blob: 9af25be4240145aa7eddfac0610aadbb4fc3f2b0 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020, Intel Corporation
*/
#include <linux/clk-provider.h>
#include <linux/pci.h>
#include <linux/dmi.h>
#include "dwmac-intel.h"
#include "dwmac4.h"
#include "stmmac.h"
#include "stmmac_ptp.h"
struct intel_priv_data {
int mdio_adhoc_addr; /* mdio address for serdes & etc */
unsigned long crossts_adj;
bool is_pse;
};
/* This struct is used to associate PCI Function of MAC controller on a board,
* discovered via DMI, with the address of PHY connected to the MAC. The
* negative value of the address means that MAC controller is not connected
* with PHY.
*/
struct stmmac_pci_func_data {
unsigned int func;
int phy_addr;
};
struct stmmac_pci_dmi_data {
const struct stmmac_pci_func_data *func;
size_t nfuncs;
};
struct stmmac_pci_info {
int (*setup)(struct pci_dev *pdev, struct plat_stmmacenet_data *plat);
};
static int stmmac_pci_find_phy_addr(struct pci_dev *pdev,
const struct dmi_system_id *dmi_list)
{
const struct stmmac_pci_func_data *func_data;
const struct stmmac_pci_dmi_data *dmi_data;
const struct dmi_system_id *dmi_id;
int func = PCI_FUNC(pdev->devfn);
size_t n;
dmi_id = dmi_first_match(dmi_list);
if (!dmi_id)
return -ENODEV;
dmi_data = dmi_id->driver_data;
func_data = dmi_data->func;
for (n = 0; n < dmi_data->nfuncs; n++, func_data++)
if (func_data->func == func)
return func_data->phy_addr;
return -ENODEV;
}
static int serdes_status_poll(struct stmmac_priv *priv, int phyaddr,
int phyreg, u32 mask, u32 val)
{
unsigned int retries = 10;
int val_rd;
do {
val_rd = mdiobus_read(priv->mii, phyaddr, phyreg);
if ((val_rd & mask) == (val & mask))
return 0;
udelay(POLL_DELAY_US);
} while (--retries);
return -ETIMEDOUT;
}
static int intel_serdes_powerup(struct net_device *ndev, void *priv_data)
{
struct intel_priv_data *intel_priv = priv_data;
struct stmmac_priv *priv = netdev_priv(ndev);
int serdes_phy_addr = 0;
u32 data = 0;
if (!intel_priv->mdio_adhoc_addr)
return 0;
serdes_phy_addr = intel_priv->mdio_adhoc_addr;
/* Set the serdes rate and the PCLK rate */
data = mdiobus_read(priv->mii, serdes_phy_addr,
SERDES_GCR0);
data &= ~SERDES_RATE_MASK;
data &= ~SERDES_PCLK_MASK;
if (priv->plat->max_speed == 2500)
data |= SERDES_RATE_PCIE_GEN2 << SERDES_RATE_PCIE_SHIFT |
SERDES_PCLK_37p5MHZ << SERDES_PCLK_SHIFT;
else
data |= SERDES_RATE_PCIE_GEN1 << SERDES_RATE_PCIE_SHIFT |
SERDES_PCLK_70MHZ << SERDES_PCLK_SHIFT;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* assert clk_req */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data |= SERDES_PLL_CLK;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* check for clk_ack assertion */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_PLL_CLK,
SERDES_PLL_CLK);
if (data) {
dev_err(priv->device, "Serdes PLL clk request timeout\n");
return data;
}
/* assert lane reset */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data |= SERDES_RST;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* check for assert lane reset reflection */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_RST,
SERDES_RST);
if (data) {
dev_err(priv->device, "Serdes assert lane reset timeout\n");
return data;
}
/* move power state to P0 */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data &= ~SERDES_PWR_ST_MASK;
