |
| /* |
| * We can have a part of the split pmd here. Moving it |
| * can be done but it would be too convoluted so simply |
| * ignore such a partial THP and keep it in original |
| * memcg. There should be somebody mapping the head. |
| */ |
| if (folio_test_large(folio)) |
| goto put; |
| if (!device && !folio_isolate_lru(folio)) |
| goto put; |
| if (!mem_cgroup_move_account(folio, false, |
| mc.from, mc.to)) { |
| mc.precharge--; |
| /* we uncharge from mc.from later. */ |
| mc.moved_charge++; |
| } |
| if (!device) |
| folio_putback_lru(folio); |
| put: /* get_mctgt_type() gets & locks the page */ |
| folio_unlock(folio); |
| folio_put(folio); |
| break; |
| case MC_TARGET_SWAP: |
| ent = target.ent; |
| if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
| mc.precharge--; |
| mem_cgroup_id_get_many(mc.to, 1); |
| /* we fixup other refcnts and charges later. */ |
| mc.moved_swap++; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| pte_unmap_unlock(pte - 1, ptl); |
| cond_resched(); |
| |
| if (addr != end) { |
| /* |
| * We have consumed all precharges we got in can_attach(). |
| * We try charge one by one, but don't do any additional |
| * charges to mc.to if we have failed in charge once in attach() |
| * phase. |
| */ |
| ret = mem_cgroup_do_precharge(1); |
| if (!ret) |
| goto retry; |
| } |
| |
| return ret; |
| } |
| |
| static const struct mm_walk_ops charge_walk_ops = { |
| .pmd_entry = mem_cgroup_move_charge_pte_range, |
| .walk_lock = PGWALK_RDLOCK, |
| }; |
| |
| static void mem_cgroup_move_charge(void) |
| { |
| lru_add_drain_all(); |
| /* |
| * Signal folio_memcg_lock() to take the memcg's move_lock |
| * while we're moving its pages to another memcg. Then wait |
| * for already started RCU-only updates to finish. |
| */ |
| atomic_inc(&mc.from->moving_account); |
| synchronize_rcu(); |
| retry: |
| if (unlikely(!mmap_read_trylock(mc.mm))) { |
| /* |
| * Someone who are holding the mmap_lock might be waiting in |
| * waitq. So we cancel all extra charges, wake up all waiters, |
| * and retry. Because we cancel precharges, we might not be able |
| * to move enough charges, but moving charge is a best-effort |
| * feature anyway, so it wouldn't be a big problem. |
| */ |
| __mem_cgroup_clear_mc(); |
| cond_resched(); |
| goto retry; |
| } |
| /* |
| * When we have consumed all precharges and failed in doing |
| * additional charge, the page walk just aborts. |
| */ |
| walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); |
| mmap_read_unlock(mc.mm); |
| atomic_dec(&mc.from->moving_account); |
| } |
| |
| void memcg1_move_task(void) |
| { |
| if (mc.to) { |
| mem_cgroup_move_charge(); |
| mem_cgroup_clear_mc(); |
| } |
| } |
| |
| #else /* !CONFIG_MMU */ |
| int memcg1_can_attach(struct cgroup_taskset *tset) |
| { |
| return 0; |
| } |
| void memcg1_cancel_attach(struct cgroup_taskset *tset) |
| { |
| } |
| void memcg1_move_task(void) |
| { |
| } |
| #endif |
| |
| static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
| { |
| struct mem_cgroup_threshold_ary *t; |
| unsigned long usage; |
| int i; |
| |
| rcu_read_lock(); |
| if (!swap) |
| t = rcu_dereference(memcg->thresholds.primary); |
| else |
| t = rcu_dereference(memcg->memsw_thresholds.primary); |
| |
| if (!t) |
| goto unlock; |
| |
| usage = mem_cgroup_usage(memcg, swap); |
| |
| /* |
| * current_threshold points to threshold just below or equal to usage. |
| * If it's not true, a threshold was crossed after last |
| * call of __mem_cgroup_threshold(). |
| */ |
| i = t->current_threshold; |
| |
| /* |
| * Iterate backward over array of thresholds starting from |
| * current_threshold and check if a threshold is crossed. |
| * If none of thresholds below usage is crossed, we read |
| * only one element of the array here. |
| */ |
| for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) |
| eventfd_signal(t->entries[i].eventfd); |
| |
| /* i = current_threshold + 1 */ |
| i++; |
| |
| /* |
| * Iterate forward over array of thresholds starting from |
| * current_threshold+1 and check if a threshold is crossed. |
| * If none of thresholds above usage is crossed, we read |
| * only one element of the array here. |
| */ |
| for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) |
| eventfd_signal(t->entries[i].eventfd); |
| |
| /* Update current_threshold */ |
| t->current_threshold = i - 1; |
| unlock: |
| rcu_read_unlock(); |
| } |
| |
| static void mem_cgroup_threshold(struct mem_cgroup *memcg) |
| { |
| while (memcg) { |
| __mem_cgroup_threshold(memcg, false); |
| if (do_memsw_account()) |
| __mem_cgroup_threshold(memcg, true); |
| |
| memcg = parent_mem_cgroup(memcg); |
| } |
| } |
| |
| /* |
| * Check events in order. |
| * |
| */ |
| void memcg1_check_events(struct mem_cgroup *memcg, int nid) |
| { |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| return; |
| |
| /* threshold event is triggered in finer grain than soft limit */ |
| if (unlikely(mem_cgroup_event_ratelimit(memcg, |
| MEM_CGROUP_TARGET_THRESH))) { |
| bool do_softlimit; |
| |
| do_softlimit = mem_cgroup_event_ratelimit(memcg, |
| MEM_CGROUP_TARGET_SOFTLIMIT); |
| mem_cgroup_threshold(memcg); |
| if (unlikely(do_softlimit)) |
| memcg1_update_tree(memcg, nid); |
| } |
| } |
| |
| static int compare_thresholds(const void *a, const void *b) |
| { |
| const struct mem_cgroup_threshold *_a = a; |
| const struct mem_cgroup_threshold *_b = b; |
| |
| if (_a->threshold > _b->threshold) |
| return 1; |
| |
