| // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) |
| /* Copyright (C) 2015-2018 Netronome Systems, Inc. */ |
| |
| /* |
| * nfp_net_common.c |
| * Netronome network device driver: Common functions between PF and VF |
| * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> |
| * Jason McMullan <jason.mcmullan@netronome.com> |
| * Rolf Neugebauer <rolf.neugebauer@netronome.com> |
| * Brad Petrus <brad.petrus@netronome.com> |
| * Chris Telfer <chris.telfer@netronome.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/bpf.h> |
| #include <linux/bpf_trace.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/fs.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> |
| #include <linux/ipv6.h> |
| #include <linux/mm.h> |
| #include <linux/overflow.h> |
| #include <linux/page_ref.h> |
| #include <linux/pci.h> |
| #include <linux/pci_regs.h> |
| #include <linux/msi.h> |
| #include <linux/ethtool.h> |
| #include <linux/log2.h> |
| #include <linux/if_vlan.h> |
| #include <linux/random.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ktime.h> |
| |
| #include <net/switchdev.h> |
| #include <net/vxlan.h> |
| |
| #include "nfpcore/nfp_nsp.h" |
| #include "nfp_app.h" |
| #include "nfp_net_ctrl.h" |
| #include "nfp_net.h" |
| #include "nfp_net_sriov.h" |
| #include "nfp_port.h" |
| |
| /** |
| * nfp_net_get_fw_version() - Read and parse the FW version |
| * @fw_ver: Output fw_version structure to read to |
| * @ctrl_bar: Mapped address of the control BAR |
| */ |
| void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, |
| void __iomem *ctrl_bar) |
| { |
| u32 reg; |
| |
| reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); |
| put_unaligned_le32(reg, fw_ver); |
| } |
| |
| static dma_addr_t nfp_net_dma_map_rx(struct nfp_net_dp *dp, void *frag) |
| { |
| return dma_map_single_attrs(dp->dev, frag + NFP_NET_RX_BUF_HEADROOM, |
| dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, |
| dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| |
| static void |
| nfp_net_dma_sync_dev_rx(const struct nfp_net_dp *dp, dma_addr_t dma_addr) |
| { |
| dma_sync_single_for_device(dp->dev, dma_addr, |
| dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, |
| dp->rx_dma_dir); |
| } |
| |
| static void nfp_net_dma_unmap_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr) |
| { |
| dma_unmap_single_attrs(dp->dev, dma_addr, |
| dp->fl_bufsz - NFP_NET_RX_BUF_NON_DATA, |
| dp->rx_dma_dir, DMA_ATTR_SKIP_CPU_SYNC); |
| } |
| |
| static void nfp_net_dma_sync_cpu_rx(struct nfp_net_dp *dp, dma_addr_t dma_addr, |
| unsigned int len) |
| { |
| dma_sync_single_for_cpu(dp->dev, dma_addr - NFP_NET_RX_BUF_HEADROOM, |
| len, dp->rx_dma_dir); |
| } |
| |
| /* Firmware reconfig |
| * |
| * Firmware reconfig may take a while so we have two versions of it - |
| * synchronous and asynchronous (posted). All synchronous callers are holding |
| * RTNL so we don't have to worry about serializing them. |
| */ |
| static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) |
| { |
| nn_writel(nn, NFP_NET_CFG_UPDATE, update); |
| /* ensure update is written before pinging HW */ |
| nn_pci_flush(nn); |
| nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); |
| nn->reconfig_in_progress_update = update; |
| } |
| |
| /* Pass 0 as update to run posted reconfigs. */ |
| static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) |
| { |
| update |= nn->reconfig_posted; |
| nn->reconfig_posted = 0; |
| |
| nfp_net_reconfig_start(nn, update); |
| |
| nn->reconfig_timer_active = true; |
| mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); |
| } |
| |
| static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) |
| { |
| u32 reg; |
| |
| reg = nn_readl(nn, NFP_NET_CFG_UPDATE); |
| if (reg == 0) |
| return true; |
| if (reg & NFP_NET_CFG_UPDATE_ERR) { |
| nn_err(nn, "Reconfig error (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", |
| reg, nn->reconfig_in_progress_update, |
| nn_readl(nn, NFP_NET_CFG_CTRL)); |
| return true; |
| } else if (last_check) { |
| nn_err(nn, "Reconfig timeout (status: 0x%08x update: 0x%08x ctrl: 0x%08x)\n", |
| reg, nn->reconfig_in_progress_update, |
| nn_readl(nn, NFP_NET_CFG_CTRL)); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) |
| { |
| bool timed_out = false; |
| |
| /* Poll update field, waiting for NFP to ack the config */ |
| while (!nfp_net_reconfig_check_done(nn, timed_out)) { |
| msleep(1); |
| timed_out = time_is_before_eq_jiffies(deadline); |
| } |
| |
| if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) |
| return -EIO; |
| |
| return timed_out ? -EIO : 0; |
| } |
| |
| static void nfp_net_reconfig_timer(struct timer_list *t) |
| { |
| struct nfp_net *nn = from_timer(nn, t, reconfig_timer); |
| |
| spin_lock_bh(&nn->reconfig_lock); |
| |
| nn->reconfig_timer_active = false; |
| |
| /* If sync caller is present it will take over from us */ |
| if (nn->reconfig_sync_present) |
| goto done; |
| |
| /* Read reconfig status and report errors */ |
| nfp_net_reconfig_check_done(nn, true); |
| |
| if (nn->reconfig_posted) |
| nfp_net_reconfig_start_async(nn, 0); |
| done: |
| spin_unlock_bh(&nn->reconfig_lock); |
| } |
| |
| /** |
| * nfp_net_reconfig_post() - Post async reconfig request |
| * @nn: NFP Net device to reconfigure |
| * @update: The value for the update field in the BAR config |
| * |
| * Record FW reconfiguration request. Reconfiguration will be kicked off |
| * whenever reconfiguration machinery is idle. Multiple requests can be |
| * merged together! |
| */ |
| static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) |
| { |
| spin_lock_bh(&nn->reconfig_lock); |
| |
| /* Sync caller will kick off async reconf when it's done, just post */ |
| if (nn->reconfig_sync_present) { |
| nn->reconfig_posted |= update; |
| goto done; |
| } |
| |
| /* Opportunistically check if the previous command is done */ |
| if (!nn->reconfig_timer_active || |
| nfp_net_reconfig_check_done(nn, false)) |
| nfp_net_reconfig_start_async(nn, update); |
| else |
| nn->reconfig_posted |= update; |
| done: |
| spin_unlock_bh(&nn->reconfig_lock); |
| } |
| |
| static void nfp_net_reconfig_sync_enter(struct nfp_net *nn) |
| { |
| bool cancelled_timer = false; |
| u32 pre_posted_requests; |
| |
| spin_lock_bh(&nn->reconfig_lock); |
| |
| nn->reconfig_sync_present = true; |
| |
| if (nn->reconfig_timer_active) { |
| nn->reconfig_timer_active = false; |
| cancelled_timer = true; |
| } |
| pre_posted_requests = nn->reconfig_posted; |
| nn->reconfig_posted = 0; |
| |
| spin_unlock_bh(&nn->reconfig_lock); |
| |
| if (cancelled_timer) { |
| del_timer_sync(&nn->reconfig_timer); |
| nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); |
| } |
| |
| /* Run the posted reconfigs which were issued before we started */ |
| if (pre_posted_requests) { |
| nfp_net_reconfig_start(nn, pre_posted_requests); |
| nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); |
| } |
| } |
| |
| static void nfp_net_reconfig_wait_posted(struct nfp_net *nn) |
| { |
| nfp_net_reconfig_sync_enter(nn); |
| |
| spin_lock_bh(&nn->reconfig_lock); |
| nn->reconfig_sync_present = false; |
| spin_unlock_bh(&nn->reconfig_lock); |
| } |
| |
| /** |
| * nfp_net_reconfig() - Reconfigure the firmware |
| * @nn: NFP Net device to reconfigure |
| * @update: The value for the update field in the BAR config |
| * |
| * Write the update word to the BAR and ping the reconfig queue. The |
| * poll until the firmware has acknowledged the update by zeroing the |
| * update word. |
| * |
| * Return: Negative errno on error, 0 on success |
| */ |
| int nfp_net_reconfig(struct nfp_net *nn, u32 update) |
| { |
| int ret; |
| |
| nfp_net_reconfig_sync_enter(nn); |
| |
| nfp_net_reconfig_start(nn, update); |
| ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); |
| |
| spin_lock_bh(&nn->reconfig_lock); |
| |
| if (nn->reconfig_posted) |
| nfp_net_reconfig_start_async(nn, 0); |
| |
| nn->reconfig_sync_present = false; |
| |
| spin_unlock_bh(&nn->reconfig_lock); |
| |
| return ret; |
| } |
| |
| /** |
| * nfp_net_reconfig_mbox() - Reconfigure the firmware via the mailbox |
| * @nn: NFP Net device to reconfigure |
| * @mbox_cmd: The value for the mailbox command |
| * |
| * Helper function for mailbox updates |
| * |
| * Return: Negative errno on error, 0 on success |
| */ |
| int nfp_net_reconfig_mbox(struct nfp_net *nn, u32 mbox_cmd) |
| { |
| u32 mbox = nn->tlv_caps.mbox_off; |
| int ret; |
| |
| if (!nfp_net_has_mbox(&nn->tlv_caps)) { |
| nn_err(nn, "no mailbox present, command: %u\n", mbox_cmd); |
| return -EIO; |
| } |
| |
| nn_writeq(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_CMD, mbox_cmd); |
| |
| ret = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MBOX); |
| if (ret) { |
| nn_err(nn, "Mailbox update error\n"); |
| return ret; |
| } |
| |
| return -nn_readl(nn, mbox + NFP_NET_CFG_MBOX_SIMPLE_RET); |
| } |
| |
| /* Interrupt configuration and handling |
| */ |
| |
| /** |
| * nfp_net_irq_unmask() - Unmask automasked interrupt |
| * @nn: NFP Network structure |
| * @entry_nr: MSI-X table entry |
| * |
| * Clear the ICR for the IRQ entry. |
| */ |
| static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) |
| { |
| nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); |
| nn_pci_flush(nn); |
| } |
| |
| /** |
| * nfp_net_irqs_alloc() - allocates MSI-X irqs |
| * @pdev: PCI device structure |
| * @irq_entries: Array to be initialized and used to hold the irq entries |
| * @min_irqs: Minimal acceptable number of interrupts |
| * @wanted_irqs: Target number of interrupts to allocate |
| * |
| * Return: Number of irqs obtained or 0 on error. |
| */ |
| unsigned int |
| nfp_net_irqs_alloc(struct pci_dev *pdev, struct msix_entry *irq_entries, |
| unsigned int min_irqs, unsigned int wanted_irqs) |
| { |
| unsigned int i; |
| int got_irqs; |
| |
| for (i = 0; i < wanted_irqs; i++) |
| irq_entries[i].entry = i; |
| |
| got_irqs = pci_enable_msix_range(pdev, irq_entries, |
| min_irqs, wanted_irqs); |
| if (got_irqs < 0) { |
| dev_err(&pdev->dev, "Failed to enable %d-%d MSI-X (err=%d)\n", |
| min_irqs, wanted_irqs, got_irqs); |
| return 0; |
| } |
| |
| if (got_irqs < wanted_irqs) |
| dev_warn(&pdev->dev, "Unable to allocate %d IRQs got only %d\n", |
| wanted_irqs, got_irqs); |
| |
| return got_irqs; |
| } |
| |
| /** |
| * nfp_net_irqs_assign() - Assign interrupts allocated externally to netdev |
| * @nn: NFP Network structure |
| * @irq_entries: Table of allocated interrupts |
| * @n: Size of @irq_entries (number of entries to grab) |
| * |
| * After interrupts are allocated with nfp_net_irqs_alloc() this function |
| * should be called to assign them to a specific netdev (port). |
| */ |
| void |
| nfp_net_irqs_assign(struct nfp_net *nn, struct msix_entry *irq_entries, |
| unsigned int n) |
| { |
| struct nfp_net_dp *dp = &nn->dp; |
| |
| nn->max_r_vecs = n - NFP_NET_NON_Q_VECTORS; |
| dp->num_r_vecs = nn->max_r_vecs; |
| |
| memcpy(nn->irq_entries, irq_entries, sizeof(*irq_entries) * n); |
| |
| if (dp->num_rx_rings > dp->num_r_vecs || |
| dp->num_tx_rings > dp->num_r_vecs) |
| dev_warn(nn->dp.dev, "More rings (%d,%d) than vectors (%d).\n", |
| dp->num_rx_rings, dp->num_tx_rings, |
| dp->num_r_vecs); |
| |
| dp->num_rx_rings = min(dp->num_r_vecs, dp->num_rx_rings); |
| dp->num_tx_rings = min(dp->num_r_vecs, dp->num_tx_rings); |
| dp->num_stack_tx_rings = dp->num_tx_rings; |
| } |
| |
| /** |
| * nfp_net_irqs_disable() - Disable interrupts |
| * @pdev: PCI device structure |
| * |
| * Undoes what @nfp_net_irqs_alloc() does. |
| */ |
| void nfp_net_irqs_disable(struct pci_dev *pdev) |
| { |
| pci_disable_msix(pdev); |
| } |
| |
| /** |
| * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) |
| { |
| struct nfp_net_r_vector *r_vec = data; |
| |
| napi_schedule_irqoff(&r_vec->napi); |
| |
| /* The FW auto-masks any interrupt, either via the MASK bit in |
| * the MSI-X table or via the per entry ICR field. So there |
| * is no need to disable interrupts here. |
| */ |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t nfp_ctrl_irq_rxtx(int irq, void *data) |
| { |
| struct nfp_net_r_vector *r_vec = data; |
| |
| tasklet_schedule(&r_vec->tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_read_link_status() - Reread link status from control BAR |
| * @nn: NFP Network structure |
| */ |
| static void nfp_net_read_link_status(struct nfp_net *nn) |
| { |
| unsigned long flags; |
| bool link_up; |
| u32 sts; |
| |
| spin_lock_irqsave(&nn->link_status_lock, flags); |
| |
| sts = nn_readl(nn, NFP_NET_CFG_STS); |
| link_up = !!(sts & NFP_NET_CFG_STS_LINK); |
| |
| if (nn->link_up == link_up) |
| goto out; |
| |
| nn->link_up = link_up; |
| if (nn->port) |
| set_bit(NFP_PORT_CHANGED, &nn->port->flags); |
| |
| if (nn->link_up) { |
| netif_carrier_on(nn->dp.netdev); |
| netdev_info(nn->dp.netdev, "NIC Link is Up\n"); |
| } else { |
| netif_carrier_off(nn->dp.netdev); |
| netdev_info(nn->dp.netdev, "NIC Link is Down\n"); |
| } |
| out: |
| spin_unlock_irqrestore(&nn->link_status_lock, flags); |
| } |
| |
| /** |
| * nfp_net_irq_lsc() - Interrupt service routine for link state changes |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_lsc(int irq, void *data) |
| { |
| struct nfp_net *nn = data; |
| struct msix_entry *entry; |
| |
| entry = &nn->irq_entries[NFP_NET_IRQ_LSC_IDX]; |
| |
| nfp_net_read_link_status(nn); |
| |
| nfp_net_irq_unmask(nn, entry->entry); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_irq_exn() - Interrupt service routine for exceptions |
| * @irq: Interrupt |
| * @data: Opaque data structure |
| * |
| * Return: Indicate if the interrupt has been handled. |
| */ |
| static irqreturn_t nfp_net_irq_exn(int irq, void *data) |
| { |
| struct nfp_net *nn = data; |
| |
| nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); |
| /* XXX TO BE IMPLEMENTED */ |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring |
| * @tx_ring: TX ring structure |
| * @r_vec: IRQ vector servicing this ring |
| * @idx: Ring index |
| * @is_xdp: Is this an XDP TX ring? |
| */ |
| static void |
| nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, |
| struct nfp_net_r_vector *r_vec, unsigned int idx, |
| bool is_xdp) |
| { |
| struct nfp_net *nn = r_vec->nfp_net; |
| |
| tx_ring->idx = idx; |
| tx_ring->r_vec = r_vec; |
| tx_ring->is_xdp = is_xdp; |
| u64_stats_init(&tx_ring->r_vec->tx_sync); |
| |
| tx_ring->qcidx = tx_ring->idx * nn->stride_tx; |
| tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); |
| } |
| |
| /** |
| * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring |
| * @rx_ring: RX ring structure |
| * @r_vec: IRQ vector servicing this ring |
| * @idx: Ring index |
| */ |
| static void |
| nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, |
| struct nfp_net_r_vector *r_vec, unsigned int idx) |
| { |
| struct nfp_net *nn = r_vec->nfp_net; |
| |
| rx_ring->idx = idx; |
| rx_ring->r_vec = r_vec; |
| u64_stats_init(&rx_ring->r_vec->rx_sync); |
| |
| rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; |
| rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); |
| } |
| |
| /** |
| * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) |
| * @nn: NFP Network structure |
| * @ctrl_offset: Control BAR offset where IRQ configuration should be written |
| * @format: printf-style format to construct the interrupt name |
| * @name: Pointer to allocated space for interrupt name |
| * @name_sz: Size of space for interrupt name |
| * @vector_idx: Index of MSI-X vector used for this interrupt |
| * @handler: IRQ handler to register for this interrupt |
| */ |
| static int |
| nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, |
| const char *format, char *name, size_t name_sz, |
| unsigned int vector_idx, irq_handler_t handler) |
| { |
| struct msix_entry *entry; |
| int err; |
| |
| entry = &nn->irq_entries[vector_idx]; |
| |
| snprintf(name, name_sz, format, nfp_net_name(nn)); |
| err = request_irq(entry->vector, handler, 0, name, nn); |
| if (err) { |
| nn_err(nn, "Failed to request IRQ %d (err=%d).\n", |
| entry->vector, err); |
| return err; |
| } |
| nn_writeb(nn, ctrl_offset, entry->entry); |
| nfp_net_irq_unmask(nn, entry->entry); |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) |
| * @nn: NFP Network structure |
| * @ctrl_offset: Control BAR offset where IRQ configuration should be written |
| * @vector_idx: Index of MSI-X vector used for this interrupt |
| */ |
| static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, |
| unsigned int vector_idx) |
| { |
| nn_writeb(nn, ctrl_offset, 0xff); |
| nn_pci_flush(nn); |
| free_irq(nn->irq_entries[vector_idx].vector, nn); |
| } |
| |
| /* Transmit |
| * |
| * One queue controller peripheral queue is used for transmit. The |
| * driver en-queues packets for transmit by advancing the write |
| * pointer. The device indicates that packets have transmitted by |
| * advancing the read pointer. The driver maintains a local copy of |
| * the read and write pointer in @struct nfp_net_tx_ring. The driver |
| * keeps @wr_p in sync with the queue controller write pointer and can |
| * determine how many packets have been transmitted by comparing its |
| * copy of the read pointer @rd_p with the read pointer maintained by |
| * the queue controller peripheral. |
| */ |
| |
| /** |
| * nfp_net_tx_full() - Check if the TX ring is full |
| * @tx_ring: TX ring to check |
| * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) |
| * |
| * This function checks, based on the *host copy* of read/write |
| * pointer if a given TX ring is full. The real TX queue may have |
| * some newly made available slots. |
| * |
| * Return: True if the ring is full. |
| */ |
| static int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) |
| { |
| return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); |
| } |
| |
| /* Wrappers for deciding when to stop and restart TX queues */ |
| static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) |
| { |
| return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); |
| } |
| |
| static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) |
| { |
| return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); |
| } |
| |
| /** |
| * nfp_net_tx_ring_stop() - stop tx ring |
| * @nd_q: netdev queue |
| * @tx_ring: driver tx queue structure |
| * |
| * Safely stop TX ring. Remember that while we are running .start_xmit() |
| * someone else may be cleaning the TX ring completions so we need to be |
| * extra careful here. |
| */ |
| static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, |
| struct nfp_net_tx_ring *tx_ring) |
| { |
| netif_tx_stop_queue(nd_q); |
| |
| /* We can race with the TX completion out of NAPI so recheck */ |
| smp_mb(); |
| if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) |
| netif_tx_start_queue(nd_q); |
| } |
| |
| /** |
| * nfp_net_tx_tso() - Set up Tx descriptor for LSO |
| * @r_vec: per-ring structure |
| * @txbuf: Pointer to driver soft TX descriptor |
| * @txd: Pointer to HW TX descriptor |
| * @skb: Pointer to SKB |
| * @md_bytes: Prepend length |
| * |
| * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. |
| * Return error on packet header greater than maximum supported LSO header size. |
| */ |
| static void nfp_net_tx_tso(struct nfp_net_r_vector *r_vec, |
| struct nfp_net_tx_buf *txbuf, |
| struct nfp_net_tx_desc *txd, struct sk_buff *skb, |
| u32 md_bytes) |
| { |
| u32 l3_offset, l4_offset, hdrlen; |
| u16 mss; |
| |
| if (!skb_is_gso(skb)) |
| return; |
| |
| if (!skb->encapsulation) { |
| l3_offset = skb_network_offset(skb); |
| l4_offset = skb_transport_offset(skb); |
| hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); |
| } else { |
| l3_offset = skb_inner_network_offset(skb); |
| l4_offset = skb_inner_transport_offset(skb); |
| hdrlen = skb_inner_transport_header(skb) - skb->data + |
| inner_tcp_hdrlen(skb); |
| } |
| |
| txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; |
| txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); |
| |
| mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; |
| txd->l3_offset = l3_offset - md_bytes; |
| txd->l4_offset = l4_offset - md_bytes; |
| txd->lso_hdrlen = hdrlen - md_bytes; |
| txd->mss = cpu_to_le16(mss); |
| txd->flags |= PCIE_DESC_TX_LSO; |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_lso++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| /** |
| * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor |
| * @dp: NFP Net data path struct |
| * @r_vec: per-ring structure |
| * @txbuf: Pointer to driver soft TX descriptor |
| * @txd: Pointer to TX descriptor |
| * @skb: Pointer to SKB |
| * |
| * This function sets the TX checksum flags in the TX descriptor based |
| * on the configuration and the protocol of the packet to be transmitted. |
| */ |
| static void nfp_net_tx_csum(struct nfp_net_dp *dp, |
| struct nfp_net_r_vector *r_vec, |
| struct nfp_net_tx_buf *txbuf, |
| struct nfp_net_tx_desc *txd, struct sk_buff *skb) |
| { |
| struct ipv6hdr *ipv6h; |
| struct iphdr *iph; |
| u8 l4_hdr; |
| |
| if (!(dp->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) |
| return; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return; |
| |
| txd->flags |= PCIE_DESC_TX_CSUM; |
| if (skb->encapsulation) |
| txd->flags |= PCIE_DESC_TX_ENCAP; |
| |
| iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); |
| ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); |
| |
| if (iph->version == 4) { |
| txd->flags |= PCIE_DESC_TX_IP4_CSUM; |
| l4_hdr = iph->protocol; |
| } else if (ipv6h->version == 6) { |
| l4_hdr = ipv6h->nexthdr; |
| } else { |
| nn_dp_warn(dp, "partial checksum but ipv=%x!\n", iph->version); |
| return; |
| } |
| |
| switch (l4_hdr) { |
| case IPPROTO_TCP: |
| txd->flags |= PCIE_DESC_TX_TCP_CSUM; |
| break; |
| case IPPROTO_UDP: |
| txd->flags |= PCIE_DESC_TX_UDP_CSUM; |
| break; |
| default: |
| nn_dp_warn(dp, "partial checksum but l4 proto=%x!\n", l4_hdr); |
| return; |
| } |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| if (skb->encapsulation) |
| r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; |
| else |
| r_vec->hw_csum_tx += txbuf->pkt_cnt; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| static void nfp_net_tx_xmit_more_flush(struct nfp_net_tx_ring *tx_ring) |
| { |
| wmb(); |
| nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); |
| tx_ring->wr_ptr_add = 0; |
| } |
| |
| static int nfp_net_prep_port_id(struct sk_buff *skb) |
| { |
| struct metadata_dst *md_dst = skb_metadata_dst(skb); |
| unsigned char *data; |
| |
| if (likely(!md_dst)) |
| return 0; |
| if (unlikely(md_dst->type != METADATA_HW_PORT_MUX)) |
| return 0; |
| |
| if (unlikely(skb_cow_head(skb, 8))) |
| return -ENOMEM; |
| |
| data = skb_push(skb, 8); |
| put_unaligned_be32(NFP_NET_META_PORTID, data); |
| put_unaligned_be32(md_dst->u.port_info.port_id, data + 4); |
| |
| return 8; |
| } |
| |
| /** |
| * nfp_net_tx() - Main transmit entry point |
| * @skb: SKB to transmit |
| * @netdev: netdev structure |
| * |
| * Return: NETDEV_TX_OK on success. |
| */ |
| static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| const struct skb_frag_struct *frag; |
| int f, nr_frags, wr_idx, md_bytes; |
| struct nfp_net_tx_ring *tx_ring; |
| struct nfp_net_r_vector *r_vec; |
| struct nfp_net_tx_buf *txbuf; |
| struct nfp_net_tx_desc *txd; |
| struct netdev_queue *nd_q; |
| struct nfp_net_dp *dp; |
| dma_addr_t dma_addr; |
| unsigned int fsize; |
| u16 qidx; |
| |
| dp = &nn->dp; |
| qidx = skb_get_queue_mapping(skb); |
| tx_ring = &dp->tx_rings[qidx]; |
| r_vec = tx_ring->r_vec; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { |
| nn_dp_warn(dp, "TX ring %d busy. wrp=%u rdp=%u\n", |
| qidx, tx_ring->wr_p, tx_ring->rd_p); |
| nd_q = netdev_get_tx_queue(dp->netdev, qidx); |
| netif_tx_stop_queue(nd_q); |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_busy++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| return NETDEV_TX_BUSY; |
| } |
| |
| md_bytes = nfp_net_prep_port_id(skb); |
| if (unlikely(md_bytes < 0)) { |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* Start with the head skbuf */ |
| dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dp->dev, dma_addr)) |
| goto err_free; |
| |
| wr_idx = D_IDX(tx_ring, tx_ring->wr_p); |
| |
| /* Stash the soft descriptor of the head then initialize it */ |
| txbuf = &tx_ring->txbufs[wr_idx]; |
| txbuf->skb = skb; |
| txbuf->dma_addr = dma_addr; |
| txbuf->fidx = -1; |
| txbuf->pkt_cnt = 1; |
| txbuf->real_len = skb->len; |
| |
| /* Build TX descriptor */ |
| txd = &tx_ring->txds[wr_idx]; |
| txd->offset_eop = (nr_frags ? 0 : PCIE_DESC_TX_EOP) | md_bytes; |
| txd->dma_len = cpu_to_le16(skb_headlen(skb)); |
| nfp_desc_set_dma_addr(txd, dma_addr); |
| txd->data_len = cpu_to_le16(skb->len); |
| |
| txd->flags = 0; |
| txd->mss = 0; |
| txd->lso_hdrlen = 0; |
| |
| /* Do not reorder - tso may adjust pkt cnt, vlan may override fields */ |
| nfp_net_tx_tso(r_vec, txbuf, txd, skb, md_bytes); |
| nfp_net_tx_csum(dp, r_vec, txbuf, txd, skb); |
| if (skb_vlan_tag_present(skb) && dp->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { |
| txd->flags |= PCIE_DESC_TX_VLAN; |
| txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| } |
| |
| /* Gather DMA */ |
| if (nr_frags > 0) { |
| __le64 second_half; |
| |
| /* all descs must match except for in addr, length and eop */ |
| second_half = txd->vals8[1]; |
| |
| for (f = 0; f < nr_frags; f++) { |
| frag = &skb_shinfo(skb)->frags[f]; |
| fsize = skb_frag_size(frag); |
| |
| dma_addr = skb_frag_dma_map(dp->dev, frag, 0, |
| fsize, DMA_TO_DEVICE); |
| if (dma_mapping_error(dp->dev, dma_addr)) |
| goto err_unmap; |
| |
| wr_idx = D_IDX(tx_ring, wr_idx + 1); |
| tx_ring->txbufs[wr_idx].skb = skb; |
| tx_ring->txbufs[wr_idx].dma_addr = dma_addr; |
| tx_ring->txbufs[wr_idx].fidx = f; |
| |
| txd = &tx_ring->txds[wr_idx]; |
| txd->dma_len = cpu_to_le16(fsize); |
| nfp_desc_set_dma_addr(txd, dma_addr); |
| txd->offset_eop = md_bytes | |
| ((f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0); |
| txd->vals8[1] = second_half; |
| } |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_gather++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| } |
| |
| skb_tx_timestamp(skb); |
| |
| nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); |
| |
| tx_ring->wr_p += nr_frags + 1; |
| if (nfp_net_tx_ring_should_stop(tx_ring)) |
| nfp_net_tx_ring_stop(nd_q, tx_ring); |
| |
| tx_ring->wr_ptr_add += nr_frags + 1; |
| if (__netdev_tx_sent_queue(nd_q, txbuf->real_len, skb->xmit_more)) |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| |
| return NETDEV_TX_OK; |
| |
| err_unmap: |
| while (--f >= 0) { |
| frag = &skb_shinfo(skb)->frags[f]; |
| dma_unmap_page(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| tx_ring->txbufs[wr_idx].skb = NULL; |
| tx_ring->txbufs[wr_idx].dma_addr = 0; |
| tx_ring->txbufs[wr_idx].fidx = -2; |
| wr_idx = wr_idx - 1; |
| if (wr_idx < 0) |
| wr_idx += tx_ring->cnt; |
| } |
| dma_unmap_single(dp->dev, tx_ring->txbufs[wr_idx].dma_addr, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| tx_ring->txbufs[wr_idx].skb = NULL; |
| tx_ring->txbufs[wr_idx].dma_addr = 0; |
| tx_ring->txbufs[wr_idx].fidx = -2; |
| err_free: |
| nn_dp_warn(dp, "Failed to map DMA TX buffer\n"); |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_errors++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| dev_kfree_skb_any(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /** |
| * nfp_net_tx_complete() - Handled completed TX packets |
| * @tx_ring: TX ring structure |
| * @budget: NAPI budget (only used as bool to determine if in NAPI context) |
| */ |
| static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring, int budget) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net_dp *dp = &r_vec->nfp_net->dp; |