data |= SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* Check for P0 state */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_PWR_ST_MASK,
SERDES_PWR_ST_P0 << SERDES_PWR_ST_SHIFT);
if (data) {
dev_err(priv->device, "Serdes power state P0 timeout.\n");
return data;
}
/* PSE only - ungate SGMII PHY Rx Clock */
if (intel_priv->is_pse)
mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
0, SERDES_PHY_RX_CLK);
return 0;
}
static void intel_serdes_powerdown(struct net_device *ndev, void *intel_data)
{
struct intel_priv_data *intel_priv = intel_data;
struct stmmac_priv *priv = netdev_priv(ndev);
int serdes_phy_addr = 0;
u32 data = 0;
if (!intel_priv->mdio_adhoc_addr)
return;
serdes_phy_addr = intel_priv->mdio_adhoc_addr;
/* PSE only - gate SGMII PHY Rx Clock */
if (intel_priv->is_pse)
mdiobus_modify(priv->mii, serdes_phy_addr, SERDES_GCR0,
SERDES_PHY_RX_CLK, 0);
/* move power state to P3 */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data &= ~SERDES_PWR_ST_MASK;
data |= SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* Check for P3 state */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_PWR_ST_MASK,
SERDES_PWR_ST_P3 << SERDES_PWR_ST_SHIFT);
if (data) {
dev_err(priv->device, "Serdes power state P3 timeout\n");
return;
}
/* de-assert clk_req */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data &= ~SERDES_PLL_CLK;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* check for clk_ack de-assert */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_PLL_CLK,
(u32)~SERDES_PLL_CLK);
if (data) {
dev_err(priv->device, "Serdes PLL clk de-assert timeout\n");
return;
}
/* de-assert lane reset */
data = mdiobus_read(priv->mii, serdes_phy_addr, SERDES_GCR0);
data &= ~SERDES_RST;
mdiobus_write(priv->mii, serdes_phy_addr, SERDES_GCR0, data);
/* check for de-assert lane reset reflection */
data = serdes_status_poll(priv, serdes_phy_addr,
SERDES_GSR0,
SERDES_RST,
(u32)~SERDES_RST);
if (data) {
dev_err(priv->device, "Serdes de-assert lane reset timeout\n");
return;
}
}
static void intel_speed_mode_2500(struct net_device *ndev, void *intel_data)
{
struct intel_priv_data *intel_priv = intel_data;
struct stmmac_priv *priv = netdev_priv(ndev);
int serdes_phy_addr = 0;
u32 data = 0;
serdes_phy_addr = intel_priv->mdio_adhoc_addr;
/* Determine the link speed mode: 2.5Gbps/1Gbps */
data = mdiobus_read(priv->mii, serdes_phy_addr,
SERDES_GCR);
if (((data & SERDES_LINK_MODE_MASK) >> SERDES_LINK_MODE_SHIFT) ==
SERDES_LINK_MODE_2G5) {
dev_info(priv->device, "Link Speed Mode: 2.5Gbps\n");
priv->plat->max_speed = 2500;
priv->plat->phy_interface = PHY_INTERFACE_MODE_2500BASEX;
priv->plat->mdio_bus_data->xpcs_an_inband = false;
} else {
priv->plat->max_speed = 1000;
priv->plat->mdio_bus_data->xpcs_an_inband = true;
}
}
/* Program PTP Clock Frequency for different variant of
* Intel mGBE that has slightly different GPO mapping
*/
static void intel_mgbe_ptp_clk_freq_config(void *npriv)
{
struct stmmac_priv *priv = (struct stmmac_priv *)npriv;
struct intel_priv_data *intel_priv;
u32 gpio_value;
intel_priv = (struct intel_priv_data *)priv->plat->bsp_priv;
gpio_value = readl(priv->ioaddr + GMAC_GPIO_STATUS);
if (intel_priv->is_pse) {
/* For PSE GbE, use 200MHz */
gpio_value &= ~PSE_PTP_CLK_FREQ_MASK;
gpio_value |= PSE_PTP_CLK_FREQ_200MHZ;
} else {
/* For PCH GbE, use 200MHz */
gpio_value &= ~PCH_PTP_CLK_FREQ_MASK;
gpio_value |= PCH_PTP_CLK_FREQ_200MHZ;