| if (_a->threshold < _b->threshold) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup_eventfd_list *ev; |
| |
| spin_lock(&memcg_oom_lock); |
| |
| list_for_each_entry(ev, &memcg->oom_notify, list) |
| eventfd_signal(ev->eventfd); |
| |
| spin_unlock(&memcg_oom_lock); |
| return 0; |
| } |
| |
| static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *iter; |
| |
| for_each_mem_cgroup_tree(iter, memcg) |
| mem_cgroup_oom_notify_cb(iter); |
| } |
| |
| static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, const char *args, enum res_type type) |
| { |
| struct mem_cgroup_thresholds *thresholds; |
| struct mem_cgroup_threshold_ary *new; |
| unsigned long threshold; |
| unsigned long usage; |
| int i, size, ret; |
| |
| ret = page_counter_memparse(args, "-1", &threshold); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&memcg->thresholds_lock); |
| |
| if (type == _MEM) { |
| thresholds = &memcg->thresholds; |
| usage = mem_cgroup_usage(memcg, false); |
| } else if (type == _MEMSWAP) { |
| thresholds = &memcg->memsw_thresholds; |
| usage = mem_cgroup_usage(memcg, true); |
| } else |
| BUG(); |
| |
| /* Check if a threshold crossed before adding a new one */ |
| if (thresholds->primary) |
| __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
| |
| size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
| |
| /* Allocate memory for new array of thresholds */ |
| new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); |
| if (!new) { |
| ret = -ENOMEM; |
| goto unlock; |
| } |
| new->size = size; |
| |
| /* Copy thresholds (if any) to new array */ |
| if (thresholds->primary) |
| memcpy(new->entries, thresholds->primary->entries, |
| flex_array_size(new, entries, size - 1)); |
| |
| /* Add new threshold */ |
| new->entries[size - 1].eventfd = eventfd; |
| new->entries[size - 1].threshold = threshold; |
| |
| /* Sort thresholds. Registering of new threshold isn't time-critical */ |
| sort(new->entries, size, sizeof(*new->entries), |
| compare_thresholds, NULL); |
| |
| /* Find current threshold */ |
| new->current_threshold = -1; |
| for (i = 0; i < size; i++) { |
| if (new->entries[i].threshold <= usage) { |
| /* |
| * new->current_threshold will not be used until |
| * rcu_assign_pointer(), so it's safe to increment |
| * it here. |
| */ |
| ++new->current_threshold; |
| } else |
| break; |
| } |
| |
| /* Free old spare buffer and save old primary buffer as spare */ |
| kfree(thresholds->spare); |
| thresholds->spare = thresholds->primary; |
| |
| rcu_assign_pointer(thresholds->primary, new); |
| |
| /* To be sure that nobody uses thresholds */ |
| synchronize_rcu(); |
| |
| unlock: |
| mutex_unlock(&memcg->thresholds_lock); |
| |
| return ret; |
| } |
| |
| static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, const char *args) |
| { |
| return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); |
| } |
| |
| static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, const char *args) |
| { |
| return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); |
| } |
| |
| static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, enum res_type type) |
| { |
| struct mem_cgroup_thresholds *thresholds; |
| struct mem_cgroup_threshold_ary *new; |
| unsigned long usage; |
| int i, j, size, entries; |
| |
| mutex_lock(&memcg->thresholds_lock); |
| |
| if (type == _MEM) { |
| thresholds = &memcg->thresholds; |
| usage = mem_cgroup_usage(memcg, false); |
| } else if (type == _MEMSWAP) { |
| thresholds = &memcg->memsw_thresholds; |
| usage = mem_cgroup_usage(memcg, true); |
| } else |
| BUG(); |
| |
| if (!thresholds->primary) |
| goto unlock; |
| |
| /* Check if a threshold crossed before removing */ |
| __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
| |
| /* Calculate new number of threshold */ |
| size = entries = 0; |
| for (i = 0; i < thresholds->primary->size; i++) { |
| if (thresholds->primary->entries[i].eventfd != eventfd) |
| size++; |
| else |
| entries++; |
| } |
| |
| new = thresholds->spare; |
| |
| /* If no items related to eventfd have been cleared, nothing to do */ |
| if (!entries) |
| goto unlock; |
| |
| /* Set thresholds array to NULL if we don't have thresholds */ |
| if (!size) { |
| kfree(new); |
| new = NULL; |
| goto swap_buffers; |
| } |
| |
| new->size = size; |
| |
| /* Copy thresholds and find current threshold */ |
| new->current_threshold = -1; |
| for (i = 0, j = 0; i < thresholds->primary->size; i++) { |
| if (thresholds->primary->entries[i].eventfd == eventfd) |
| continue; |
| |
| new->entries[j] = thresholds->primary->entries[i]; |
| if (new->entries[j].threshold <= usage) { |
| /* |
| * new->current_threshold will not be used |
| * until rcu_assign_pointer(), so it's safe to increment |
| * it here. |
| */ |
| ++new->current_threshold; |
| } |
| j++; |
| } |
| |
| swap_buffers: |
| /* Swap primary and spare array */ |
| thresholds->spare = thresholds->primary; |
| |
| rcu_assign_pointer(thresholds->primary, new); |
| |
| /* To be sure that nobody uses thresholds */ |
| synchronize_rcu(); |
| |
| /* If all events are unregistered, free the spare array */ |
| if (!new) { |
| kfree(thresholds->spare); |
| thresholds->spare = NULL; |
| } |
| unlock: |
| mutex_unlock(&memcg->thresholds_lock); |
| } |
| |
| static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd) |
| { |
| return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); |
| } |
| |
| static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd) |
| { |