| struct netdev_queue *nd_q; |
| u32 done_pkts = 0, done_bytes = 0; |
| u32 qcp_rd_p; |
| int todo; |
| |
| if (tx_ring->wr_p == tx_ring->rd_p) |
| return; |
| |
| /* Work out how many descriptors have been transmitted */ |
| qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); |
| |
| if (qcp_rd_p == tx_ring->qcp_rd_p) |
| return; |
| |
| todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); |
| |
| while (todo--) { |
| const struct skb_frag_struct *frag; |
| struct nfp_net_tx_buf *tx_buf; |
| struct sk_buff *skb; |
| int fidx, nr_frags; |
| int idx; |
| |
| idx = D_IDX(tx_ring, tx_ring->rd_p++); |
| tx_buf = &tx_ring->txbufs[idx]; |
| |
| skb = tx_buf->skb; |
| if (!skb) |
| continue; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| fidx = tx_buf->fidx; |
| |
| if (fidx == -1) { |
| /* unmap head */ |
| dma_unmap_single(dp->dev, tx_buf->dma_addr, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| |
| done_pkts += tx_buf->pkt_cnt; |
| done_bytes += tx_buf->real_len; |
| } else { |
| /* unmap fragment */ |
| frag = &skb_shinfo(skb)->frags[fidx]; |
| dma_unmap_page(dp->dev, tx_buf->dma_addr, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| } |
| |
| /* check for last gather fragment */ |
| if (fidx == nr_frags - 1) |
| napi_consume_skb(skb, budget); |
| |
| tx_buf->dma_addr = 0; |
| tx_buf->skb = NULL; |
| tx_buf->fidx = -2; |
| } |
| |
| tx_ring->qcp_rd_p = qcp_rd_p; |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_bytes += done_bytes; |
| r_vec->tx_pkts += done_pkts; |
| u64_stats_update_end(&r_vec->tx_sync); |
| |
| if (!dp->netdev) |
| return; |
| |
| nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); |
| netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); |
| if (nfp_net_tx_ring_should_wake(tx_ring)) { |
| /* Make sure TX thread will see updated tx_ring->rd_p */ |
| smp_mb(); |
| |
| if (unlikely(netif_tx_queue_stopped(nd_q))) |
| netif_tx_wake_queue(nd_q); |
| } |
| |
| WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, |
| "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", |
| tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); |
| } |
| |
| static bool nfp_net_xdp_complete(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| u32 done_pkts = 0, done_bytes = 0; |
| bool done_all; |
| int idx, todo; |
| u32 qcp_rd_p; |
| |
| /* Work out how many descriptors have been transmitted */ |
| qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); |
| |
| if (qcp_rd_p == tx_ring->qcp_rd_p) |
| return true; |
| |
| todo = D_IDX(tx_ring, qcp_rd_p - tx_ring->qcp_rd_p); |
| |
| done_all = todo <= NFP_NET_XDP_MAX_COMPLETE; |
| todo = min(todo, NFP_NET_XDP_MAX_COMPLETE); |
| |
| tx_ring->qcp_rd_p = D_IDX(tx_ring, tx_ring->qcp_rd_p + todo); |
| |
| done_pkts = todo; |
| while (todo--) { |
| idx = D_IDX(tx_ring, tx_ring->rd_p); |
| tx_ring->rd_p++; |
| |
| done_bytes += tx_ring->txbufs[idx].real_len; |
| } |
| |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_bytes += done_bytes; |
| r_vec->tx_pkts += done_pkts; |
| u64_stats_update_end(&r_vec->tx_sync); |
| |
| WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, |
| "XDP TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", |
| tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); |
| |
| return done_all; |
| } |
| |
| /** |
| * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers |
| * @dp: NFP Net data path struct |
| * @tx_ring: TX ring structure |
| * |
| * Assumes that the device is stopped, must be idempotent. |
| */ |
| static void |
| nfp_net_tx_ring_reset(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) |
| { |
| const struct skb_frag_struct *frag; |
| struct netdev_queue *nd_q; |
| |
| while (!tx_ring->is_xdp && tx_ring->rd_p != tx_ring->wr_p) { |
| struct nfp_net_tx_buf *tx_buf; |
| struct sk_buff *skb; |
| int idx, nr_frags; |
| |
| idx = D_IDX(tx_ring, tx_ring->rd_p); |
| tx_buf = &tx_ring->txbufs[idx]; |
| |
| skb = tx_ring->txbufs[idx].skb; |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| |
| if (tx_buf->fidx == -1) { |
| /* unmap head */ |
| dma_unmap_single(dp->dev, tx_buf->dma_addr, |
| skb_headlen(skb), DMA_TO_DEVICE); |
| } else { |
| /* unmap fragment */ |
| frag = &skb_shinfo(skb)->frags[tx_buf->fidx]; |
| dma_unmap_page(dp->dev, tx_buf->dma_addr, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| } |
| |
| /* check for last gather fragment */ |
| if (tx_buf->fidx == nr_frags - 1) |
| dev_kfree_skb_any(skb); |
| |
| tx_buf->dma_addr = 0; |
| tx_buf->skb = NULL; |
| tx_buf->fidx = -2; |
| |
| tx_ring->qcp_rd_p++; |
| tx_ring->rd_p++; |
| } |
| |
| memset(tx_ring->txds, 0, tx_ring->size); |
| tx_ring->wr_p = 0; |
| tx_ring->rd_p = 0; |
| tx_ring->qcp_rd_p = 0; |
| tx_ring->wr_ptr_add = 0; |
| |
| if (tx_ring->is_xdp || !dp->netdev) |
| return; |
| |
| nd_q = netdev_get_tx_queue(dp->netdev, tx_ring->idx); |
| netdev_tx_reset_queue(nd_q); |
| } |
| |
| static void nfp_net_tx_timeout(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int i; |
| |
| for (i = 0; i < nn->dp.netdev->real_num_tx_queues; i++) { |
| if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) |
| continue; |
| nn_warn(nn, "TX timeout on ring: %d\n", i); |
| } |
| nn_warn(nn, "TX watchdog timeout\n"); |
| } |
| |
| /* Receive processing |
| */ |
| static unsigned int |
| nfp_net_calc_fl_bufsz(struct nfp_net_dp *dp) |
| { |
| unsigned int fl_bufsz; |
| |
| fl_bufsz = NFP_NET_RX_BUF_HEADROOM; |
| fl_bufsz += dp->rx_dma_off; |
| if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) |
| fl_bufsz += NFP_NET_MAX_PREPEND; |
| else |
| fl_bufsz += dp->rx_offset; |
| fl_bufsz += ETH_HLEN + VLAN_HLEN * 2 + dp->mtu; |
| |
| fl_bufsz = SKB_DATA_ALIGN(fl_bufsz); |
| fl_bufsz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
| |
| return fl_bufsz; |
| } |
| |
| static void |
| nfp_net_free_frag(void *frag, bool xdp) |
| { |
| if (!xdp) |
| skb_free_frag(frag); |
| else |
| __free_page(virt_to_page(frag)); |
| } |
| |
| /** |
| * nfp_net_rx_alloc_one() - Allocate and map page frag for RX |
| * @dp: NFP Net data path struct |
| * @dma_addr: Pointer to storage for DMA address (output param) |
| * |
| * This function will allcate a new page frag, map it for DMA. |
| * |
| * Return: allocated page frag or NULL on failure. |
| */ |
| static void *nfp_net_rx_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) |
| { |
| void *frag; |
| |
| if (!dp->xdp_prog) { |
| frag = netdev_alloc_frag(dp->fl_bufsz); |
| } else { |
| struct page *page; |
| |
| page = alloc_page(GFP_KERNEL); |
| frag = page ? page_address(page) : NULL; |
| } |
| if (!frag) { |
| nn_dp_warn(dp, "Failed to alloc receive page frag\n"); |
| return NULL; |
| } |
| |
| *dma_addr = nfp_net_dma_map_rx(dp, frag); |
| if (dma_mapping_error(dp->dev, *dma_addr)) { |
| nfp_net_free_frag(frag, dp->xdp_prog); |
| nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); |
| return NULL; |
| } |
| |
| return frag; |
| } |
| |
| static void *nfp_net_napi_alloc_one(struct nfp_net_dp *dp, dma_addr_t *dma_addr) |
| { |
| void *frag; |
| |
| if (!dp->xdp_prog) { |
| frag = napi_alloc_frag(dp->fl_bufsz); |
| if (unlikely(!frag)) |
| return NULL; |
| } else { |
| struct page *page; |
| |
| page = dev_alloc_page(); |
| if (unlikely(!page)) |
| return NULL; |
| frag = page_address(page); |
| } |
| |
| *dma_addr = nfp_net_dma_map_rx(dp, frag); |
| if (dma_mapping_error(dp->dev, *dma_addr)) { |
| nfp_net_free_frag(frag, dp->xdp_prog); |
| nn_dp_warn(dp, "Failed to map DMA RX buffer\n"); |
| return NULL; |
| } |
| |
| return frag; |
| } |
| |
| /** |
| * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings |
| * @dp: NFP Net data path struct |
| * @rx_ring: RX ring structure |
| * @frag: page fragment buffer |
| * @dma_addr: DMA address of skb mapping |
| */ |
| static void nfp_net_rx_give_one(const struct nfp_net_dp *dp, |
| struct nfp_net_rx_ring *rx_ring, |
| void *frag, dma_addr_t dma_addr) |
| { |
| unsigned int wr_idx; |
| |
| wr_idx = D_IDX(rx_ring, rx_ring->wr_p); |
| |
| nfp_net_dma_sync_dev_rx(dp, dma_addr); |
| |
| /* Stash SKB and DMA address away */ |
| rx_ring->rxbufs[wr_idx].frag = frag; |
| rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; |
| |
| /* Fill freelist descriptor */ |
| rx_ring->rxds[wr_idx].fld.reserved = 0; |
| rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; |
| nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, |
| dma_addr + dp->rx_dma_off); |
| |
| rx_ring->wr_p++; |
| if (!(rx_ring->wr_p % NFP_NET_FL_BATCH)) { |
| /* Update write pointer of the freelist queue. Make |
| * sure all writes are flushed before telling the hardware. |
| */ |
| wmb(); |
| nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, NFP_NET_FL_BATCH); |
| } |
| } |
| |
| /** |
| * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable |
| * @rx_ring: RX ring structure |
| * |
| * Assumes that the device is stopped, must be idempotent. |
| */ |
| static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) |
| { |
| unsigned int wr_idx, last_idx; |
| |
| /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always |
| * kept at cnt - 1 FL bufs. |
| */ |
| if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) |
| return; |
| |
| /* Move the empty entry to the end of the list */ |
| wr_idx = D_IDX(rx_ring, rx_ring->wr_p); |
| last_idx = rx_ring->cnt - 1; |
| rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; |
| rx_ring->rxbufs[wr_idx].frag = rx_ring->rxbufs[last_idx].frag; |
| rx_ring->rxbufs[last_idx].dma_addr = 0; |
| rx_ring->rxbufs[last_idx].frag = NULL; |
| |
| memset(rx_ring->rxds, 0, rx_ring->size); |
| rx_ring->wr_p = 0; |
| rx_ring->rd_p = 0; |
| } |
| |
| /** |
| * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring |
| * @dp: NFP Net data path struct |
| * @rx_ring: RX ring to remove buffers from |
| * |
| * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) |
| * entries. After device is disabled nfp_net_rx_ring_reset() must be called |
| * to restore required ring geometry. |
| */ |
| static void |
| nfp_net_rx_ring_bufs_free(struct nfp_net_dp *dp, |
| struct nfp_net_rx_ring *rx_ring) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < rx_ring->cnt - 1; i++) { |
| /* NULL skb can only happen when initial filling of the ring |
| * fails to allocate enough buffers and calls here to free |
| * already allocated ones. |
| */ |
| if (!rx_ring->rxbufs[i].frag) |
| continue; |
| |
| nfp_net_dma_unmap_rx(dp, rx_ring->rxbufs[i].dma_addr); |
| nfp_net_free_frag(rx_ring->rxbufs[i].frag, dp->xdp_prog); |
| rx_ring->rxbufs[i].dma_addr = 0; |
| rx_ring->rxbufs[i].frag = NULL; |
| } |
| } |
| |
| /** |
| * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) |
| * @dp: NFP Net data path struct |
| * @rx_ring: RX ring to remove buffers from |
| */ |
| static int |
| nfp_net_rx_ring_bufs_alloc(struct nfp_net_dp *dp, |
| struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net_rx_buf *rxbufs; |
| unsigned int i; |
| |
| rxbufs = rx_ring->rxbufs; |
| |
| for (i = 0; i < rx_ring->cnt - 1; i++) { |
| rxbufs[i].frag = nfp_net_rx_alloc_one(dp, &rxbufs[i].dma_addr); |
| if (!rxbufs[i].frag) { |
| nfp_net_rx_ring_bufs_free(dp, rx_ring); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW |
| * @dp: NFP Net data path struct |
| * @rx_ring: RX ring to fill |
| */ |
| static void |
| nfp_net_rx_ring_fill_freelist(struct nfp_net_dp *dp, |
| struct nfp_net_rx_ring *rx_ring) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < rx_ring->cnt - 1; i++) |
| nfp_net_rx_give_one(dp, rx_ring, rx_ring->rxbufs[i].frag, |
| rx_ring->rxbufs[i].dma_addr); |
| } |
| |
| /** |
| * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors |
| * @flags: RX descriptor flags field in CPU byte order |
| */ |
| static int nfp_net_rx_csum_has_errors(u16 flags) |
| { |
| u16 csum_all_checked, csum_all_ok; |
| |
| csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; |
| csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; |
| |
| return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); |
| } |
| |
| /** |
| * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags |
| * @dp: NFP Net data path struct |
| * @r_vec: per-ring structure |
| * @rxd: Pointer to RX descriptor |
| * @meta: Parsed metadata prepend |
| * @skb: Pointer to SKB |
| */ |
| static void nfp_net_rx_csum(struct nfp_net_dp *dp, |
| struct nfp_net_r_vector *r_vec, |
| struct nfp_net_rx_desc *rxd, |
| struct nfp_meta_parsed *meta, struct sk_buff *skb) |
| { |
| skb_checksum_none_assert(skb); |
| |
| if (!(dp->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| if (meta->csum_type) { |
| skb->ip_summed = meta->csum_type; |
| skb->csum = meta->csum; |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_complete++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| return; |
| } |
| |
| if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_error++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| return; |
| } |
| |
| /* Assume that the firmware will never report inner CSUM_OK unless outer |
| * L4 headers were successfully parsed. FW will always report zero UDP |
| * checksum as CSUM_OK. |
| */ |
| if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || |
| rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { |
| __skb_incr_checksum_unnecessary(skb); |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_ok++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| } |
| |
| if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || |
| rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { |
| __skb_incr_checksum_unnecessary(skb); |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->hw_csum_rx_inner_ok++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| } |
| } |
| |
| static void |
| nfp_net_set_hash(struct net_device *netdev, struct nfp_meta_parsed *meta, |
| unsigned int type, __be32 *hash) |
| { |
| if (!(netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| switch (type) { |