}
writel(gpio_value, priv->ioaddr + GMAC_GPIO_STATUS);
}
static void get_arttime(struct mii_bus *mii, int intel_adhoc_addr,
u64 *art_time)
{
u64 ns;
ns = mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE3);
ns <<= GMAC4_ART_TIME_SHIFT;
ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE2);
ns <<= GMAC4_ART_TIME_SHIFT;
ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE1);
ns <<= GMAC4_ART_TIME_SHIFT;
ns |= mdiobus_read(mii, intel_adhoc_addr, PMC_ART_VALUE0);
*art_time = ns;
}
static int stmmac_cross_ts_isr(struct stmmac_priv *priv)
{
return (readl(priv->ioaddr + GMAC_INT_STATUS) & GMAC_INT_TSIE);
}
static int intel_crosststamp(ktime_t *device,
struct system_counterval_t *system,
void *ctx)
{
struct intel_priv_data *intel_priv;
struct stmmac_priv *priv = (struct stmmac_priv *)ctx;
void __iomem *ptpaddr = priv->ptpaddr;
void __iomem *ioaddr = priv->hw->pcsr;
unsigned long flags;
u64 art_time = 0;
u64 ptp_time = 0;
u32 num_snapshot;
u32 gpio_value;
u32 acr_value;
int i;
if (!boot_cpu_has(X86_FEATURE_ART))
return -EOPNOTSUPP;
intel_priv = priv->plat->bsp_priv;
/* Both internal crosstimestamping and external triggered event
* timestamping cannot be run concurrently.
*/
if (priv->plat->ext_snapshot_en)
return -EBUSY;
priv->plat->int_snapshot_en = 1;
mutex_lock(&priv->aux_ts_lock);
/* Enable Internal snapshot trigger */
acr_value = readl(ptpaddr + PTP_ACR);
acr_value &= ~PTP_ACR_MASK;
switch (priv->plat->int_snapshot_num) {
case AUX_SNAPSHOT0:
acr_value |= PTP_ACR_ATSEN0;
break;
case AUX_SNAPSHOT1:
acr_value |= PTP_ACR_ATSEN1;
break;
case AUX_SNAPSHOT2:
acr_value |= PTP_ACR_ATSEN2;
break;
case AUX_SNAPSHOT3:
acr_value |= PTP_ACR_ATSEN3;
break;
default:
mutex_unlock(&priv->aux_ts_lock);
priv->plat->int_snapshot_en = 0;
return -EINVAL;
}
writel(acr_value, ptpaddr + PTP_ACR);
/* Clear FIFO */
acr_value = readl(ptpaddr + PTP_ACR);
acr_value |= PTP_ACR_ATSFC;
writel(acr_value, ptpaddr + PTP_ACR);
/* Release the mutex */
mutex_unlock(&priv->aux_ts_lock);
/* Trigger Internal snapshot signal
* Create a rising edge by just toggle the GPO1 to low
* and back to high.
*/
gpio_value = readl(ioaddr + GMAC_GPIO_STATUS);
gpio_value &= ~GMAC_GPO1;
writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
gpio_value |= GMAC_GPO1;
writel(gpio_value, ioaddr + GMAC_GPIO_STATUS);
/* Time sync done Indication - Interrupt method */
if (!wait_event_interruptible_timeout(priv->tstamp_busy_wait,
stmmac_cross_ts_isr(priv),
HZ / 100)) {
priv->plat->int_snapshot_en = 0;
return -ETIMEDOUT;
}
num_snapshot = (readl(ioaddr + GMAC_TIMESTAMP_STATUS) &
GMAC_TIMESTAMP_ATSNS_MASK) >>
GMAC_TIMESTAMP_ATSNS_SHIFT;
/* Repeat until the timestamps are from the FIFO last segment */
for (i = 0; i < num_snapshot; i++) {
read_lock_irqsave(&priv->ptp_lock, flags);
stmmac_get_ptptime(priv, ptpaddr, &ptp_time);
*device = ns_to_ktime(ptp_time);
read_unlock_irqrestore(&priv->ptp_lock, flags);
get_arttime(priv->mii, intel_priv->mdio_adhoc_addr, &art_time);
*system = convert_art_to_tsc(art_time);
}
system->cycles *= intel_priv->crossts_adj;
priv->plat->int_snapshot_en = 0;
return 0;
}
static void intel_mgbe_pse_crossts_adj(struct intel_priv_data *intel_priv,
int base)
{
if (boot_cpu_has(X86_FEATURE_ART)) {
unsigned int art_freq;
/* On systems that support ART, ART frequency can be obtained
* from ECX register of CPUID leaf (0x15).