| return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); |
| } |
| |
| static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd, const char *args) |
| { |
| struct mem_cgroup_eventfd_list *event; |
| |
| event = kmalloc(sizeof(*event), GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| spin_lock(&memcg_oom_lock); |
| |
| event->eventfd = eventfd; |
| list_add(&event->list, &memcg->oom_notify); |
| |
| /* already in OOM ? */ |
| if (memcg->under_oom) |
| eventfd_signal(eventfd); |
| spin_unlock(&memcg_oom_lock); |
| |
| return 0; |
| } |
| |
| static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, |
| struct eventfd_ctx *eventfd) |
| { |
| struct mem_cgroup_eventfd_list *ev, *tmp; |
| |
| spin_lock(&memcg_oom_lock); |
| |
| list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
| if (ev->eventfd == eventfd) { |
| list_del(&ev->list); |
| kfree(ev); |
| } |
| } |
| |
| spin_unlock(&memcg_oom_lock); |
| } |
| |
| /* |
| * DO NOT USE IN NEW FILES. |
| * |
| * "cgroup.event_control" implementation. |
| * |
| * This is way over-engineered. It tries to support fully configurable |
| * events for each user. Such level of flexibility is completely |
| * unnecessary especially in the light of the planned unified hierarchy. |
| * |
| * Please deprecate this and replace with something simpler if at all |
| * possible. |
| */ |
| |
| /* |
| * Unregister event and free resources. |
| * |
| * Gets called from workqueue. |
| */ |
| static void memcg_event_remove(struct work_struct *work) |
| { |
| struct mem_cgroup_event *event = |
| container_of(work, struct mem_cgroup_event, remove); |
| struct mem_cgroup *memcg = event->memcg; |
| |
| remove_wait_queue(event->wqh, &event->wait); |
| |
| event->unregister_event(memcg, event->eventfd); |
| |
| /* Notify userspace the event is going away. */ |
| eventfd_signal(event->eventfd); |
| |
| eventfd_ctx_put(event->eventfd); |
| kfree(event); |
| css_put(&memcg->css); |
| } |
| |
| /* |
| * Gets called on EPOLLHUP on eventfd when user closes it. |
| * |
| * Called with wqh->lock held and interrupts disabled. |
| */ |
| static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, |
| int sync, void *key) |
| { |
| struct mem_cgroup_event *event = |
| container_of(wait, struct mem_cgroup_event, wait); |
| struct mem_cgroup *memcg = event->memcg; |
| __poll_t flags = key_to_poll(key); |
| |
| if (flags & EPOLLHUP) { |
| /* |
| * If the event has been detached at cgroup removal, we |
| * can simply return knowing the other side will cleanup |
| * for us. |
| * |
| * We can't race against event freeing since the other |
| * side will require wqh->lock via remove_wait_queue(), |
| * which we hold. |
| */ |
| spin_lock(&memcg->event_list_lock); |
| if (!list_empty(&event->list)) { |
| list_del_init(&event->list); |
| /* |
| * We are in atomic context, but cgroup_event_remove() |
| * may sleep, so we have to call it in workqueue. |
| */ |
| schedule_work(&event->remove); |
| } |
| spin_unlock(&memcg->event_list_lock); |
| } |
| |
| return 0; |
| } |
| |
| static void memcg_event_ptable_queue_proc(struct file *file, |
| wait_queue_head_t *wqh, poll_table *pt) |
| { |
| struct mem_cgroup_event *event = |
| container_of(pt, struct mem_cgroup_event, pt); |
| |
| event->wqh = wqh; |
| add_wait_queue(wqh, &event->wait); |
| } |
| |
| /* |
| * DO NOT USE IN NEW FILES. |
| * |
| * Parse input and register new cgroup event handler. |
| * |
| * Input must be in format '<event_fd> <control_fd> <args>'. |
| * Interpretation of args is defined by control file implementation. |
| */ |
| static ssize_t memcg_write_event_control(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, loff_t off) |
| { |
| struct cgroup_subsys_state *css = of_css(of); |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| struct mem_cgroup_event *event; |
| struct cgroup_subsys_state *cfile_css; |
| unsigned int efd, cfd; |
| struct fd efile; |
| struct fd cfile; |
| struct dentry *cdentry; |
| const char *name; |
| char *endp; |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) |
| return -EOPNOTSUPP; |
| |
| buf = strstrip(buf); |
| |
| efd = simple_strtoul(buf, &endp, 10); |
| if (*endp != ' ') |
| return -EINVAL; |
| buf = endp + 1; |
| |
| cfd = simple_strtoul(buf, &endp, 10); |
| if ((*endp != ' ') && (*endp != '\0')) |
| return -EINVAL; |
| buf = endp + 1; |
| |
| event = kzalloc(sizeof(*event), GFP_KERNEL); |
| if (!event) |
| return -ENOMEM; |
| |
| event->memcg = memcg; |
| INIT_LIST_HEAD(&event->list); |
| init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); |
| init_waitqueue_func_entry(&event->wait, memcg_event_wake); |
| INIT_WORK(&event->remove, memcg_event_remove); |
| |
| efile = fdget(efd); |
| if (!efile.file) { |
| ret = -EBADF; |
| goto out_kfree; |
| } |
| |
| event->eventfd = eventfd_ctx_fileget(efile.file); |
| if (IS_ERR(event->eventfd)) { |
| ret = PTR_ERR(event->eventfd); |
| goto out_put_efile; |
| } |
| |
| cfile = fdget(cfd); |
| if (!cfile.file) { |
| ret = -EBADF; |
| goto out_put_eventfd; |
| } |
| |
| /* the process need read permission on control file */ |
| /* AV: shouldn't we check that it's been opened for read instead? */ |
| ret = file_permission(cfile.file, MAY_READ); |
| if (ret < 0) |
| goto out_put_cfile; |
| |
| /* |
| * The control file must be a regular cgroup1 file. As a regular cgroup |
| * file can't be renamed, it's safe to access its name afterwards. |
| */ |
| cdentry = cfile.file->f_path.dentry; |