| case NFP_NET_RSS_IPV4: |
| case NFP_NET_RSS_IPV6: |
| case NFP_NET_RSS_IPV6_EX: |
| meta->hash_type = PKT_HASH_TYPE_L3; |
| break; |
| default: |
| meta->hash_type = PKT_HASH_TYPE_L4; |
| break; |
| } |
| |
| meta->hash = get_unaligned_be32(hash); |
| } |
| |
| static void |
| nfp_net_set_hash_desc(struct net_device *netdev, struct nfp_meta_parsed *meta, |
| void *data, struct nfp_net_rx_desc *rxd) |
| { |
| struct nfp_net_rx_hash *rx_hash = data; |
| |
| if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) |
| return; |
| |
| nfp_net_set_hash(netdev, meta, get_unaligned_be32(&rx_hash->hash_type), |
| &rx_hash->hash); |
| } |
| |
| static void * |
| nfp_net_parse_meta(struct net_device *netdev, struct nfp_meta_parsed *meta, |
| void *data, int meta_len) |
| { |
| u32 meta_info; |
| |
| meta_info = get_unaligned_be32(data); |
| data += 4; |
| |
| while (meta_info) { |
| switch (meta_info & NFP_NET_META_FIELD_MASK) { |
| case NFP_NET_META_HASH: |
| meta_info >>= NFP_NET_META_FIELD_SIZE; |
| nfp_net_set_hash(netdev, meta, |
| meta_info & NFP_NET_META_FIELD_MASK, |
| (__be32 *)data); |
| data += 4; |
| break; |
| case NFP_NET_META_MARK: |
| meta->mark = get_unaligned_be32(data); |
| data += 4; |
| break; |
| case NFP_NET_META_PORTID: |
| meta->portid = get_unaligned_be32(data); |
| data += 4; |
| break; |
| case NFP_NET_META_CSUM: |
| meta->csum_type = CHECKSUM_COMPLETE; |
| meta->csum = |
| (__force __wsum)__get_unaligned_cpu32(data); |
| data += 4; |
| break; |
| default: |
| return NULL; |
| } |
| |
| meta_info >>= NFP_NET_META_FIELD_SIZE; |
| } |
| |
| return data; |
| } |
| |
| static void |
| nfp_net_rx_drop(const struct nfp_net_dp *dp, struct nfp_net_r_vector *r_vec, |
| struct nfp_net_rx_ring *rx_ring, struct nfp_net_rx_buf *rxbuf, |
| struct sk_buff *skb) |
| { |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->rx_drops++; |
| /* If we have both skb and rxbuf the replacement buffer allocation |
| * must have failed, count this as an alloc failure. |
| */ |
| if (skb && rxbuf) |
| r_vec->rx_replace_buf_alloc_fail++; |
| u64_stats_update_end(&r_vec->rx_sync); |
| |
| /* skb is build based on the frag, free_skb() would free the frag |
| * so to be able to reuse it we need an extra ref. |
| */ |
| if (skb && rxbuf && skb->head == rxbuf->frag) |
| page_ref_inc(virt_to_head_page(rxbuf->frag)); |
| if (rxbuf) |
| nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, rxbuf->dma_addr); |
| if (skb) |
| dev_kfree_skb_any(skb); |
| } |
| |
| static bool |
| nfp_net_tx_xdp_buf(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring, |
| struct nfp_net_tx_ring *tx_ring, |
| struct nfp_net_rx_buf *rxbuf, unsigned int dma_off, |
| unsigned int pkt_len, bool *completed) |
| { |
| struct nfp_net_tx_buf *txbuf; |
| struct nfp_net_tx_desc *txd; |
| int wr_idx; |
| |
| if (unlikely(nfp_net_tx_full(tx_ring, 1))) { |
| if (!*completed) { |
| nfp_net_xdp_complete(tx_ring); |
| *completed = true; |
| } |
| |
| if (unlikely(nfp_net_tx_full(tx_ring, 1))) { |
| nfp_net_rx_drop(dp, rx_ring->r_vec, rx_ring, rxbuf, |
| NULL); |
| return false; |
| } |
| } |
| |
| wr_idx = D_IDX(tx_ring, tx_ring->wr_p); |
| |
| /* Stash the soft descriptor of the head then initialize it */ |
| txbuf = &tx_ring->txbufs[wr_idx]; |
| |
| nfp_net_rx_give_one(dp, rx_ring, txbuf->frag, txbuf->dma_addr); |
| |
| txbuf->frag = rxbuf->frag; |
| txbuf->dma_addr = rxbuf->dma_addr; |
| txbuf->fidx = -1; |
| txbuf->pkt_cnt = 1; |
| txbuf->real_len = pkt_len; |
| |
| dma_sync_single_for_device(dp->dev, rxbuf->dma_addr + dma_off, |
| pkt_len, DMA_BIDIRECTIONAL); |
| |
| /* Build TX descriptor */ |
| txd = &tx_ring->txds[wr_idx]; |
| txd->offset_eop = PCIE_DESC_TX_EOP; |
| txd->dma_len = cpu_to_le16(pkt_len); |
| nfp_desc_set_dma_addr(txd, rxbuf->dma_addr + dma_off); |
| txd->data_len = cpu_to_le16(pkt_len); |
| |
| txd->flags = 0; |
| txd->mss = 0; |
| txd->lso_hdrlen = 0; |
| |
| tx_ring->wr_p++; |
| tx_ring->wr_ptr_add++; |
| return true; |
| } |
| |
| /** |
| * nfp_net_rx() - receive up to @budget packets on @rx_ring |
| * @rx_ring: RX ring to receive from |
| * @budget: NAPI budget |
| * |
| * Note, this function is separated out from the napi poll function to |
| * more cleanly separate packet receive code from other bookkeeping |
| * functions performed in the napi poll function. |
| * |
| * Return: Number of packets received. |
| */ |
| static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net_dp *dp = &r_vec->nfp_net->dp; |
| struct nfp_net_tx_ring *tx_ring; |
| struct bpf_prog *xdp_prog; |
| bool xdp_tx_cmpl = false; |
| unsigned int true_bufsz; |
| struct sk_buff *skb; |
| int pkts_polled = 0; |
| struct xdp_buff xdp; |
| int idx; |
| |
| rcu_read_lock(); |
| xdp_prog = READ_ONCE(dp->xdp_prog); |
| true_bufsz = xdp_prog ? PAGE_SIZE : dp->fl_bufsz; |
| xdp.rxq = &rx_ring->xdp_rxq; |
| tx_ring = r_vec->xdp_ring; |
| |
| while (pkts_polled < budget) { |
| unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; |
| struct nfp_net_rx_buf *rxbuf; |
| struct nfp_net_rx_desc *rxd; |
| struct nfp_meta_parsed meta; |
| struct net_device *netdev; |
| dma_addr_t new_dma_addr; |
| u32 meta_len_xdp = 0; |
| void *new_frag; |
| |
| idx = D_IDX(rx_ring, rx_ring->rd_p); |
| |
| rxd = &rx_ring->rxds[idx]; |
| if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) |
| break; |
| |
| /* Memory barrier to ensure that we won't do other reads |
| * before the DD bit. |
| */ |
| dma_rmb(); |
| |
| memset(&meta, 0, sizeof(meta)); |
| |
| rx_ring->rd_p++; |
| pkts_polled++; |
| |
| rxbuf = &rx_ring->rxbufs[idx]; |
| /* < meta_len > |
| * <-- [rx_offset] --> |
| * --------------------------------------------------------- |
| * | [XX] | metadata | packet | XXXX | |
| * --------------------------------------------------------- |
| * <---------------- data_len ---------------> |
| * |
| * The rx_offset is fixed for all packets, the meta_len can vary |
| * on a packet by packet basis. If rx_offset is set to zero |
| * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the |
| * buffer and is immediately followed by the packet (no [XX]). |
| */ |
| meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; |
| data_len = le16_to_cpu(rxd->rxd.data_len); |
| pkt_len = data_len - meta_len; |
| |
| pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; |
| if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) |
| pkt_off += meta_len; |
| else |
| pkt_off += dp->rx_offset; |
| meta_off = pkt_off - meta_len; |
| |
| /* Stats update */ |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->rx_pkts++; |
| r_vec->rx_bytes += pkt_len; |
| u64_stats_update_end(&r_vec->rx_sync); |
| |
| if (unlikely(meta_len > NFP_NET_MAX_PREPEND || |
| (dp->rx_offset && meta_len > dp->rx_offset))) { |
| nn_dp_warn(dp, "oversized RX packet metadata %u\n", |
| meta_len); |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); |
| continue; |
| } |
| |
| nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, |
| data_len); |
| |
| if (!dp->chained_metadata_format) { |
| nfp_net_set_hash_desc(dp->netdev, &meta, |
| rxbuf->frag + meta_off, rxd); |
| } else if (meta_len) { |
| void *end; |
| |
| end = nfp_net_parse_meta(dp->netdev, &meta, |
| rxbuf->frag + meta_off, |
| meta_len); |
| if (unlikely(end != rxbuf->frag + pkt_off)) { |
| nn_dp_warn(dp, "invalid RX packet metadata\n"); |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, |
| NULL); |
| continue; |
| } |
| } |
| |
| if (xdp_prog && !meta.portid) { |
| void *orig_data = rxbuf->frag + pkt_off; |
| unsigned int dma_off; |
| int act; |
| |
| xdp.data_hard_start = rxbuf->frag + NFP_NET_RX_BUF_HEADROOM; |
| xdp.data = orig_data; |
| xdp.data_meta = orig_data; |
| xdp.data_end = orig_data + pkt_len; |
| |
| act = bpf_prog_run_xdp(xdp_prog, &xdp); |
| |
| pkt_len = xdp.data_end - xdp.data; |
| pkt_off += xdp.data - orig_data; |
| |
| switch (act) { |
| case XDP_PASS: |
| meta_len_xdp = xdp.data - xdp.data_meta; |
| break; |
| case XDP_TX: |
| dma_off = pkt_off - NFP_NET_RX_BUF_HEADROOM; |
| if (unlikely(!nfp_net_tx_xdp_buf(dp, rx_ring, |
| tx_ring, rxbuf, |
| dma_off, |
| pkt_len, |
| &xdp_tx_cmpl))) |
| trace_xdp_exception(dp->netdev, |
| xdp_prog, act); |
| continue; |
| default: |
| bpf_warn_invalid_xdp_action(act); |
| /* fall through */ |
| case XDP_ABORTED: |
| trace_xdp_exception(dp->netdev, xdp_prog, act); |
| /* fall through */ |
| case XDP_DROP: |
| nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, |
| rxbuf->dma_addr); |
| continue; |
| } |
| } |
| |
| if (likely(!meta.portid)) { |
| netdev = dp->netdev; |
| } else if (meta.portid == NFP_META_PORT_ID_CTRL) { |
| struct nfp_net *nn = netdev_priv(dp->netdev); |
| |
| nfp_app_ctrl_rx_raw(nn->app, rxbuf->frag + pkt_off, |
| pkt_len); |
| nfp_net_rx_give_one(dp, rx_ring, rxbuf->frag, |
| rxbuf->dma_addr); |
| continue; |
| } else { |
| struct nfp_net *nn; |
| |
| nn = netdev_priv(dp->netdev); |
| netdev = nfp_app_repr_get(nn->app, meta.portid); |
| if (unlikely(!netdev)) { |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, |
| NULL); |
| continue; |
| } |
| nfp_repr_inc_rx_stats(netdev, pkt_len); |
| } |
| |
| skb = build_skb(rxbuf->frag, true_bufsz); |
| if (unlikely(!skb)) { |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); |
| continue; |
| } |
| new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); |
| if (unlikely(!new_frag)) { |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); |
| continue; |
| } |
| |
| nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); |
| |
| nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); |
| |
| skb_reserve(skb, pkt_off); |
| skb_put(skb, pkt_len); |
| |
| skb->mark = meta.mark; |
| skb_set_hash(skb, meta.hash, meta.hash_type); |
| |
| skb_record_rx_queue(skb, rx_ring->idx); |
| skb->protocol = eth_type_trans(skb, netdev); |
| |
| nfp_net_rx_csum(dp, r_vec, rxd, &meta, skb); |
| |
| if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| le16_to_cpu(rxd->rxd.vlan)); |
| if (meta_len_xdp) |
| skb_metadata_set(skb, meta_len_xdp); |
| |
| napi_gro_receive(&rx_ring->r_vec->napi, skb); |
| } |
| |
| if (xdp_prog) { |
| if (tx_ring->wr_ptr_add) |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| else if (unlikely(tx_ring->wr_p != tx_ring->rd_p) && |
| !xdp_tx_cmpl) |
| if (!nfp_net_xdp_complete(tx_ring)) |
| pkts_polled = budget; |
| } |
| rcu_read_unlock(); |
| |
| return pkts_polled; |
| } |
| |
| /** |
| * nfp_net_poll() - napi poll function |
| * @napi: NAPI structure |
| * @budget: NAPI budget |
| * |
| * Return: number of packets polled. |
| */ |
| static int nfp_net_poll(struct napi_struct *napi, int budget) |
| { |
| struct nfp_net_r_vector *r_vec = |
| container_of(napi, struct nfp_net_r_vector, napi); |
| unsigned int pkts_polled = 0; |
| |
| if (r_vec->tx_ring) |
| nfp_net_tx_complete(r_vec->tx_ring, budget); |
| if (r_vec->rx_ring) |
| pkts_polled = nfp_net_rx(r_vec->rx_ring, budget); |
| |
| if (pkts_polled < budget) |
| if (napi_complete_done(napi, pkts_polled)) |
| nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); |
| |
| return pkts_polled; |
| } |
| |
| /* Control device data path |
| */ |
| |
| static bool |
| nfp_ctrl_tx_one(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, |
| struct sk_buff *skb, bool old) |
| { |
| unsigned int real_len = skb->len, meta_len = 0; |
| struct nfp_net_tx_ring *tx_ring; |
| struct nfp_net_tx_buf *txbuf; |
| struct nfp_net_tx_desc *txd; |
| struct nfp_net_dp *dp; |
| dma_addr_t dma_addr; |
| int wr_idx; |
| |
| dp = &r_vec->nfp_net->dp; |
| tx_ring = r_vec->tx_ring; |
| |
| if (WARN_ON_ONCE(skb_shinfo(skb)->nr_frags)) { |
| nn_dp_warn(dp, "Driver's CTRL TX does not implement gather\n"); |
| goto err_free; |
| } |
| |
| if (unlikely(nfp_net_tx_full(tx_ring, 1))) { |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_busy++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| if (!old) |
| __skb_queue_tail(&r_vec->queue, skb); |
| else |
| __skb_queue_head(&r_vec->queue, skb); |
| return true; |
| } |
| |
| if (nfp_app_ctrl_has_meta(nn->app)) { |
| if (unlikely(skb_headroom(skb) < 8)) { |
| nn_dp_warn(dp, "CTRL TX on skb without headroom\n"); |
| goto err_free; |
| } |
| meta_len = 8; |
| put_unaligned_be32(NFP_META_PORT_ID_CTRL, skb_push(skb, 4)); |
| put_unaligned_be32(NFP_NET_META_PORTID, skb_push(skb, 4)); |
| } |
| |
| /* Start with the head skbuf */ |
| dma_addr = dma_map_single(dp->dev, skb->data, skb_headlen(skb), |
| DMA_TO_DEVICE); |
| if (dma_mapping_error(dp->dev, dma_addr)) |
| goto err_dma_warn; |
| |
| wr_idx = D_IDX(tx_ring, tx_ring->wr_p); |
| |
| /* Stash the soft descriptor of the head then initialize it */ |
| txbuf = &tx_ring->txbufs[wr_idx]; |
| txbuf->skb = skb; |
| txbuf->dma_addr = dma_addr; |
| txbuf->fidx = -1; |
| txbuf->pkt_cnt = 1; |
| txbuf->real_len = real_len; |
| |
| /* Build TX descriptor */ |
| txd = &tx_ring->txds[wr_idx]; |
| txd->offset_eop = meta_len | PCIE_DESC_TX_EOP; |
| txd->dma_len = cpu_to_le16(skb_headlen(skb)); |
| nfp_desc_set_dma_addr(txd, dma_addr); |
| txd->data_len = cpu_to_le16(skb->len); |
| |
| txd->flags = 0; |
| txd->mss = 0; |
| txd->lso_hdrlen = 0; |
| |
| tx_ring->wr_p++; |
| tx_ring->wr_ptr_add++; |
| nfp_net_tx_xmit_more_flush(tx_ring); |
| |
| return false; |
| |
| err_dma_warn: |
| nn_dp_warn(dp, "Failed to DMA map TX CTRL buffer\n"); |
| err_free: |
| u64_stats_update_begin(&r_vec->tx_sync); |
| r_vec->tx_errors++; |
| u64_stats_update_end(&r_vec->tx_sync); |
| dev_kfree_skb_any(skb); |
| return false; |
| } |
| |
| bool __nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) |
| { |
| struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; |
| |
| return nfp_ctrl_tx_one(nn, r_vec, skb, false); |
| } |
| |
| bool nfp_ctrl_tx(struct nfp_net *nn, struct sk_buff *skb) |
| { |
| struct nfp_net_r_vector *r_vec = &nn->r_vecs[0]; |
| bool ret; |
| |
| spin_lock_bh(&r_vec->lock); |
| ret = nfp_ctrl_tx_one(nn, r_vec, skb, false); |