*/
art_freq = cpuid_ecx(ART_CPUID_LEAF);
do_div(art_freq, base);
intel_priv->crossts_adj = art_freq;
}
}
static void common_default_data(struct plat_stmmacenet_data *plat)
{
plat->clk_csr = 2; /* clk_csr_i = 20-35MHz & MDC = clk_csr_i/16 */
plat->has_gmac = 1;
plat->force_sf_dma_mode = 1;
plat->mdio_bus_data->needs_reset = true;
/* Set default value for multicast hash bins */
plat->multicast_filter_bins = HASH_TABLE_SIZE;
/* Set default value for unicast filter entries */
plat->unicast_filter_entries = 1;
/* Set the maxmtu to a default of JUMBO_LEN */
plat->maxmtu = JUMBO_LEN;
/* Set default number of RX and TX queues to use */
plat->tx_queues_to_use = 1;
plat->rx_queues_to_use = 1;
/* Disable Priority config by default */
plat->tx_queues_cfg[0].use_prio = false;
plat->rx_queues_cfg[0].use_prio = false;
/* Disable RX queues routing by default */
plat->rx_queues_cfg[0].pkt_route = 0x0;
}
static int intel_mgbe_common_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
struct fwnode_handle *fwnode;
char clk_name[20];
int ret;
int i;
plat->pdev = pdev;
plat->phy_addr = -1;
plat->clk_csr = 5;
plat->has_gmac = 0;
plat->has_gmac4 = 1;
plat->force_sf_dma_mode = 0;
plat->tso_en = 1;
plat->sph_disable = 1;
/* Multiplying factor to the clk_eee_i clock time
* period to make it closer to 100 ns. This value
* should be programmed such that the clk_eee_time_period *
* (MULT_FACT_100NS + 1) should be within 80 ns to 120 ns
* clk_eee frequency is 19.2Mhz
* clk_eee_time_period is 52ns
* 52ns * (1 + 1) = 104ns
* MULT_FACT_100NS = 1
*/
plat->mult_fact_100ns = 1;
plat->rx_sched_algorithm = MTL_RX_ALGORITHM_SP;
for (i = 0; i < plat->rx_queues_to_use; i++) {
plat->rx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
plat->rx_queues_cfg[i].chan = i;
/* Disable Priority config by default */
plat->rx_queues_cfg[i].use_prio = false;
/* Disable RX queues routing by default */
plat->rx_queues_cfg[i].pkt_route = 0x0;
}
for (i = 0; i < plat->tx_queues_to_use; i++) {
plat->tx_queues_cfg[i].mode_to_use = MTL_QUEUE_DCB;
/* Disable Priority config by default */
plat->tx_queues_cfg[i].use_prio = false;
/* Default TX Q0 to use TSO and rest TXQ for TBS */
if (i > 0)
plat->tx_queues_cfg[i].tbs_en = 1;
}
/* FIFO size is 4096 bytes for 1 tx/rx queue */
plat->tx_fifo_size = plat->tx_queues_to_use * 4096;
plat->rx_fifo_size = plat->rx_queues_to_use * 4096;
plat->tx_sched_algorithm = MTL_TX_ALGORITHM_WRR;
plat->tx_queues_cfg[0].weight = 0x09;
plat->tx_queues_cfg[1].weight = 0x0A;
plat->tx_queues_cfg[2].weight = 0x0B;
plat->tx_queues_cfg[3].weight = 0x0C;
plat->tx_queues_cfg[4].weight = 0x0D;
plat->tx_queues_cfg[5].weight = 0x0E;
plat->tx_queues_cfg[6].weight = 0x0F;
plat->tx_queues_cfg[7].weight = 0x10;
plat->dma_cfg->pbl = 32;
plat->dma_cfg->pblx8 = true;
plat->dma_cfg->fixed_burst = 0;
plat->dma_cfg->mixed_burst = 0;
plat->dma_cfg->aal = 0;
plat->dma_cfg->dche = true;
plat->axi = devm_kzalloc(&pdev->dev, sizeof(*plat->axi),