| if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { |
| ret = -EINVAL; |
| goto out_put_cfile; |
| } |
| |
| /* |
| * Determine the event callbacks and set them in @event. This used |
| * to be done via struct cftype but cgroup core no longer knows |
| * about these events. The following is crude but the whole thing |
| * is for compatibility anyway. |
| * |
| * DO NOT ADD NEW FILES. |
| */ |
| name = cdentry->d_name.name; |
| |
| if (!strcmp(name, "memory.usage_in_bytes")) { |
| event->register_event = mem_cgroup_usage_register_event; |
| event->unregister_event = mem_cgroup_usage_unregister_event; |
| } else if (!strcmp(name, "memory.oom_control")) { |
| event->register_event = mem_cgroup_oom_register_event; |
| event->unregister_event = mem_cgroup_oom_unregister_event; |
| } else if (!strcmp(name, "memory.pressure_level")) { |
| event->register_event = vmpressure_register_event; |
| event->unregister_event = vmpressure_unregister_event; |
| } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { |
| event->register_event = memsw_cgroup_usage_register_event; |
| event->unregister_event = memsw_cgroup_usage_unregister_event; |
| } else { |
| ret = -EINVAL; |
| goto out_put_cfile; |
| } |
| |
| /* |
| * Verify @cfile should belong to @css. Also, remaining events are |
| * automatically removed on cgroup destruction but the removal is |
| * asynchronous, so take an extra ref on @css. |
| */ |
| cfile_css = css_tryget_online_from_dir(cdentry->d_parent, |
| &memory_cgrp_subsys); |
| ret = -EINVAL; |
| if (IS_ERR(cfile_css)) |
| goto out_put_cfile; |
| if (cfile_css != css) { |
| css_put(cfile_css); |
| goto out_put_cfile; |
| } |
| |
| ret = event->register_event(memcg, event->eventfd, buf); |
| if (ret) |
| goto out_put_css; |
| |
| vfs_poll(efile.file, &event->pt); |
| |
| spin_lock_irq(&memcg->event_list_lock); |
| list_add(&event->list, &memcg->event_list); |
| spin_unlock_irq(&memcg->event_list_lock); |
| |
| fdput(cfile); |
| fdput(efile); |
| |
| return nbytes; |
| |
| out_put_css: |
| css_put(css); |
| out_put_cfile: |
| fdput(cfile); |
| out_put_eventfd: |
| eventfd_ctx_put(event->eventfd); |
| out_put_efile: |
| fdput(efile); |
| out_kfree: |
| kfree(event); |
| |
| return ret; |
| } |
| |
| void memcg1_memcg_init(struct mem_cgroup *memcg) |
| { |
| INIT_LIST_HEAD(&memcg->oom_notify); |
| mutex_init(&memcg->thresholds_lock); |
| spin_lock_init(&memcg->move_lock); |
| INIT_LIST_HEAD(&memcg->event_list); |
| spin_lock_init(&memcg->event_list_lock); |
| } |
| |
| void memcg1_css_offline(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup_event *event, *tmp; |
| |
| /* |
| * Unregister events and notify userspace. |
| * Notify userspace about cgroup removing only after rmdir of cgroup |
| * directory to avoid race between userspace and kernelspace. |
| */ |
| spin_lock_irq(&memcg->event_list_lock); |
| list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { |
| list_del_init(&event->list); |
| schedule_work(&event->remove); |
| } |
| spin_unlock_irq(&memcg->event_list_lock); |
| } |
| |
| /* |
| * Check OOM-Killer is already running under our hierarchy. |
| * If someone is running, return false. |
| */ |
| static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *iter, *failed = NULL; |
| |
| spin_lock(&memcg_oom_lock); |
| |
| for_each_mem_cgroup_tree(iter, memcg) { |
| if (iter->oom_lock) { |
| /* |
| * this subtree of our hierarchy is already locked |
| * so we cannot give a lock. |
| */ |
| failed = iter; |
| mem_cgroup_iter_break(memcg, iter); |
| break; |
| } else |
| iter->oom_lock = true; |
| } |
| |
| if (failed) { |
| /* |
| * OK, we failed to lock the whole subtree so we have |
| * to clean up what we set up to the failing subtree |
| */ |
| for_each_mem_cgroup_tree(iter, memcg) { |
| if (iter == failed) { |
| mem_cgroup_iter_break(memcg, iter); |
| break; |
| } |
| iter->oom_lock = false; |
| } |
| } else |
| mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); |
| |
| spin_unlock(&memcg_oom_lock); |
| |
| return !failed; |
| } |
| |
| static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *iter; |
| |
| spin_lock(&memcg_oom_lock); |
| mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); |
| for_each_mem_cgroup_tree(iter, memcg) |
| iter->oom_lock = false; |
| spin_unlock(&memcg_oom_lock); |
| } |
| |
| static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *iter; |
| |
| spin_lock(&memcg_oom_lock); |
| for_each_mem_cgroup_tree(iter, memcg) |
| iter->under_oom++; |
| spin_unlock(&memcg_oom_lock); |
| } |
| |
| static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *iter; |
| |
| /* |
| * Be careful about under_oom underflows because a child memcg |
| * could have been added after mem_cgroup_mark_under_oom. |
| */ |
| spin_lock(&memcg_oom_lock); |
| for_each_mem_cgroup_tree(iter, memcg) |
| if (iter->under_oom > 0) |
| iter->under_oom--; |
| spin_unlock(&memcg_oom_lock); |
| } |
| |
| static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
| |
| struct oom_wait_info { |
| struct mem_cgroup *memcg; |
| wait_queue_entry_t wait; |
| }; |
| |
| static int memcg_oom_wake_function(wait_queue_entry_t *wait, |
| unsigned mode, int sync, void *arg) |
| { |
| struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
| struct mem_cgroup *oom_wait_memcg; |
| struct oom_wait_info *oom_wait_info; |
| |
| oom_wait_info = container_of(wait, struct oom_wait_info, wait); |
| oom_wait_memcg = oom_wait_info->memcg; |
| |
| if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && |
| !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) |
| return 0; |
| return autoremove_wake_function(wait, mode, sync, arg); |
| } |
| |
| void memcg1_oom_recover(struct mem_cgroup *memcg) |
| { |
| /* |
| * For the following lockless ->under_oom test, the only required |
| * guarantee is that it must see the state asserted by an OOM when |
| * this function is called as a result of userland actions |
| * triggered by the notification of the OOM. This is trivially |
| * achieved by invoking mem_cgroup_mark_under_oom() before |
| * triggering notification. |
| */ |
| if (memcg && memcg->under_oom) |
| __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); |
| } |
| |
| /** |
| * mem_cgroup_oom_synchronize - complete memcg OOM handling |
| * @handle: actually kill/wait or just clean up the OOM state |
| * |
| * This has to be called at the end of a page fault if the memcg OOM |
| * handler was enabled. |
| * |
| * Memcg supports userspace OOM handling where failed allocations must |
| * sleep on a waitqueue until the userspace task resolves the |
| * situation. Sleeping directly in the charge context with all kinds |
| * of locks held is not a good idea, instead we remember an OOM state |
| * in the task and mem_cgroup_oom_synchronize() has to be called at |
| * the end of the page fault to complete the OOM handling. |
| * |
| * Returns %true if an ongoing memcg OOM situation was detected and |
| * completed, %false otherwise. |
| */ |
| bool mem_cgroup_oom_synchronize(bool handle) |
| { |
| struct mem_cgroup *memcg = current->memcg_in_oom; |
| struct oom_wait_info owait; |
| bool locked; |
| |
| /* OOM is global, do not handle */ |
| if (!memcg) |
| return false; |
| |
| if (!handle) |
| goto cleanup; |
| |
| owait.memcg = memcg; |
| owait.wait.flags = 0; |
| owait.wait.func = memcg_oom_wake_function; |
| owait.wait.private = current; |
| INIT_LIST_HEAD(&owait.wait.entry); |
| |
| prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
| mem_cgroup_mark_under_oom(memcg); |
| |
| locked = mem_cgroup_oom_trylock(memcg); |
| |
| if (locked) |
| mem_cgroup_oom_notify(memcg); |
| |
| schedule(); |
| mem_cgroup_unmark_under_oom(memcg); |
| finish_wait(&memcg_oom_waitq, &owait.wait); |
| |
| if (locked) |
| mem_cgroup_oom_unlock(memcg); |
| cleanup: |
| current->memcg_in_oom = NULL; |
| css_put(&memcg->css); |
| return true; |
| } |
| |
| |
| bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked) |
| { |
| /* |
| * We are in the middle of the charge context here, so we |
| * don't want to block when potentially sitting on a callstack |
| * that holds all kinds of filesystem and mm locks. |
| * |
| * cgroup1 allows disabling the OOM killer and waiting for outside |
| * handling until the charge can succeed; remember the context and put |
| * the task to sleep at the end of the page fault when all locks are |
| * released. |
| * |
| * On the other hand, in-kernel OOM killer allows for an async victim |
| * memory reclaim (oom_reaper) and that means that we are not solely |
| * relying on the oom victim to make a forward progress and we can |
| * invoke the oom killer here. |
| * |
| * Please note that mem_cgroup_out_of_memory might fail to find a |
| * victim and then we have to bail out from the charge path. |
| */ |
| if (READ_ONCE(memcg->oom_kill_disable)) { |
| if (current->in_user_fault) { |
| css_get(&memcg->css); |
| current->memcg_in_oom = memcg; |
| } |
| return false; |
| } |
| |
| mem_cgroup_mark_under_oom(memcg); |
| |
| *locked = mem_cgroup_oom_trylock(memcg); |
| |
| if (*locked) |
| mem_cgroup_oom_notify(memcg); |
| |
| mem_cgroup_unmark_under_oom(memcg); |
| |
| return true; |
| } |
| |
| void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked) |
| { |
| if (locked) |
| mem_cgroup_oom_unlock(memcg); |
| } |
| |
| static DEFINE_MUTEX(memcg_max_mutex); |
| |
| static int mem_cgroup_resize_max(struct mem_cgroup *memcg, |
| unsigned long max, bool memsw) |
| { |
| bool enlarge = false; |
| bool drained = false; |
| int ret; |
| bool limits_invariant; |
| struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; |
| |
| do { |
| if (signal_pending(current)) { |
| ret = -EINTR; |
| break; |
| } |
| |
| mutex_lock(&memcg_max_mutex); |
| /* |
| * Make sure that the new limit (memsw or memory limit) doesn't |
| * break our basic invariant rule memory.max <= memsw.max. |
| */ |
| limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : |
| max <= memcg->memsw.max; |
| if (!limits_invariant) { |
| mutex_unlock(&memcg_max_mutex); |
| ret = -EINVAL; |
| break; |
| } |
| if (max > counter->max) |
| enlarge = true; |
| ret = page_counter_set_max(counter, max); |
| mutex_unlock(&memcg_max_mutex); |
| |
| if (!ret) |
| break; |
| |
| if (!drained) { |
| drain_all_stock(memcg); |
| drained = true; |
| continue; |
| } |
| |
| if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, |
| memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) { |
| ret = -EBUSY; |
| break; |
| } |
| } while (true); |
| |
| if (!ret && enlarge) |
| memcg1_oom_recover(memcg); |
| |
| return ret; |
| } |
| |
| /* |
| * Reclaims as many pages from the given memcg as possible. |
| * |
| * Caller is responsible for holding css reference for memcg. |
| */ |
| static int mem_cgroup_force_empty(struct mem_cgroup *memcg) |
| { |
| int nr_retries = MAX_RECLAIM_RETRIES; |
| |
| /* we call try-to-free pages for make this cgroup empty */ |
| lru_add_drain_all(); |
| |