| spin_unlock_bh(&r_vec->lock); |
| |
| return ret; |
| } |
| |
| static void __nfp_ctrl_tx_queued(struct nfp_net_r_vector *r_vec) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = __skb_dequeue(&r_vec->queue))) |
| if (nfp_ctrl_tx_one(r_vec->nfp_net, r_vec, skb, true)) |
| return; |
| } |
| |
| static bool |
| nfp_ctrl_meta_ok(struct nfp_net *nn, void *data, unsigned int meta_len) |
| { |
| u32 meta_type, meta_tag; |
| |
| if (!nfp_app_ctrl_has_meta(nn->app)) |
| return !meta_len; |
| |
| if (meta_len != 8) |
| return false; |
| |
| meta_type = get_unaligned_be32(data); |
| meta_tag = get_unaligned_be32(data + 4); |
| |
| return (meta_type == NFP_NET_META_PORTID && |
| meta_tag == NFP_META_PORT_ID_CTRL); |
| } |
| |
| static bool |
| nfp_ctrl_rx_one(struct nfp_net *nn, struct nfp_net_dp *dp, |
| struct nfp_net_r_vector *r_vec, struct nfp_net_rx_ring *rx_ring) |
| { |
| unsigned int meta_len, data_len, meta_off, pkt_len, pkt_off; |
| struct nfp_net_rx_buf *rxbuf; |
| struct nfp_net_rx_desc *rxd; |
| dma_addr_t new_dma_addr; |
| struct sk_buff *skb; |
| void *new_frag; |
| int idx; |
| |
| idx = D_IDX(rx_ring, rx_ring->rd_p); |
| |
| rxd = &rx_ring->rxds[idx]; |
| if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) |
| return false; |
| |
| /* Memory barrier to ensure that we won't do other reads |
| * before the DD bit. |
| */ |
| dma_rmb(); |
| |
| rx_ring->rd_p++; |
| |
| rxbuf = &rx_ring->rxbufs[idx]; |
| meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; |
| data_len = le16_to_cpu(rxd->rxd.data_len); |
| pkt_len = data_len - meta_len; |
| |
| pkt_off = NFP_NET_RX_BUF_HEADROOM + dp->rx_dma_off; |
| if (dp->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) |
| pkt_off += meta_len; |
| else |
| pkt_off += dp->rx_offset; |
| meta_off = pkt_off - meta_len; |
| |
| /* Stats update */ |
| u64_stats_update_begin(&r_vec->rx_sync); |
| r_vec->rx_pkts++; |
| r_vec->rx_bytes += pkt_len; |
| u64_stats_update_end(&r_vec->rx_sync); |
| |
| nfp_net_dma_sync_cpu_rx(dp, rxbuf->dma_addr + meta_off, data_len); |
| |
| if (unlikely(!nfp_ctrl_meta_ok(nn, rxbuf->frag + meta_off, meta_len))) { |
| nn_dp_warn(dp, "incorrect metadata for ctrl packet (%d)\n", |
| meta_len); |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); |
| return true; |
| } |
| |
| skb = build_skb(rxbuf->frag, dp->fl_bufsz); |
| if (unlikely(!skb)) { |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, NULL); |
| return true; |
| } |
| new_frag = nfp_net_napi_alloc_one(dp, &new_dma_addr); |
| if (unlikely(!new_frag)) { |
| nfp_net_rx_drop(dp, r_vec, rx_ring, rxbuf, skb); |
| return true; |
| } |
| |
| nfp_net_dma_unmap_rx(dp, rxbuf->dma_addr); |
| |
| nfp_net_rx_give_one(dp, rx_ring, new_frag, new_dma_addr); |
| |
| skb_reserve(skb, pkt_off); |
| skb_put(skb, pkt_len); |
| |
| nfp_app_ctrl_rx(nn->app, skb); |
| |
| return true; |
| } |
| |
| static bool nfp_ctrl_rx(struct nfp_net_r_vector *r_vec) |
| { |
| struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; |
| struct nfp_net *nn = r_vec->nfp_net; |
| struct nfp_net_dp *dp = &nn->dp; |
| unsigned int budget = 512; |
| |
| while (nfp_ctrl_rx_one(nn, dp, r_vec, rx_ring) && budget--) |
| continue; |
| |
| return budget; |
| } |
| |
| static void nfp_ctrl_poll(unsigned long arg) |
| { |
| struct nfp_net_r_vector *r_vec = (void *)arg; |
| |
| spin_lock(&r_vec->lock); |
| nfp_net_tx_complete(r_vec->tx_ring, 0); |
| __nfp_ctrl_tx_queued(r_vec); |
| spin_unlock(&r_vec->lock); |
| |
| if (nfp_ctrl_rx(r_vec)) { |
| nfp_net_irq_unmask(r_vec->nfp_net, r_vec->irq_entry); |
| } else { |
| tasklet_schedule(&r_vec->tasklet); |
| nn_dp_warn(&r_vec->nfp_net->dp, |
| "control message budget exceeded!\n"); |
| } |
| } |
| |
| /* Setup and Configuration |
| */ |
| |
| /** |
| * nfp_net_vecs_init() - Assign IRQs and setup rvecs. |
| * @nn: NFP Network structure |
| */ |
| static void nfp_net_vecs_init(struct nfp_net *nn) |
| { |
| struct nfp_net_r_vector *r_vec; |
| int r; |
| |
| nn->lsc_handler = nfp_net_irq_lsc; |
| nn->exn_handler = nfp_net_irq_exn; |
| |
| for (r = 0; r < nn->max_r_vecs; r++) { |
| struct msix_entry *entry; |
| |
| entry = &nn->irq_entries[NFP_NET_NON_Q_VECTORS + r]; |
| |
| r_vec = &nn->r_vecs[r]; |
| r_vec->nfp_net = nn; |
| r_vec->irq_entry = entry->entry; |
| r_vec->irq_vector = entry->vector; |
| |
| if (nn->dp.netdev) { |
| r_vec->handler = nfp_net_irq_rxtx; |
| } else { |
| r_vec->handler = nfp_ctrl_irq_rxtx; |
| |
| __skb_queue_head_init(&r_vec->queue); |
| spin_lock_init(&r_vec->lock); |
| tasklet_init(&r_vec->tasklet, nfp_ctrl_poll, |
| (unsigned long)r_vec); |
| tasklet_disable(&r_vec->tasklet); |
| } |
| |
| cpumask_set_cpu(r, &r_vec->affinity_mask); |
| } |
| } |
| |
| /** |
| * nfp_net_tx_ring_free() - Free resources allocated to a TX ring |
| * @tx_ring: TX ring to free |
| */ |
| static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| struct nfp_net_dp *dp = &r_vec->nfp_net->dp; |
| |
| kvfree(tx_ring->txbufs); |
| |
| if (tx_ring->txds) |
| dma_free_coherent(dp->dev, tx_ring->size, |
| tx_ring->txds, tx_ring->dma); |
| |
| tx_ring->cnt = 0; |
| tx_ring->txbufs = NULL; |
| tx_ring->txds = NULL; |
| tx_ring->dma = 0; |
| tx_ring->size = 0; |
| } |
| |
| /** |
| * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring |
| * @dp: NFP Net data path struct |
| * @tx_ring: TX Ring structure to allocate |
| * |
| * Return: 0 on success, negative errno otherwise. |
| */ |
| static int |
| nfp_net_tx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = tx_ring->r_vec; |
| |
| tx_ring->cnt = dp->txd_cnt; |
| |
| tx_ring->size = array_size(tx_ring->cnt, sizeof(*tx_ring->txds)); |
| tx_ring->txds = dma_zalloc_coherent(dp->dev, tx_ring->size, |
| &tx_ring->dma, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!tx_ring->txds) { |
| netdev_warn(dp->netdev, "failed to allocate TX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", |
| tx_ring->cnt); |
| goto err_alloc; |
| } |
| |
| tx_ring->txbufs = kvcalloc(tx_ring->cnt, sizeof(*tx_ring->txbufs), |
| GFP_KERNEL); |
| if (!tx_ring->txbufs) |
| goto err_alloc; |
| |
| if (!tx_ring->is_xdp && dp->netdev) |
| netif_set_xps_queue(dp->netdev, &r_vec->affinity_mask, |
| tx_ring->idx); |
| |
| return 0; |
| |
| err_alloc: |
| nfp_net_tx_ring_free(tx_ring); |
| return -ENOMEM; |
| } |
| |
| static void |
| nfp_net_tx_ring_bufs_free(struct nfp_net_dp *dp, |
| struct nfp_net_tx_ring *tx_ring) |
| { |
| unsigned int i; |
| |
| if (!tx_ring->is_xdp) |
| return; |
| |
| for (i = 0; i < tx_ring->cnt; i++) { |
| if (!tx_ring->txbufs[i].frag) |
| return; |
| |
| nfp_net_dma_unmap_rx(dp, tx_ring->txbufs[i].dma_addr); |
| __free_page(virt_to_page(tx_ring->txbufs[i].frag)); |
| } |
| } |
| |
| static int |
| nfp_net_tx_ring_bufs_alloc(struct nfp_net_dp *dp, |
| struct nfp_net_tx_ring *tx_ring) |
| { |
| struct nfp_net_tx_buf *txbufs = tx_ring->txbufs; |
| unsigned int i; |
| |
| if (!tx_ring->is_xdp) |
| return 0; |
| |
| for (i = 0; i < tx_ring->cnt; i++) { |
| txbufs[i].frag = nfp_net_rx_alloc_one(dp, &txbufs[i].dma_addr); |
| if (!txbufs[i].frag) { |
| nfp_net_tx_ring_bufs_free(dp, tx_ring); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int nfp_net_tx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) |
| { |
| unsigned int r; |
| |
| dp->tx_rings = kcalloc(dp->num_tx_rings, sizeof(*dp->tx_rings), |
| GFP_KERNEL); |
| if (!dp->tx_rings) |
| return -ENOMEM; |
| |
| for (r = 0; r < dp->num_tx_rings; r++) { |
| int bias = 0; |
| |
| if (r >= dp->num_stack_tx_rings) |
| bias = dp->num_stack_tx_rings; |
| |
| nfp_net_tx_ring_init(&dp->tx_rings[r], &nn->r_vecs[r - bias], |
| r, bias); |
| |
| if (nfp_net_tx_ring_alloc(dp, &dp->tx_rings[r])) |
| goto err_free_prev; |
| |
| if (nfp_net_tx_ring_bufs_alloc(dp, &dp->tx_rings[r])) |
| goto err_free_ring; |
| } |
| |
| return 0; |
| |
| err_free_prev: |
| while (r--) { |
| nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); |
| err_free_ring: |
| nfp_net_tx_ring_free(&dp->tx_rings[r]); |
| } |
| kfree(dp->tx_rings); |
| return -ENOMEM; |
| } |
| |
| static void nfp_net_tx_rings_free(struct nfp_net_dp *dp) |
| { |
| unsigned int r; |
| |
| for (r = 0; r < dp->num_tx_rings; r++) { |
| nfp_net_tx_ring_bufs_free(dp, &dp->tx_rings[r]); |
| nfp_net_tx_ring_free(&dp->tx_rings[r]); |
| } |
| |
| kfree(dp->tx_rings); |
| } |
| |
| /** |
| * nfp_net_rx_ring_free() - Free resources allocated to a RX ring |
| * @rx_ring: RX ring to free |
| */ |
| static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) |
| { |
| struct nfp_net_r_vector *r_vec = rx_ring->r_vec; |
| struct nfp_net_dp *dp = &r_vec->nfp_net->dp; |
| |
| if (dp->netdev) |
| xdp_rxq_info_unreg(&rx_ring->xdp_rxq); |
| kvfree(rx_ring->rxbufs); |
| |
| if (rx_ring->rxds) |
| dma_free_coherent(dp->dev, rx_ring->size, |
| rx_ring->rxds, rx_ring->dma); |
| |
| rx_ring->cnt = 0; |
| rx_ring->rxbufs = NULL; |
| rx_ring->rxds = NULL; |
| rx_ring->dma = 0; |
| rx_ring->size = 0; |
| } |
| |
| /** |
| * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring |
| * @dp: NFP Net data path struct |
| * @rx_ring: RX ring to allocate |
| * |
| * Return: 0 on success, negative errno otherwise. |
| */ |
| static int |
| nfp_net_rx_ring_alloc(struct nfp_net_dp *dp, struct nfp_net_rx_ring *rx_ring) |
| { |
| int err; |
| |
| if (dp->netdev) { |
| err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, dp->netdev, |
| rx_ring->idx); |
| if (err < 0) |
| return err; |
| } |
| |
| rx_ring->cnt = dp->rxd_cnt; |
| rx_ring->size = array_size(rx_ring->cnt, sizeof(*rx_ring->rxds)); |
| rx_ring->rxds = dma_zalloc_coherent(dp->dev, rx_ring->size, |
| &rx_ring->dma, |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!rx_ring->rxds) { |
| netdev_warn(dp->netdev, "failed to allocate RX descriptor ring memory, requested descriptor count: %d, consider lowering descriptor count\n", |
| rx_ring->cnt); |
| goto err_alloc; |
| } |
| |
| rx_ring->rxbufs = kvcalloc(rx_ring->cnt, sizeof(*rx_ring->rxbufs), |
| GFP_KERNEL); |
| if (!rx_ring->rxbufs) |
| goto err_alloc; |
| |
| return 0; |
| |
| err_alloc: |
| nfp_net_rx_ring_free(rx_ring); |
| return -ENOMEM; |
| } |
| |
| static int nfp_net_rx_rings_prepare(struct nfp_net *nn, struct nfp_net_dp *dp) |
| { |
| unsigned int r; |
| |
| dp->rx_rings = kcalloc(dp->num_rx_rings, sizeof(*dp->rx_rings), |
| GFP_KERNEL); |
| if (!dp->rx_rings) |
| return -ENOMEM; |
| |
| for (r = 0; r < dp->num_rx_rings; r++) { |
| nfp_net_rx_ring_init(&dp->rx_rings[r], &nn->r_vecs[r], r); |
| |
| if (nfp_net_rx_ring_alloc(dp, &dp->rx_rings[r])) |
| goto err_free_prev; |
| |
| if (nfp_net_rx_ring_bufs_alloc(dp, &dp->rx_rings[r])) |
| goto err_free_ring; |
| } |
| |
| return 0; |
| |
| err_free_prev: |
| while (r--) { |
| nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); |
| err_free_ring: |
| nfp_net_rx_ring_free(&dp->rx_rings[r]); |
| } |
| kfree(dp->rx_rings); |
| return -ENOMEM; |
| } |
| |
| static void nfp_net_rx_rings_free(struct nfp_net_dp *dp) |
| { |
| unsigned int r; |
| |
| for (r = 0; r < dp->num_rx_rings; r++) { |
| nfp_net_rx_ring_bufs_free(dp, &dp->rx_rings[r]); |
| nfp_net_rx_ring_free(&dp->rx_rings[r]); |
| } |
| |
| kfree(dp->rx_rings); |
| } |
| |
| static void |
| nfp_net_vector_assign_rings(struct nfp_net_dp *dp, |
| struct nfp_net_r_vector *r_vec, int idx) |
| { |
| r_vec->rx_ring = idx < dp->num_rx_rings ? &dp->rx_rings[idx] : NULL; |
| r_vec->tx_ring = |
| idx < dp->num_stack_tx_rings ? &dp->tx_rings[idx] : NULL; |
| |
| r_vec->xdp_ring = idx < dp->num_tx_rings - dp->num_stack_tx_rings ? |
| &dp->tx_rings[dp->num_stack_tx_rings + idx] : NULL; |
| } |
| |
| static int |
| nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, |
| int idx) |
| { |
| int err; |
| |
| /* Setup NAPI */ |
| if (nn->dp.netdev) |
| netif_napi_add(nn->dp.netdev, &r_vec->napi, |
| nfp_net_poll, NAPI_POLL_WEIGHT); |
| else |
| tasklet_enable(&r_vec->tasklet); |
| |
| snprintf(r_vec->name, sizeof(r_vec->name), |
| "%s-rxtx-%d", nfp_net_name(nn), idx); |
| err = request_irq(r_vec->irq_vector, r_vec->handler, 0, r_vec->name, |
| r_vec); |
| if (err) { |
| if (nn->dp.netdev) |
| netif_napi_del(&r_vec->napi); |
| else |
| tasklet_disable(&r_vec->tasklet); |
| |
| nn_err(nn, "Error requesting IRQ %d\n", r_vec->irq_vector); |
| return err; |
| } |
| disable_irq(r_vec->irq_vector); |
| |
| irq_set_affinity_hint(r_vec->irq_vector, &r_vec->affinity_mask); |
| |
| nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, r_vec->irq_vector, |
| r_vec->irq_entry); |
| |
| return 0; |
| } |
| |
| static void |
| nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) |
| { |
| irq_set_affinity_hint(r_vec->irq_vector, NULL); |
| if (nn->dp.netdev) |
| netif_napi_del(&r_vec->napi); |
| else |
| tasklet_disable(&r_vec->tasklet); |
| |
| free_irq(r_vec->irq_vector, r_vec); |
| } |
| |
| /** |
| * nfp_net_rss_write_itbl() - Write RSS indirection table to device |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_rss_write_itbl(struct nfp_net *nn) |
| { |
| int i; |
| |
| for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) |
| nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, |
| get_unaligned_le32(nn->rss_itbl + i)); |
| } |
| |
| /** |
| * nfp_net_rss_write_key() - Write RSS hash key to device |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_rss_write_key(struct nfp_net *nn) |
| { |
| int i; |
| |
| for (i = 0; i < nfp_net_rss_key_sz(nn); i += 4) |
| nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, |
| get_unaligned_le32(nn->rss_key + i)); |
| } |
| |
| /** |
| * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_coalesce_write_cfg(struct nfp_net *nn) |
| { |
| u8 i; |
| u32 factor; |
| u32 value; |
| |
| /* Compute factor used to convert coalesce '_usecs' parameters to |
| * ME timestamp ticks. There are 16 ME clock cycles for each timestamp |
| * count. |
| */ |
| factor = nn->tlv_caps.me_freq_mhz / 16; |
| |