GFP_KERNEL);
if (!plat->axi)
return -ENOMEM;
plat->axi->axi_lpi_en = 0;
plat->axi->axi_xit_frm = 0;
plat->axi->axi_wr_osr_lmt = 1;
plat->axi->axi_rd_osr_lmt = 1;
plat->axi->axi_blen[0] = 4;
plat->axi->axi_blen[1] = 8;
plat->axi->axi_blen[2] = 16;
plat->ptp_max_adj = plat->clk_ptp_rate;
plat->eee_usecs_rate = plat->clk_ptp_rate;
/* Set system clock */
sprintf(clk_name, "%s-%s", "stmmac", pci_name(pdev));
plat->stmmac_clk = clk_register_fixed_rate(&pdev->dev,
clk_name, NULL, 0,
plat->clk_ptp_rate);
if (IS_ERR(plat->stmmac_clk)) {
dev_warn(&pdev->dev, "Fail to register stmmac-clk\n");
plat->stmmac_clk = NULL;
}
ret = clk_prepare_enable(plat->stmmac_clk);
if (ret) {
clk_unregister_fixed_rate(plat->stmmac_clk);
return ret;
}
plat->ptp_clk_freq_config = intel_mgbe_ptp_clk_freq_config;
/* Set default value for multicast hash bins */
plat->multicast_filter_bins = HASH_TABLE_SIZE;
/* Set default value for unicast filter entries */
plat->unicast_filter_entries = 1;
/* Set the maxmtu to a default of JUMBO_LEN */
plat->maxmtu = JUMBO_LEN;
plat->vlan_fail_q_en = true;
/* Use the last Rx queue */
plat->vlan_fail_q = plat->rx_queues_to_use - 1;
/* For fixed-link setup, we allow phy-mode setting */
fwnode = dev_fwnode(&pdev->dev);
if (fwnode) {
int phy_mode;
/* "phy-mode" setting is optional. If it is set,
* we allow either sgmii or 1000base-x for now.
*/
phy_mode = fwnode_get_phy_mode(fwnode);
if (phy_mode >= 0) {
if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
phy_mode == PHY_INTERFACE_MODE_1000BASEX)
plat->phy_interface = phy_mode;
else
dev_warn(&pdev->dev, "Invalid phy-mode\n");
}
}
/* Intel mgbe SGMII interface uses pcs-xcps */
if (plat->phy_interface == PHY_INTERFACE_MODE_SGMII ||
plat->phy_interface == PHY_INTERFACE_MODE_1000BASEX) {
plat->mdio_bus_data->has_xpcs = true;
plat->mdio_bus_data->xpcs_an_inband = true;
}
/* For fixed-link setup, we clear xpcs_an_inband */
if (fwnode) {
struct fwnode_handle *fixed_node;
fixed_node = fwnode_get_named_child_node(fwnode, "fixed-link");
if (fixed_node)
plat->mdio_bus_data->xpcs_an_inband = false;
fwnode_handle_put(fixed_node);
}
/* Ensure mdio bus scan skips intel serdes and pcs-xpcs */
plat->mdio_bus_data->phy_mask = 1 << INTEL_MGBE_ADHOC_ADDR;
plat->mdio_bus_data->phy_mask |= 1 << INTEL_MGBE_XPCS_ADDR;
plat->int_snapshot_num = AUX_SNAPSHOT1;
plat->ext_snapshot_num = AUX_SNAPSHOT0;
plat->has_crossts = true;
plat->crosststamp = intel_crosststamp;
plat->int_snapshot_en = 0;
/* Setup MSI vector offset specific to Intel mGbE controller */
plat->msi_mac_vec = 29;
plat->msi_lpi_vec = 28;
plat->msi_sfty_ce_vec = 27;
plat->msi_sfty_ue_vec = 26;
plat->msi_rx_base_vec = 0;
plat->msi_tx_base_vec = 1;
return 0;
}
static int ehl_common_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->rx_queues_to_use = 8;
plat->tx_queues_to_use = 8;
plat->clk_ptp_rate = 200000000;
plat->use_phy_wol = 1;
plat->safety_feat_cfg->tsoee = 1;
plat->safety_feat_cfg->mrxpee = 1;