| drain_all_stock(memcg); |
| |
| /* try to free all pages in this cgroup */ |
| while (nr_retries && page_counter_read(&memcg->memory)) { |
| if (signal_pending(current)) |
| return -EINTR; |
| |
| if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, |
| MEMCG_RECLAIM_MAY_SWAP, NULL)) |
| nr_retries--; |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, |
| loff_t off) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| |
| if (mem_cgroup_is_root(memcg)) |
| return -EINVAL; |
| return mem_cgroup_force_empty(memcg) ?: nbytes; |
| } |
| |
| static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| return 1; |
| } |
| |
| static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| if (val == 1) |
| return 0; |
| |
| pr_warn_once("Non-hierarchical mode is deprecated. " |
| "Please report your usecase to linux-mm@kvack.org if you " |
| "depend on this functionality.\n"); |
| |
| return -EINVAL; |
| } |
| |
| static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| struct page_counter *counter; |
| |
| switch (MEMFILE_TYPE(cft->private)) { |
| case _MEM: |
| counter = &memcg->memory; |
| break; |
| case _MEMSWAP: |
| counter = &memcg->memsw; |
| break; |
| case _KMEM: |
| counter = &memcg->kmem; |
| break; |
| case _TCP: |
| counter = &memcg->tcpmem; |
| break; |
| default: |
| BUG(); |
| } |
| |
| switch (MEMFILE_ATTR(cft->private)) { |
| case RES_USAGE: |
| if (counter == &memcg->memory) |
| return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; |
| if (counter == &memcg->memsw) |
| return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; |
| return (u64)page_counter_read(counter) * PAGE_SIZE; |
| case RES_LIMIT: |
| return (u64)counter->max * PAGE_SIZE; |
| case RES_MAX_USAGE: |
| return (u64)counter->watermark * PAGE_SIZE; |
| case RES_FAILCNT: |
| return counter->failcnt; |
| case RES_SOFT_LIMIT: |
| return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE; |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * This function doesn't do anything useful. Its only job is to provide a read |
| * handler for a file so that cgroup_file_mode() will add read permissions. |
| */ |
| static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m, |
| __always_unused void *v) |
| { |
| return -EINVAL; |
| } |
| |
| static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) |
| { |
| int ret; |
| |
| mutex_lock(&memcg_max_mutex); |
| |
| ret = page_counter_set_max(&memcg->tcpmem, max); |
| if (ret) |
| goto out; |
| |
| if (!memcg->tcpmem_active) { |
| /* |
| * The active flag needs to be written after the static_key |
| * update. This is what guarantees that the socket activation |
| * function is the last one to run. See mem_cgroup_sk_alloc() |
| * for details, and note that we don't mark any socket as |
| * belonging to this memcg until that flag is up. |
| * |
| * We need to do this, because static_keys will span multiple |
| * sites, but we can't control their order. If we mark a socket |
| * as accounted, but the accounting functions are not patched in |
| * yet, we'll lose accounting. |
| * |
| * We never race with the readers in mem_cgroup_sk_alloc(), |
| * because when this value change, the code to process it is not |
| * patched in yet. |
| */ |
| static_branch_inc(&memcg_sockets_enabled_key); |
| memcg->tcpmem_active = true; |
| } |
| out: |
| mutex_unlock(&memcg_max_mutex); |
| return ret; |
| } |
| |
| /* |
| * The user of this function is... |
| * RES_LIMIT. |
| */ |
| static ssize_t mem_cgroup_write(struct kernfs_open_file *of, |
| char *buf, size_t nbytes, loff_t off) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| unsigned long nr_pages; |
| int ret; |
| |
| buf = strstrip(buf); |
| ret = page_counter_memparse(buf, "-1", &nr_pages); |
| if (ret) |
| return ret; |
| |
| switch (MEMFILE_ATTR(of_cft(of)->private)) { |
| case RES_LIMIT: |
| if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
| ret = -EINVAL; |
| break; |
| } |
| switch (MEMFILE_TYPE(of_cft(of)->private)) { |
| case _MEM: |
| ret = mem_cgroup_resize_max(memcg, nr_pages, false); |
| break; |
| case _MEMSWAP: |
| ret = mem_cgroup_resize_max(memcg, nr_pages, true); |
| break; |
| case _KMEM: |
| pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " |
| "Writing any value to this file has no effect. " |
| "Please report your usecase to linux-mm@kvack.org if you " |
| "depend on this functionality.\n"); |
| ret = 0; |
| break; |
| case _TCP: |
| ret = memcg_update_tcp_max(memcg, nr_pages); |
| break; |
| } |
| break; |
| case RES_SOFT_LIMIT: |
| if (IS_ENABLED(CONFIG_PREEMPT_RT)) { |
| ret = -EOPNOTSUPP; |
| } else { |
| WRITE_ONCE(memcg->soft_limit, nr_pages); |
| ret = 0; |
| } |
| break; |
| } |
| return ret ?: nbytes; |
| } |
| |
| static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, |
| size_t nbytes, loff_t off) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
| struct page_counter *counter; |
| |
| switch (MEMFILE_TYPE(of_cft(of)->private)) { |
| case _MEM: |
| counter = &memcg->memory; |
| break; |
| case _MEMSWAP: |
| counter = &memcg->memsw; |
| break; |
| case _KMEM: |
| counter = &memcg->kmem; |
| break; |
| case _TCP: |
| counter = &memcg->tcpmem; |
| break; |
| default: |
| BUG(); |
| } |
| |
| switch (MEMFILE_ATTR(of_cft(of)->private)) { |
| case RES_MAX_USAGE: |
| page_counter_reset_watermark(counter); |
| break; |
| case RES_FAILCNT: |
| counter->failcnt = 0; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return nbytes; |
| } |
| |
| #ifdef CONFIG_NUMA |