| /* copy RX interrupt coalesce parameters */ |
| value = (nn->rx_coalesce_max_frames << 16) | |
| (factor * nn->rx_coalesce_usecs); |
| for (i = 0; i < nn->dp.num_rx_rings; i++) |
| nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); |
| |
| /* copy TX interrupt coalesce parameters */ |
| value = (nn->tx_coalesce_max_frames << 16) | |
| (factor * nn->tx_coalesce_usecs); |
| for (i = 0; i < nn->dp.num_tx_rings; i++) |
| nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); |
| } |
| |
| /** |
| * nfp_net_write_mac_addr() - Write mac address to the device control BAR |
| * @nn: NFP Net device to reconfigure |
| * @addr: MAC address to write |
| * |
| * Writes the MAC address from the netdev to the device control BAR. Does not |
| * perform the required reconfig. We do a bit of byte swapping dance because |
| * firmware is LE. |
| */ |
| static void nfp_net_write_mac_addr(struct nfp_net *nn, const u8 *addr) |
| { |
| nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(addr)); |
| nn_writew(nn, NFP_NET_CFG_MACADDR + 6, get_unaligned_be16(addr + 4)); |
| } |
| |
| static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) |
| { |
| nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); |
| |
| nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); |
| nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); |
| } |
| |
| /** |
| * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP |
| * @nn: NFP Net device to reconfigure |
| * |
| * Warning: must be fully idempotent. |
| */ |
| static void nfp_net_clear_config_and_disable(struct nfp_net *nn) |
| { |
| u32 new_ctrl, update; |
| unsigned int r; |
| int err; |
| |
| new_ctrl = nn->dp.ctrl; |
| new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; |
| update = NFP_NET_CFG_UPDATE_GEN; |
| update |= NFP_NET_CFG_UPDATE_MSIX; |
| update |= NFP_NET_CFG_UPDATE_RING; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; |
| |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, update); |
| if (err) |
| nn_err(nn, "Could not disable device: %d\n", err); |
| |
| for (r = 0; r < nn->dp.num_rx_rings; r++) |
| nfp_net_rx_ring_reset(&nn->dp.rx_rings[r]); |
| for (r = 0; r < nn->dp.num_tx_rings; r++) |
| nfp_net_tx_ring_reset(&nn->dp, &nn->dp.tx_rings[r]); |
| for (r = 0; r < nn->dp.num_r_vecs; r++) |
| nfp_net_vec_clear_ring_data(nn, r); |
| |
| nn->dp.ctrl = new_ctrl; |
| } |
| |
| static void |
| nfp_net_rx_ring_hw_cfg_write(struct nfp_net *nn, |
| struct nfp_net_rx_ring *rx_ring, unsigned int idx) |
| { |
| /* Write the DMA address, size and MSI-X info to the device */ |
| nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), rx_ring->dma); |
| nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(rx_ring->cnt)); |
| nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), rx_ring->r_vec->irq_entry); |
| } |
| |
| static void |
| nfp_net_tx_ring_hw_cfg_write(struct nfp_net *nn, |
| struct nfp_net_tx_ring *tx_ring, unsigned int idx) |
| { |
| nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), tx_ring->dma); |
| nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(tx_ring->cnt)); |
| nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), tx_ring->r_vec->irq_entry); |
| } |
| |
| /** |
| * nfp_net_set_config_and_enable() - Write control BAR and enable NFP |
| * @nn: NFP Net device to reconfigure |
| */ |
| static int nfp_net_set_config_and_enable(struct nfp_net *nn) |
| { |
| u32 bufsz, new_ctrl, update = 0; |
| unsigned int r; |
| int err; |
| |
| new_ctrl = nn->dp.ctrl; |
| |
| if (nn->dp.ctrl & NFP_NET_CFG_CTRL_RSS_ANY) { |
| nfp_net_rss_write_key(nn); |
| nfp_net_rss_write_itbl(nn); |
| nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); |
| update |= NFP_NET_CFG_UPDATE_RSS; |
| } |
| |
| if (nn->dp.ctrl & NFP_NET_CFG_CTRL_IRQMOD) { |
| nfp_net_coalesce_write_cfg(nn); |
| update |= NFP_NET_CFG_UPDATE_IRQMOD; |
| } |
| |
| for (r = 0; r < nn->dp.num_tx_rings; r++) |
| nfp_net_tx_ring_hw_cfg_write(nn, &nn->dp.tx_rings[r], r); |
| for (r = 0; r < nn->dp.num_rx_rings; r++) |
| nfp_net_rx_ring_hw_cfg_write(nn, &nn->dp.rx_rings[r], r); |
| |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->dp.num_tx_rings == 64 ? |
| 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_tx_rings) - 1); |
| |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->dp.num_rx_rings == 64 ? |
| 0xffffffffffffffffULL : ((u64)1 << nn->dp.num_rx_rings) - 1); |
| |
| if (nn->dp.netdev) |
| nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); |
| |
| nn_writel(nn, NFP_NET_CFG_MTU, nn->dp.mtu); |
| |
| bufsz = nn->dp.fl_bufsz - nn->dp.rx_dma_off - NFP_NET_RX_BUF_NON_DATA; |
| nn_writel(nn, NFP_NET_CFG_FLBUFSZ, bufsz); |
| |
| /* Enable device */ |
| new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; |
| update |= NFP_NET_CFG_UPDATE_GEN; |
| update |= NFP_NET_CFG_UPDATE_MSIX; |
| update |= NFP_NET_CFG_UPDATE_RING; |
| if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) |
| new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, update); |
| if (err) { |
| nfp_net_clear_config_and_disable(nn); |
| return err; |
| } |
| |
| nn->dp.ctrl = new_ctrl; |
| |
| for (r = 0; r < nn->dp.num_rx_rings; r++) |
| nfp_net_rx_ring_fill_freelist(&nn->dp, &nn->dp.rx_rings[r]); |
| |
| /* Since reconfiguration requests while NFP is down are ignored we |
| * have to wipe the entire VXLAN configuration and reinitialize it. |
| */ |
| if (nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN) { |
| memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); |
| memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); |
| udp_tunnel_get_rx_info(nn->dp.netdev); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_close_stack() - Quiesce the stack (part of close) |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_close_stack(struct nfp_net *nn) |
| { |
| unsigned int r; |
| |
| disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); |
| netif_carrier_off(nn->dp.netdev); |
| nn->link_up = false; |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) { |
| disable_irq(nn->r_vecs[r].irq_vector); |
| napi_disable(&nn->r_vecs[r].napi); |
| } |
| |
| netif_tx_disable(nn->dp.netdev); |
| } |
| |
| /** |
| * nfp_net_close_free_all() - Free all runtime resources |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_close_free_all(struct nfp_net *nn) |
| { |
| unsigned int r; |
| |
| nfp_net_tx_rings_free(&nn->dp); |
| nfp_net_rx_rings_free(&nn->dp); |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) |
| nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); |
| |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); |
| } |
| |
| /** |
| * nfp_net_netdev_close() - Called when the device is downed |
| * @netdev: netdev structure |
| */ |
| static int nfp_net_netdev_close(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| |
| /* Step 1: Disable RX and TX rings from the Linux kernel perspective |
| */ |
| nfp_net_close_stack(nn); |
| |
| /* Step 2: Tell NFP |
| */ |
| nfp_net_clear_config_and_disable(nn); |
| nfp_port_configure(netdev, false); |
| |
| /* Step 3: Free resources |
| */ |
| nfp_net_close_free_all(nn); |
| |
| nn_dbg(nn, "%s down", netdev->name); |
| return 0; |
| } |
| |
| void nfp_ctrl_close(struct nfp_net *nn) |
| { |
| int r; |
| |
| rtnl_lock(); |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) { |
| disable_irq(nn->r_vecs[r].irq_vector); |
| tasklet_disable(&nn->r_vecs[r].tasklet); |
| } |
| |
| nfp_net_clear_config_and_disable(nn); |
| |
| nfp_net_close_free_all(nn); |
| |
| rtnl_unlock(); |
| } |
| |
| /** |
| * nfp_net_open_stack() - Start the device from stack's perspective |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_open_stack(struct nfp_net *nn) |
| { |
| unsigned int r; |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) { |
| napi_enable(&nn->r_vecs[r].napi); |
| enable_irq(nn->r_vecs[r].irq_vector); |
| } |
| |
| netif_tx_wake_all_queues(nn->dp.netdev); |
| |
| enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); |
| nfp_net_read_link_status(nn); |
| } |
| |
| static int nfp_net_open_alloc_all(struct nfp_net *nn) |
| { |
| int err, r; |
| |
| err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", |
| nn->exn_name, sizeof(nn->exn_name), |
| NFP_NET_IRQ_EXN_IDX, nn->exn_handler); |
| if (err) |
| return err; |
| err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", |
| nn->lsc_name, sizeof(nn->lsc_name), |
| NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); |
| if (err) |
| goto err_free_exn; |
| disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) { |
| err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); |
| if (err) |
| goto err_cleanup_vec_p; |
| } |
| |
| err = nfp_net_rx_rings_prepare(nn, &nn->dp); |
| if (err) |
| goto err_cleanup_vec; |
| |
| err = nfp_net_tx_rings_prepare(nn, &nn->dp); |
| if (err) |
| goto err_free_rx_rings; |
| |
| for (r = 0; r < nn->max_r_vecs; r++) |
| nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); |
| |
| return 0; |
| |
| err_free_rx_rings: |
| nfp_net_rx_rings_free(&nn->dp); |
| err_cleanup_vec: |
| r = nn->dp.num_r_vecs; |
| err_cleanup_vec_p: |
| while (r--) |
| nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); |
| err_free_exn: |
| nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); |
| return err; |
| } |
| |
| static int nfp_net_netdev_open(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int err; |
| |
| /* Step 1: Allocate resources for rings and the like |
| * - Request interrupts |
| * - Allocate RX and TX ring resources |
| * - Setup initial RSS table |
| */ |
| err = nfp_net_open_alloc_all(nn); |
| if (err) |
| return err; |
| |
| err = netif_set_real_num_tx_queues(netdev, nn->dp.num_stack_tx_rings); |
| if (err) |
| goto err_free_all; |
| |
| err = netif_set_real_num_rx_queues(netdev, nn->dp.num_rx_rings); |
| if (err) |
| goto err_free_all; |
| |
| /* Step 2: Configure the NFP |
| * - Ifup the physical interface if it exists |
| * - Enable rings from 0 to tx_rings/rx_rings - 1. |
| * - Write MAC address (in case it changed) |
| * - Set the MTU |
| * - Set the Freelist buffer size |
| * - Enable the FW |
| */ |
| err = nfp_port_configure(netdev, true); |
| if (err) |
| goto err_free_all; |
| |
| err = nfp_net_set_config_and_enable(nn); |
| if (err) |
| goto err_port_disable; |
| |
| /* Step 3: Enable for kernel |
| * - put some freelist descriptors on each RX ring |
| * - enable NAPI on each ring |
| * - enable all TX queues |
| * - set link state |
| */ |
| nfp_net_open_stack(nn); |
| |
| return 0; |
| |
| err_port_disable: |
| nfp_port_configure(netdev, false); |
| err_free_all: |
| nfp_net_close_free_all(nn); |
| return err; |
| } |
| |
| int nfp_ctrl_open(struct nfp_net *nn) |
| { |
| int err, r; |
| |
| /* ring dumping depends on vNICs being opened/closed under rtnl */ |
| rtnl_lock(); |
| |
| err = nfp_net_open_alloc_all(nn); |
| if (err) |
| goto err_unlock; |
| |
| err = nfp_net_set_config_and_enable(nn); |
| if (err) |
| goto err_free_all; |
| |
| for (r = 0; r < nn->dp.num_r_vecs; r++) |
| enable_irq(nn->r_vecs[r].irq_vector); |
| |
| rtnl_unlock(); |
| |
| return 0; |
| |
| err_free_all: |
| nfp_net_close_free_all(nn); |
| err_unlock: |
| rtnl_unlock(); |
| return err; |
| } |
| |
| static void nfp_net_set_rx_mode(struct net_device *netdev) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| u32 new_ctrl; |
| |
| new_ctrl = nn->dp.ctrl; |
| |
| if (!netdev_mc_empty(netdev) || netdev->flags & IFF_ALLMULTI) |
| new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_L2MC; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_L2MC; |
| |
| if (netdev->flags & IFF_PROMISC) { |
| if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) |
| new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; |
| else |
| nn_warn(nn, "FW does not support promiscuous mode\n"); |
| } else { |
| new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; |
| } |
| |
| if (new_ctrl == nn->dp.ctrl) |
| return; |
| |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); |
| |
| nn->dp.ctrl = new_ctrl; |
| } |
| |
| static void nfp_net_rss_init_itbl(struct nfp_net *nn) |
| { |
| int i; |
| |
| for (i = 0; i < sizeof(nn->rss_itbl); i++) |
| nn->rss_itbl[i] = |
| ethtool_rxfh_indir_default(i, nn->dp.num_rx_rings); |
| } |
| |
| static void nfp_net_dp_swap(struct nfp_net *nn, struct nfp_net_dp *dp) |
| { |
| struct nfp_net_dp new_dp = *dp; |
| |
| *dp = nn->dp; |
| nn->dp = new_dp; |
| |
| nn->dp.netdev->mtu = new_dp.mtu; |
| |
| if (!netif_is_rxfh_configured(nn->dp.netdev)) |
| nfp_net_rss_init_itbl(nn); |
| } |
| |
| static int nfp_net_dp_swap_enable(struct nfp_net *nn, struct nfp_net_dp *dp) |
| { |
| unsigned int r; |
| int err; |
| |
| nfp_net_dp_swap(nn, dp); |
| |
| for (r = 0; r < nn->max_r_vecs; r++) |
| nfp_net_vector_assign_rings(&nn->dp, &nn->r_vecs[r], r); |
| |
| err = netif_set_real_num_rx_queues(nn->dp.netdev, nn->dp.num_rx_rings); |
| if (err) |
| return err; |
| |
| if (nn->dp.netdev->real_num_tx_queues != nn->dp.num_stack_tx_rings) { |
| err = netif_set_real_num_tx_queues(nn->dp.netdev, |
| nn->dp.num_stack_tx_rings); |
| if (err) |
| return err; |
| } |
| |
| return nfp_net_set_config_and_enable(nn); |
| } |
| |
| struct nfp_net_dp *nfp_net_clone_dp(struct nfp_net *nn) |
| { |
| struct nfp_net_dp *new; |
| |
| new = kmalloc(sizeof(*new), GFP_KERNEL); |
| if (!new) |
| return NULL; |
| |
| *new = nn->dp; |
| |
| /* Clear things which need to be recomputed */ |
| new->fl_bufsz = 0; |
| new->tx_rings = NULL; |
| new->rx_rings = NULL; |
| new->num_r_vecs = 0; |
| new->num_stack_tx_rings = 0; |
| |
| return new; |
| } |
| |
| static int |
| nfp_net_check_config(struct nfp_net *nn, struct nfp_net_dp *dp, |
| struct netlink_ext_ack *extack) |
| { |
| /* XDP-enabled tests */ |
| if (!dp->xdp_prog) |
| return 0; |
| if (dp->fl_bufsz > PAGE_SIZE) { |
| NL_SET_ERR_MSG_MOD(extack, "MTU too large w/ XDP enabled"); |
| return -EINVAL; |
| } |
| if (dp->num_tx_rings > nn->max_tx_rings) { |
| NL_SET_ERR_MSG_MOD(extack, "Insufficient number of TX rings w/ XDP enabled"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int nfp_net_ring_reconfig(struct nfp_net *nn, struct nfp_net_dp *dp, |
| struct netlink_ext_ack *extack) |
| { |
| int r, err; |
| |
| dp->fl_bufsz = nfp_net_calc_fl_bufsz(dp); |
| |
| dp->num_stack_tx_rings = dp->num_tx_rings; |
| if (dp->xdp_prog) |
| dp->num_stack_tx_rings -= dp->num_rx_rings; |
| |
| dp->num_r_vecs = max(dp->num_rx_rings, dp->num_stack_tx_rings); |
| |
| err = nfp_net_check_config(nn, dp, extack); |
| if (err) |
| goto exit_free_dp; |
| |
| if (!netif_running(dp->netdev)) { |
| nfp_net_dp_swap(nn, dp); |
| err = 0; |
| goto exit_free_dp; |
| } |
| |
| /* Prepare new rings */ |
| for (r = nn->dp.num_r_vecs; r < dp->num_r_vecs; r++) { |
| err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); |
| if (err) { |
| dp->num_r_vecs = r; |
| goto err_cleanup_vecs; |
| } |
| } |
| |
| err = nfp_net_rx_rings_prepare(nn, dp); |
| if (err) |
| goto err_cleanup_vecs; |
| |
| err = nfp_net_tx_rings_prepare(nn, dp); |
| if (err) |
| goto err_free_rx; |
| |
| /* Stop device, swap in new rings, try to start the firmware */ |
| nfp_net_close_stack(nn); |
| nfp_net_clear_config_and_disable(nn); |
| |
| err = nfp_net_dp_swap_enable(nn, dp); |
| if (err) { |
| int err2; |
| |
| nfp_net_clear_config_and_disable(nn); |
| |
| /* Try with old configuration and old rings */ |
| err2 = nfp_net_dp_swap_enable(nn, dp); |
| if (err2) |
| nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", |
| err, err2); |
| } |
| for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) |
| nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); |
| |
| nfp_net_rx_rings_free(dp); |
| nfp_net_tx_rings_free(dp); |
| |
| nfp_net_open_stack(nn); |
| exit_free_dp: |
| kfree(dp); |
| |
| return err; |
| |
| err_free_rx: |
| nfp_net_rx_rings_free(dp); |
| err_cleanup_vecs: |
| for (r = dp->num_r_vecs - 1; r >= nn->dp.num_r_vecs; r--) |
| nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); |
| kfree(dp); |
| return err; |
| } |
| |
| static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| struct nfp_net_dp *dp; |
| int err; |
| |
| err = nfp_app_check_mtu(nn->app, netdev, new_mtu); |
| if (err) |
| return err; |
| |
| dp = nfp_net_clone_dp(nn); |
| if (!dp) |
| return -ENOMEM; |
| |
| dp->mtu = new_mtu; |
| |
| return nfp_net_ring_reconfig(nn, dp, NULL); |
| } |
| |
| static int |
| nfp_net_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| |
| /* Priority tagged packets with vlan id 0 are processed by the |
| * NFP as untagged packets |
| */ |
| if (!vid) |
| return 0; |
| |
| nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); |
| nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, |
| ETH_P_8021Q); |
| |
| return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_ADD); |
| } |
| |
| static int |
| nfp_net_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| |
| /* Priority tagged packets with vlan id 0 are processed by the |
| * NFP as untagged packets |
| */ |
| if (!vid) |
| return 0; |
| |
| nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_VID, vid); |
| nn_writew(nn, nn->tlv_caps.mbox_off + NFP_NET_CFG_VLAN_FILTER_PROTO, |
| ETH_P_8021Q); |
| |
| return nfp_net_reconfig_mbox(nn, NFP_NET_CFG_MBOX_CMD_CTAG_FILTER_KILL); |
| } |
| |
| static void nfp_net_stat64(struct net_device *netdev, |
| struct rtnl_link_stats64 *stats) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int r; |
| |
| /* Collect software stats */ |
| for (r = 0; r < nn->max_r_vecs; r++) { |
| struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; |
| u64 data[3]; |
| unsigned int start; |
| |
| do { |
| start = u64_stats_fetch_begin(&r_vec->rx_sync); |
| data[0] = r_vec->rx_pkts; |
| data[1] = r_vec->rx_bytes; |
| data[2] = r_vec->rx_drops; |
| } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); |
| stats->rx_packets += data[0]; |
| stats->rx_bytes += data[1]; |
| stats->rx_dropped += data[2]; |
| |
| do { |
| start = u64_stats_fetch_begin(&r_vec->tx_sync); |
| data[0] = r_vec->tx_pkts; |
| data[1] = r_vec->tx_bytes; |
| data[2] = r_vec->tx_errors; |
| } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); |
| stats->tx_packets += data[0]; |
| stats->tx_bytes += data[1]; |
| stats->tx_errors += data[2]; |
| } |
| |
| /* Add in device stats */ |
| stats->multicast += nn_readq(nn, NFP_NET_CFG_STATS_RX_MC_FRAMES); |
| stats->rx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_RX_DISCARDS); |
| stats->rx_errors += nn_readq(nn, NFP_NET_CFG_STATS_RX_ERRORS); |
| |
| stats->tx_dropped += nn_readq(nn, NFP_NET_CFG_STATS_TX_DISCARDS); |
| stats->tx_errors += nn_readq(nn, NFP_NET_CFG_STATS_TX_ERRORS); |
| } |
| |
| static int nfp_net_set_features(struct net_device *netdev, |
| netdev_features_t features) |
| { |
| netdev_features_t changed = netdev->features ^ features; |
| struct nfp_net *nn = netdev_priv(netdev); |
| u32 new_ctrl; |
| int err; |
| |
| /* Assume this is not called with features we have not advertised */ |
| |
| new_ctrl = nn->dp.ctrl; |
| |
| if (changed & NETIF_F_RXCSUM) { |
| if (features & NETIF_F_RXCSUM) |
| new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM_ANY; |
| } |
| |
| if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { |
| if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) |
| new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; |
| } |
| |
| if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { |
| if (features & (NETIF_F_TSO | NETIF_F_TSO6)) |
| new_ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: |
| NFP_NET_CFG_CTRL_LSO; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; |
| } |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_RX) { |
| if (features & NETIF_F_HW_VLAN_CTAG_RX) |
| new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; |
| } |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_TX) { |
| if (features & NETIF_F_HW_VLAN_CTAG_TX) |
| new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; |
| } |
| |
| if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { |
| if (features & NETIF_F_HW_VLAN_CTAG_FILTER) |
| new_ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_CTAG_FILTER; |
| } |
| |
| if (changed & NETIF_F_SG) { |
| if (features & NETIF_F_SG) |
| new_ctrl |= NFP_NET_CFG_CTRL_GATHER; |
| else |
| new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; |
| } |
| |
| err = nfp_port_set_features(netdev, features); |
| if (err) |
| return err; |
| |
| nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", |
| netdev->features, features, changed); |
| |
| if (new_ctrl == nn->dp.ctrl) |
| return 0; |
| |
| nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->dp.ctrl, new_ctrl); |
| nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); |
| err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); |
| if (err) |
| return err; |
| |
| nn->dp.ctrl = new_ctrl; |
| |
| return 0; |
| } |
| |
| static netdev_features_t |
| nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, |
| netdev_features_t features) |
| { |
| u8 l4_hdr; |
| |
| /* We can't do TSO over double tagged packets (802.1AD) */ |
| features &= vlan_features_check(skb, features); |
| |
| if (!skb->encapsulation) |
| return features; |
| |
| /* Ensure that inner L4 header offset fits into TX descriptor field */ |
| if (skb_is_gso(skb)) { |
| u32 hdrlen; |
| |
| hdrlen = skb_inner_transport_header(skb) - skb->data + |
| inner_tcp_hdrlen(skb); |
| |
| /* Assume worst case scenario of having longest possible |
| * metadata prepend - 8B |
| */ |
| if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ - 8)) |
| features &= ~NETIF_F_GSO_MASK; |
| } |
| |
| /* VXLAN/GRE check */ |
| switch (vlan_get_protocol(skb)) { |
| case htons(ETH_P_IP): |
| l4_hdr = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| l4_hdr = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| } |
| |
| if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || |
| skb->inner_protocol != htons(ETH_P_TEB) || |
| (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || |
| (l4_hdr == IPPROTO_UDP && |
| (skb_inner_mac_header(skb) - skb_transport_header(skb) != |
| sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) |
| return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); |
| |
| return features; |
| } |
| |
| static int |
| nfp_net_get_phys_port_name(struct net_device *netdev, char *name, size_t len) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int n; |
| |
| if (nn->port) |
| return nfp_port_get_phys_port_name(netdev, name, len); |
| |
| if (nn->dp.is_vf || nn->vnic_no_name) |
| return -EOPNOTSUPP; |
| |
| n = snprintf(name, len, "n%d", nn->id); |
| if (n >= len) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW |
| * @nn: NFP Net device to reconfigure |
| * @idx: Index into the port table where new port should be written |
| * @port: UDP port to configure (pass zero to remove VXLAN port) |
| */ |
| static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) |
| { |
| int i; |
| |
| nn->vxlan_ports[idx] = port; |
| |
| if (!(nn->dp.ctrl & NFP_NET_CFG_CTRL_VXLAN)) |
| return; |
| |
| BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); |
| for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) |
| nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), |
| be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | |
| be16_to_cpu(nn->vxlan_ports[i])); |
| |
| nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); |
| } |
| |
| /** |
| * nfp_net_find_vxlan_idx() - find table entry of the port or a free one |
| * @nn: NFP Network structure |
| * @port: UDP port to look for |
| * |
| * Return: if the port is already in the table -- it's position; |
| * if the port is not in the table -- free position to use; |
| * if the table is full -- -ENOSPC. |
| */ |
| static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) |
| { |
| int i, free_idx = -ENOSPC; |
| |
| for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { |
| if (nn->vxlan_ports[i] == port) |
| return i; |
| if (!nn->vxlan_usecnt[i]) |
| free_idx = i; |
| } |
| |
| return free_idx; |
| } |
| |
| static void nfp_net_add_vxlan_port(struct net_device *netdev, |
| struct udp_tunnel_info *ti) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int idx; |
| |
| if (ti->type != UDP_TUNNEL_TYPE_VXLAN) |
| return; |
| |
| idx = nfp_net_find_vxlan_idx(nn, ti->port); |
| if (idx == -ENOSPC) |
| return; |
| |
| if (!nn->vxlan_usecnt[idx]++) |
| nfp_net_set_vxlan_port(nn, idx, ti->port); |
| } |
| |
| static void nfp_net_del_vxlan_port(struct net_device *netdev, |
| struct udp_tunnel_info *ti) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| int idx; |
| |
| if (ti->type != UDP_TUNNEL_TYPE_VXLAN) |
| return; |
| |
| idx = nfp_net_find_vxlan_idx(nn, ti->port); |
| if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) |
| return; |
| |
| if (!--nn->vxlan_usecnt[idx]) |
| nfp_net_set_vxlan_port(nn, idx, 0); |
| } |
| |
| static int nfp_net_xdp_setup_drv(struct nfp_net *nn, struct netdev_bpf *bpf) |
| { |
| struct bpf_prog *prog = bpf->prog; |
| struct nfp_net_dp *dp; |
| int err; |
| |
| if (!xdp_attachment_flags_ok(&nn->xdp, bpf)) |
| return -EBUSY; |
| |
| if (!prog == !nn->dp.xdp_prog) { |
| WRITE_ONCE(nn->dp.xdp_prog, prog); |
| xdp_attachment_setup(&nn->xdp, bpf); |
| return 0; |
| } |
| |
| dp = nfp_net_clone_dp(nn); |
| if (!dp) |
| return -ENOMEM; |
| |
| dp->xdp_prog = prog; |
| dp->num_tx_rings += prog ? nn->dp.num_rx_rings : -nn->dp.num_rx_rings; |
| dp->rx_dma_dir = prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; |
| dp->rx_dma_off = prog ? XDP_PACKET_HEADROOM - nn->dp.rx_offset : 0; |
| |
| /* We need RX reconfig to remap the buffers (BIDIR vs FROM_DEV) */ |
| err = nfp_net_ring_reconfig(nn, dp, bpf->extack); |
| if (err) |
| return err; |
| |
| xdp_attachment_setup(&nn->xdp, bpf); |
| return 0; |
| } |
| |
| static int nfp_net_xdp_setup_hw(struct nfp_net *nn, struct netdev_bpf *bpf) |
| { |
| int err; |
| |
| if (!xdp_attachment_flags_ok(&nn->xdp_hw, bpf)) |
| return -EBUSY; |
| |
| err = nfp_app_xdp_offload(nn->app, nn, bpf->prog, bpf->extack); |
| if (err) |
| return err; |
| |
| xdp_attachment_setup(&nn->xdp_hw, bpf); |
| return 0; |
| } |
| |
| static int nfp_net_xdp(struct net_device *netdev, struct netdev_bpf *xdp) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| |
| switch (xdp->command) { |
| case XDP_SETUP_PROG: |
| return nfp_net_xdp_setup_drv(nn, xdp); |
| case XDP_SETUP_PROG_HW: |
| return nfp_net_xdp_setup_hw(nn, xdp); |
| case XDP_QUERY_PROG: |
| return xdp_attachment_query(&nn->xdp, xdp); |
| case XDP_QUERY_PROG_HW: |
| return xdp_attachment_query(&nn->xdp_hw, xdp); |
| default: |
| return nfp_app_bpf(nn->app, nn, xdp); |
| } |
| } |
| |
| static int nfp_net_set_mac_address(struct net_device *netdev, void *addr) |
| { |
| struct nfp_net *nn = netdev_priv(netdev); |
| struct sockaddr *saddr = addr; |
| int err; |
| |
| err = eth_prepare_mac_addr_change(netdev, addr); |
| if (err) |
| return err; |
| |
| nfp_net_write_mac_addr(nn, saddr->sa_data); |
| |
| err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_MACADDR); |
| if (err) |
| return err; |
| |
| eth_commit_mac_addr_change(netdev, addr); |
| |
| return 0; |
| } |
| |
| const struct net_device_ops nfp_net_netdev_ops = { |
| .ndo_init = nfp_app_ndo_init, |
| .ndo_uninit = nfp_app_ndo_uninit, |
| .ndo_open = nfp_net_netdev_open, |
| .ndo_stop = nfp_net_netdev_close, |
| .ndo_start_xmit = nfp_net_tx, |
| .ndo_get_stats64 = nfp_net_stat64, |
| .ndo_vlan_rx_add_vid = nfp_net_vlan_rx_add_vid, |
| .ndo_vlan_rx_kill_vid = nfp_net_vlan_rx_kill_vid, |
| .ndo_set_vf_mac = nfp_app_set_vf_mac, |
| .ndo_set_vf_vlan = nfp_app_set_vf_vlan, |
| .ndo_set_vf_spoofchk = nfp_app_set_vf_spoofchk, |
| .ndo_get_vf_config = nfp_app_get_vf_config, |
| .ndo_set_vf_link_state = nfp_app_set_vf_link_state, |