| |
| #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) |
| #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) |
| #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) |
| |
| static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
| int nid, unsigned int lru_mask, bool tree) |
| { |
| struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); |
| unsigned long nr = 0; |
| enum lru_list lru; |
| |
| VM_BUG_ON((unsigned)nid >= nr_node_ids); |
| |
| for_each_lru(lru) { |
| if (!(BIT(lru) & lru_mask)) |
| continue; |
| if (tree) |
| nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); |
| else |
| nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); |
| } |
| return nr; |
| } |
| |
| static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
| unsigned int lru_mask, |
| bool tree) |
| { |
| unsigned long nr = 0; |
| enum lru_list lru; |
| |
| for_each_lru(lru) { |
| if (!(BIT(lru) & lru_mask)) |
| continue; |
| if (tree) |
| nr += memcg_page_state(memcg, NR_LRU_BASE + lru); |
| else |
| nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); |
| } |
| return nr; |
| } |
| |
| static int memcg_numa_stat_show(struct seq_file *m, void *v) |
| { |
| struct numa_stat { |
| const char *name; |
| unsigned int lru_mask; |
| }; |
| |
| static const struct numa_stat stats[] = { |
| { "total", LRU_ALL }, |
| { "file", LRU_ALL_FILE }, |
| { "anon", LRU_ALL_ANON }, |
| { "unevictable", BIT(LRU_UNEVICTABLE) }, |
| }; |
| const struct numa_stat *stat; |
| int nid; |
| struct mem_cgroup *memcg = mem_cgroup_from_seq(m); |
| |
| mem_cgroup_flush_stats(memcg); |
| |
| for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
| seq_printf(m, "%s=%lu", stat->name, |
| mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, |
| false)); |
| for_each_node_state(nid, N_MEMORY) |
| seq_printf(m, " N%d=%lu", nid, |
| mem_cgroup_node_nr_lru_pages(memcg, nid, |
| stat->lru_mask, false)); |
| seq_putc(m, '\n'); |
| } |
| |
| for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
| |
| seq_printf(m, "hierarchical_%s=%lu", stat->name, |
| mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, |
| true)); |
| for_each_node_state(nid, N_MEMORY) |
| seq_printf(m, " N%d=%lu", nid, |
| mem_cgroup_node_nr_lru_pages(memcg, nid, |
| stat->lru_mask, true)); |
| seq_putc(m, '\n'); |
| } |
| |
| return 0; |
| } |
| #endif /* CONFIG_NUMA */ |
| |
| static const unsigned int memcg1_stats[] = { |
| NR_FILE_PAGES, |
| NR_ANON_MAPPED, |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| NR_ANON_THPS, |
| #endif |
| NR_SHMEM, |
| NR_FILE_MAPPED, |
| NR_FILE_DIRTY, |
| NR_WRITEBACK, |
| WORKINGSET_REFAULT_ANON, |
| WORKINGSET_REFAULT_FILE, |
| #ifdef CONFIG_SWAP |
| MEMCG_SWAP, |
| NR_SWAPCACHE, |
| #endif |
| }; |
| |
| static const char *const memcg1_stat_names[] = { |
| "cache", |
| "rss", |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
| "rss_huge", |
| #endif |
| "shmem", |
| "mapped_file", |
| "dirty", |
| "writeback", |
| "workingset_refault_anon", |
| "workingset_refault_file", |
| #ifdef CONFIG_SWAP |
| "swap", |
| "swapcached", |
| #endif |
| }; |
| |
| /* Universal VM events cgroup1 shows, original sort order */ |
| static const unsigned int memcg1_events[] = { |
| PGPGIN, |
| PGPGOUT, |
| PGFAULT, |
| PGMAJFAULT, |
| }; |
| |
| void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s) |
| { |
| unsigned long memory, memsw; |
| struct mem_cgroup *mi; |
| unsigned int i; |
| |
| BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); |
| |
| mem_cgroup_flush_stats(memcg); |
| |
| for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { |
| unsigned long nr; |
| |
| nr = memcg_page_state_local_output(memcg, memcg1_stats[i]); |
| seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) |
| seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]), |
| memcg_events_local(memcg, memcg1_events[i])); |
| |
| for (i = 0; i < NR_LRU_LISTS; i++) |
| seq_buf_printf(s, "%s %lu\n", lru_list_name(i), |
| memcg_page_state_local(memcg, NR_LRU_BASE + i) * |
| PAGE_SIZE); |
| |
| /* Hierarchical information */ |
| memory = memsw = PAGE_COUNTER_MAX; |
| for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { |
| memory = min(memory, READ_ONCE(mi->memory.max)); |
| memsw = min(memsw, READ_ONCE(mi->memsw.max)); |
| } |
| seq_buf_printf(s, "hierarchical_memory_limit %llu\n", |
| (u64)memory * PAGE_SIZE); |
| seq_buf_printf(s, "hierarchical_memsw_limit %llu\n", |
| (u64)memsw * PAGE_SIZE); |
| |
| for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { |
| unsigned long nr; |
| |
| nr = memcg_page_state_output(memcg, memcg1_stats[i]); |
| seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i], |
| (u64)nr); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) |
| seq_buf_printf(s, "total_%s %llu\n", |
| vm_event_name(memcg1_events[i]), |
| (u64)memcg_events(memcg, memcg1_events[i])); |
| |
| for (i = 0; i < NR_LRU_LISTS; i++) |
| seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i), |
| (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * |
| PAGE_SIZE); |
| |
| #ifdef CONFIG_DEBUG_VM |
| { |
| pg_data_t *pgdat; |
| struct mem_cgroup_per_node *mz; |
| unsigned long anon_cost = 0; |
| unsigned long file_cost = 0; |
| |
| for_each_online_pgdat(pgdat) { |
| mz = memcg->nodeinfo[pgdat->node_id]; |
| |
| anon_cost += mz->lruvec.anon_cost; |
| file_cost += mz->lruvec.file_cost; |
| } |
| seq_buf_printf(s, "anon_cost %lu\n", anon_cost); |
| seq_buf_printf(s, "file_cost %lu\n", file_cost); |