| .ndo_setup_tc = nfp_port_setup_tc, |
| .ndo_tx_timeout = nfp_net_tx_timeout, |
| .ndo_set_rx_mode = nfp_net_set_rx_mode, |
| .ndo_change_mtu = nfp_net_change_mtu, |
| .ndo_set_mac_address = nfp_net_set_mac_address, |
| .ndo_set_features = nfp_net_set_features, |
| .ndo_features_check = nfp_net_features_check, |
| .ndo_get_phys_port_name = nfp_net_get_phys_port_name, |
| .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, |
| .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, |
| .ndo_bpf = nfp_net_xdp, |
| }; |
| |
| /** |
| * nfp_net_info() - Print general info about the NIC |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_info(struct nfp_net *nn) |
| { |
| nn_info(nn, "Netronome NFP-6xxx %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", |
| nn->dp.is_vf ? "VF " : "", |
| nn->dp.num_tx_rings, nn->max_tx_rings, |
| nn->dp.num_rx_rings, nn->max_rx_rings); |
| nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", |
| nn->fw_ver.resv, nn->fw_ver.class, |
| nn->fw_ver.major, nn->fw_ver.minor, |
| nn->max_mtu); |
| nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", |
| nn->cap, |
| nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", |
| nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", |
| nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", |
| nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO1 " : "", |
| nn->cap & NFP_NET_CFG_CTRL_LSO2 ? "TSO2 " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS1 " : "", |
| nn->cap & NFP_NET_CFG_CTRL_RSS2 ? "RSS2 " : "", |
| nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER ? "CTAG_FILTER " : "", |
| nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", |
| nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", |
| nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", |
| nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", |
| nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", |
| nn->cap & NFP_NET_CFG_CTRL_CSUM_COMPLETE ? |
| "RXCSUM_COMPLETE " : "", |
| nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR ? "LIVE_ADDR " : "", |
| nfp_app_extra_cap(nn->app, nn)); |
| } |
| |
| /** |
| * nfp_net_alloc() - Allocate netdev and related structure |
| * @pdev: PCI device |
| * @ctrl_bar: PCI IOMEM with vNIC config memory |
| * @needs_netdev: Whether to allocate a netdev for this vNIC |
| * @max_tx_rings: Maximum number of TX rings supported by device |
| * @max_rx_rings: Maximum number of RX rings supported by device |
| * |
| * This function allocates a netdev device and fills in the initial |
| * part of the @struct nfp_net structure. In case of control device |
| * nfp_net structure is allocated without the netdev. |
| * |
| * Return: NFP Net device structure, or ERR_PTR on error. |
| */ |
| struct nfp_net * |
| nfp_net_alloc(struct pci_dev *pdev, void __iomem *ctrl_bar, bool needs_netdev, |
| unsigned int max_tx_rings, unsigned int max_rx_rings) |
| { |
| struct nfp_net *nn; |
| int err; |
| |
| if (needs_netdev) { |
| struct net_device *netdev; |
| |
| netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), |
| max_tx_rings, max_rx_rings); |
| if (!netdev) |
| return ERR_PTR(-ENOMEM); |
| |
| SET_NETDEV_DEV(netdev, &pdev->dev); |
| nn = netdev_priv(netdev); |
| nn->dp.netdev = netdev; |
| } else { |
| nn = vzalloc(sizeof(*nn)); |
| if (!nn) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| nn->dp.dev = &pdev->dev; |
| nn->dp.ctrl_bar = ctrl_bar; |
| nn->pdev = pdev; |
| |
| nn->max_tx_rings = max_tx_rings; |
| nn->max_rx_rings = max_rx_rings; |
| |
| nn->dp.num_tx_rings = min_t(unsigned int, |
| max_tx_rings, num_online_cpus()); |
| nn->dp.num_rx_rings = min_t(unsigned int, max_rx_rings, |
| netif_get_num_default_rss_queues()); |
| |
| nn->dp.num_r_vecs = max(nn->dp.num_tx_rings, nn->dp.num_rx_rings); |
| nn->dp.num_r_vecs = min_t(unsigned int, |
| nn->dp.num_r_vecs, num_online_cpus()); |
| |
| nn->dp.txd_cnt = NFP_NET_TX_DESCS_DEFAULT; |
| nn->dp.rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; |
| |
| spin_lock_init(&nn->reconfig_lock); |
| spin_lock_init(&nn->link_status_lock); |
| |
| timer_setup(&nn->reconfig_timer, nfp_net_reconfig_timer, 0); |
| |
| err = nfp_net_tlv_caps_parse(&nn->pdev->dev, nn->dp.ctrl_bar, |
| &nn->tlv_caps); |
| if (err) |
| goto err_free_nn; |
| |
| return nn; |
| |
| err_free_nn: |
| if (nn->dp.netdev) |
| free_netdev(nn->dp.netdev); |
| else |
| vfree(nn); |
| return ERR_PTR(err); |
| } |
| |
| /** |
| * nfp_net_free() - Undo what @nfp_net_alloc() did |
| * @nn: NFP Net device to reconfigure |
| */ |
| void nfp_net_free(struct nfp_net *nn) |
| { |
| WARN_ON(timer_pending(&nn->reconfig_timer) || nn->reconfig_posted); |
| if (nn->dp.netdev) |
| free_netdev(nn->dp.netdev); |
| else |
| vfree(nn); |
| } |
| |
| /** |
| * nfp_net_rss_key_sz() - Get current size of the RSS key |
| * @nn: NFP Net device instance |
| * |
| * Return: size of the RSS key for currently selected hash function. |
| */ |
| unsigned int nfp_net_rss_key_sz(struct nfp_net *nn) |
| { |
| switch (nn->rss_hfunc) { |
| case ETH_RSS_HASH_TOP: |
| return NFP_NET_CFG_RSS_KEY_SZ; |
| case ETH_RSS_HASH_XOR: |
| return 0; |
| case ETH_RSS_HASH_CRC32: |
| return 4; |
| } |
| |
| nn_warn(nn, "Unknown hash function: %u\n", nn->rss_hfunc); |
| return 0; |
| } |
| |
| /** |
| * nfp_net_rss_init() - Set the initial RSS parameters |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_rss_init(struct nfp_net *nn) |
| { |
| unsigned long func_bit, rss_cap_hfunc; |
| u32 reg; |
| |
| /* Read the RSS function capability and select first supported func */ |
| reg = nn_readl(nn, NFP_NET_CFG_RSS_CAP); |
| rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, reg); |
| if (!rss_cap_hfunc) |
| rss_cap_hfunc = FIELD_GET(NFP_NET_CFG_RSS_CAP_HFUNC, |
| NFP_NET_CFG_RSS_TOEPLITZ); |
| |
| func_bit = find_first_bit(&rss_cap_hfunc, NFP_NET_CFG_RSS_HFUNCS); |
| if (func_bit == NFP_NET_CFG_RSS_HFUNCS) { |
| dev_warn(nn->dp.dev, |
| "Bad RSS config, defaulting to Toeplitz hash\n"); |
| func_bit = ETH_RSS_HASH_TOP_BIT; |
| } |
| nn->rss_hfunc = 1 << func_bit; |
| |
| netdev_rss_key_fill(nn->rss_key, nfp_net_rss_key_sz(nn)); |
| |
| nfp_net_rss_init_itbl(nn); |
| |
| /* Enable IPv4/IPv6 TCP by default */ |
| nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | |
| NFP_NET_CFG_RSS_IPV6_TCP | |
| FIELD_PREP(NFP_NET_CFG_RSS_HFUNC, nn->rss_hfunc) | |
| NFP_NET_CFG_RSS_MASK; |
| } |
| |
| /** |
| * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters |
| * @nn: NFP Net device to reconfigure |
| */ |
| static void nfp_net_irqmod_init(struct nfp_net *nn) |
| { |
| nn->rx_coalesce_usecs = 50; |
| nn->rx_coalesce_max_frames = 64; |
| nn->tx_coalesce_usecs = 50; |
| nn->tx_coalesce_max_frames = 64; |
| } |
| |
| static void nfp_net_netdev_init(struct nfp_net *nn) |
| { |
| struct net_device *netdev = nn->dp.netdev; |
| |
| nfp_net_write_mac_addr(nn, nn->dp.netdev->dev_addr); |
| |
| netdev->mtu = nn->dp.mtu; |
| |
| /* Advertise/enable offloads based on capabilities |
| * |
| * Note: netdev->features show the currently enabled features |
| * and netdev->hw_features advertises which features are |
| * supported. By default we enable most features. |
| */ |
| if (nn->cap & NFP_NET_CFG_CTRL_LIVE_ADDR) |
| netdev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| |
| netdev->hw_features = NETIF_F_HIGHDMA; |
| if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY) { |
| netdev->hw_features |= NETIF_F_RXCSUM; |
| nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RXCSUM_ANY; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { |
| netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXCSUM; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { |
| netdev->hw_features |= NETIF_F_SG; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_GATHER; |
| } |
| if ((nn->cap & NFP_NET_CFG_CTRL_LSO && nn->fw_ver.major > 2) || |
| nn->cap & NFP_NET_CFG_CTRL_LSO2) { |
| netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; |
| nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_LSO2 ?: |
| NFP_NET_CFG_CTRL_LSO; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) |
| netdev->hw_features |= NETIF_F_RXHASH; |
| if (nn->cap & NFP_NET_CFG_CTRL_VXLAN) { |
| if (nn->cap & NFP_NET_CFG_CTRL_LSO) |
| netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_VXLAN; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_NVGRE) { |
| if (nn->cap & NFP_NET_CFG_CTRL_LSO) |
| netdev->hw_features |= NETIF_F_GSO_GRE; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_NVGRE; |
| } |
| if (nn->cap & (NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE)) |
| netdev->hw_enc_features = netdev->hw_features; |
| |
| netdev->vlan_features = netdev->hw_features; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { |
| netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_RXVLAN; |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { |
| if (nn->cap & NFP_NET_CFG_CTRL_LSO2) { |
| nn_warn(nn, "Device advertises both TSO2 and TXVLAN. Refusing to enable TXVLAN.\n"); |
| } else { |
| netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_TXVLAN; |
| } |
| } |
| if (nn->cap & NFP_NET_CFG_CTRL_CTAG_FILTER) { |
| netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_CTAG_FILTER; |
| } |
| |
| netdev->features = netdev->hw_features; |
| |
| if (nfp_app_has_tc(nn->app) && nn->port) |
| netdev->hw_features |= NETIF_F_HW_TC; |
| |
| /* Advertise but disable TSO by default. */ |
| netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); |
| nn->dp.ctrl &= ~NFP_NET_CFG_CTRL_LSO_ANY; |
| |
| /* Finalise the netdev setup */ |
| netdev->netdev_ops = &nfp_net_netdev_ops; |
| netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); |
| |
| SWITCHDEV_SET_OPS(netdev, &nfp_port_switchdev_ops); |
| |
| /* MTU range: 68 - hw-specific max */ |
| netdev->min_mtu = ETH_MIN_MTU; |
| netdev->max_mtu = nn->max_mtu; |
| |
| netdev->gso_max_segs = NFP_NET_LSO_MAX_SEGS; |
| |
| netif_carrier_off(netdev); |
| |
| nfp_net_set_ethtool_ops(netdev); |
| } |
| |
| static int nfp_net_read_caps(struct nfp_net *nn) |
| { |
| /* Get some of the read-only fields from the BAR */ |
| nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); |
| nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); |
| |
| /* ABI 4.x and ctrl vNIC always use chained metadata, in other cases |
| * we allow use of non-chained metadata if RSS(v1) is the only |
| * advertised capability requiring metadata. |
| */ |
| nn->dp.chained_metadata_format = nn->fw_ver.major == 4 || |
| !nn->dp.netdev || |
| !(nn->cap & NFP_NET_CFG_CTRL_RSS) || |
| nn->cap & NFP_NET_CFG_CTRL_CHAIN_META; |
| /* RSS(v1) uses non-chained metadata format, except in ABI 4.x where |
| * it has the same meaning as RSSv2. |
| */ |
| if (nn->dp.chained_metadata_format && nn->fw_ver.major != 4) |
| nn->cap &= ~NFP_NET_CFG_CTRL_RSS; |
| |
| /* Determine RX packet/metadata boundary offset */ |
| if (nn->fw_ver.major >= 2) { |
| u32 reg; |
| |
| reg = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); |
| if (reg > NFP_NET_MAX_PREPEND) { |
| nn_err(nn, "Invalid rx offset: %d\n", reg); |
| return -EINVAL; |
| } |
| nn->dp.rx_offset = reg; |
| } else { |
| nn->dp.rx_offset = NFP_NET_RX_OFFSET; |
| } |
| |
| /* For control vNICs mask out the capabilities app doesn't want. */ |
| if (!nn->dp.netdev) |
| nn->cap &= nn->app->type->ctrl_cap_mask; |
| |
| return 0; |
| } |
| |
| /** |
| * nfp_net_init() - Initialise/finalise the nfp_net structure |
| * @nn: NFP Net device structure |
| * |
| * Return: 0 on success or negative errno on error. |
| */ |
| int nfp_net_init(struct nfp_net *nn) |
| { |
| int err; |
| |
| nn->dp.rx_dma_dir = DMA_FROM_DEVICE; |
| |
| err = nfp_net_read_caps(nn); |
| if (err) |
| return err; |
| |
| /* Set default MTU and Freelist buffer size */ |
| if (!nfp_net_is_data_vnic(nn) && nn->app->ctrl_mtu) { |
| if (nn->app->ctrl_mtu <= nn->max_mtu) { |
| nn->dp.mtu = nn->app->ctrl_mtu; |
| } else { |
| if (nn->app->ctrl_mtu != NFP_APP_CTRL_MTU_MAX) |
| nn_warn(nn, "app requested MTU above max supported %u > %u\n", |
| nn->app->ctrl_mtu, nn->max_mtu); |
| nn->dp.mtu = nn->max_mtu; |
| } |
| } else if (nn->max_mtu < NFP_NET_DEFAULT_MTU) { |
| nn->dp.mtu = nn->max_mtu; |
| } else { |
| nn->dp.mtu = NFP_NET_DEFAULT_MTU; |
| } |
| nn->dp.fl_bufsz = nfp_net_calc_fl_bufsz(&nn->dp); |
| |
| if (nfp_app_ctrl_uses_data_vnics(nn->app)) |
| nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_CMSG_DATA; |
| |
| if (nn->cap & NFP_NET_CFG_CTRL_RSS_ANY) { |
| nfp_net_rss_init(nn); |
| nn->dp.ctrl |= nn->cap & NFP_NET_CFG_CTRL_RSS2 ?: |
| NFP_NET_CFG_CTRL_RSS; |
| } |
| |
| /* Allow L2 Broadcast and Multicast through by default, if supported */ |
| if (nn->cap & NFP_NET_CFG_CTRL_L2BC) |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_L2BC; |
| |
| /* Allow IRQ moderation, if supported */ |
| if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { |
| nfp_net_irqmod_init(nn); |
| nn->dp.ctrl |= NFP_NET_CFG_CTRL_IRQMOD; |
| } |
| |
| if (nn->dp.netdev) |
| nfp_net_netdev_init(nn); |
| |
| /* Stash the re-configuration queue away. First odd queue in TX Bar */ |
| nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; |
| |
| /* Make sure the FW knows the netdev is supposed to be disabled here */ |
| nn_writel(nn, NFP_NET_CFG_CTRL, 0); |
| nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); |
| nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); |
| err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | |
| NFP_NET_CFG_UPDATE_GEN); |
| if (err) |
| return err; |
| |
| nfp_net_vecs_init(nn); |
| |
| if (!nn->dp.netdev) |
| return 0; |
| return register_netdev(nn->dp.netdev); |
| } |
| |
| /** |
| * nfp_net_clean() - Undo what nfp_net_init() did. |
| * @nn: NFP Net device structure |
| */ |
| void nfp_net_clean(struct nfp_net *nn) |
| { |
| if (!nn->dp.netdev) |
| return; |
| |
| unregister_netdev(nn->dp.netdev); |
| nfp_net_reconfig_wait_posted(nn); |
| } |