| } |
| #endif |
| } |
| |
| static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
| struct cftype *cft) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| |
| return mem_cgroup_swappiness(memcg); |
| } |
| |
| static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| |
| if (val > MAX_SWAPPINESS) |
| return -EINVAL; |
| |
| if (!mem_cgroup_is_root(memcg)) |
| WRITE_ONCE(memcg->swappiness, val); |
| else |
| WRITE_ONCE(vm_swappiness, val); |
| |
| return 0; |
| } |
| |
| static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); |
| |
| seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable)); |
| seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); |
| seq_printf(sf, "oom_kill %lu\n", |
| atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); |
| return 0; |
| } |
| |
| static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
| struct cftype *cft, u64 val) |
| { |
| struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
| |
| /* cannot set to root cgroup and only 0 and 1 are allowed */ |
| if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) |
| return -EINVAL; |
| |
| WRITE_ONCE(memcg->oom_kill_disable, val); |
| if (!val) |
| memcg1_oom_recover(memcg); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static int mem_cgroup_slab_show(struct seq_file *m, void *p) |
| { |
| /* |
| * Deprecated. |
| * Please, take a look at tools/cgroup/memcg_slabinfo.py . |
| */ |
| return 0; |
| } |
| #endif |
| |
| struct cftype mem_cgroup_legacy_files[] = { |
| { |
| .name = "usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "max_usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "limit_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
| .write = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "soft_limit_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), |
| .write = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "failcnt", |
| .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "stat", |
| .seq_show = memory_stat_show, |
| }, |
| { |
| .name = "force_empty", |
| .write = mem_cgroup_force_empty_write, |
| }, |
| { |
| .name = "use_hierarchy", |
| .write_u64 = mem_cgroup_hierarchy_write, |
| .read_u64 = mem_cgroup_hierarchy_read, |
| }, |
| { |
| .name = "cgroup.event_control", /* XXX: for compat */ |
| .write = memcg_write_event_control, |
| .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, |
| }, |
| { |
| .name = "swappiness", |
| .read_u64 = mem_cgroup_swappiness_read, |
| .write_u64 = mem_cgroup_swappiness_write, |
| }, |
| { |
| .name = "move_charge_at_immigrate", |
| .read_u64 = mem_cgroup_move_charge_read, |
| .write_u64 = mem_cgroup_move_charge_write, |
| }, |
| { |
| .name = "oom_control", |
| .seq_show = mem_cgroup_oom_control_read, |
| .write_u64 = mem_cgroup_oom_control_write, |
| }, |
| { |
| .name = "pressure_level", |
| .seq_show = mem_cgroup_dummy_seq_show, |
| }, |
| #ifdef CONFIG_NUMA |
| { |
| .name = "numa_stat", |
| .seq_show = memcg_numa_stat_show, |
| }, |
| #endif |
| { |
| .name = "kmem.limit_in_bytes", |
| .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), |
| .write = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.failcnt", |
| .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.max_usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| #ifdef CONFIG_SLUB_DEBUG |
| { |
| .name = "kmem.slabinfo", |
| .seq_show = mem_cgroup_slab_show, |
| }, |
| #endif |
| { |
| .name = "kmem.tcp.limit_in_bytes", |
| .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), |
| .write = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.tcp.usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.tcp.failcnt", |
| .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "kmem.tcp.max_usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { }, /* terminate */ |
| }; |
| |
| struct cftype memsw_files[] = { |
| { |
| .name = "memsw.usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "memsw.max_usage_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "memsw.limit_in_bytes", |
| .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), |
| .write = mem_cgroup_write, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { |
| .name = "memsw.failcnt", |
| .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), |
| .write = mem_cgroup_reset, |
| .read_u64 = mem_cgroup_read_u64, |
| }, |
| { }, /* terminate */ |
| }; |
| |
| void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages) |
| { |
| if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { |
| if (nr_pages > 0) |
| page_counter_charge(&memcg->kmem, nr_pages); |
| else |
| page_counter_uncharge(&memcg->kmem, -nr_pages); |
| } |
| } |
| |
| bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, |
| gfp_t gfp_mask) |
| { |
| struct page_counter *fail; |
| |
| if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { |
| memcg->tcpmem_pressure = 0; |
| return true; |
| } |
| memcg->tcpmem_pressure = 1; |
| if (gfp_mask & __GFP_NOFAIL) { |
| page_counter_charge(&memcg->tcpmem, nr_pages); |
| return true; |
| } |
| return false; |
| } |
| |
| static int __init memcg1_init(void) |
| { |
| int node; |
| |
| for_each_node(node) { |
| struct mem_cgroup_tree_per_node *rtpn; |
| |
| rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node); |
| |
| rtpn->rb_root = RB_ROOT; |
| rtpn->rb_rightmost = NULL; |
| spin_lock_init(&rtpn->lock); |
| soft_limit_tree.rb_tree_per_node[node] = rtpn; |
| } |
| |
| return 0; |
| } |
| subsys_initcall(memcg1_init); |