plat->safety_feat_cfg->mestee = 1;
plat->safety_feat_cfg->mrxee = 1;
plat->safety_feat_cfg->mtxee = 1;
plat->safety_feat_cfg->epsi = 0;
plat->safety_feat_cfg->edpp = 0;
plat->safety_feat_cfg->prtyen = 0;
plat->safety_feat_cfg->tmouten = 0;
return intel_mgbe_common_data(pdev, plat);
}
static int ehl_sgmii_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 1;
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
plat->speed_mode_2500 = intel_speed_mode_2500;
plat->serdes_powerup = intel_serdes_powerup;
plat->serdes_powerdown = intel_serdes_powerdown;
return ehl_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_sgmii1g_info = {
.setup = ehl_sgmii_data,
};
static int ehl_rgmii_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 1;
plat->phy_interface = PHY_INTERFACE_MODE_RGMII;
return ehl_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_rgmii1g_info = {
.setup = ehl_rgmii_data,
};
static int ehl_pse0_common_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
struct intel_priv_data *intel_priv = plat->bsp_priv;
intel_priv->is_pse = true;
plat->bus_id = 2;
plat->addr64 = 32;
intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
return ehl_common_data(pdev, plat);
}
static int ehl_pse0_rgmii1g_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
return ehl_pse0_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_pse0_rgmii1g_info = {
.setup = ehl_pse0_rgmii1g_data,
};
static int ehl_pse0_sgmii1g_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
plat->speed_mode_2500 = intel_speed_mode_2500;
plat->serdes_powerup = intel_serdes_powerup;
plat->serdes_powerdown = intel_serdes_powerdown;
return ehl_pse0_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_pse0_sgmii1g_info = {
.setup = ehl_pse0_sgmii1g_data,
};
static int ehl_pse1_common_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
struct intel_priv_data *intel_priv = plat->bsp_priv;
intel_priv->is_pse = true;
plat->bus_id = 3;
plat->addr64 = 32;
intel_mgbe_pse_crossts_adj(intel_priv, EHL_PSE_ART_MHZ);
return ehl_common_data(pdev, plat);
}
static int ehl_pse1_rgmii1g_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->phy_interface = PHY_INTERFACE_MODE_RGMII_ID;
return ehl_pse1_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_pse1_rgmii1g_info = {
.setup = ehl_pse1_rgmii1g_data,
};
static int ehl_pse1_sgmii1g_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
plat->speed_mode_2500 = intel_speed_mode_2500;
plat->serdes_powerup = intel_serdes_powerup;
plat->serdes_powerdown = intel_serdes_powerdown;
return ehl_pse1_common_data(pdev, plat);
}
static struct stmmac_pci_info ehl_pse1_sgmii1g_info = {
.setup = ehl_pse1_sgmii1g_data,
};
static int tgl_common_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->rx_queues_to_use = 6;
plat->tx_queues_to_use = 4;
plat->clk_ptp_rate = 200000000;
plat->speed_mode_2500 = intel_speed_mode_2500;
plat->safety_feat_cfg->tsoee = 1;
plat->safety_feat_cfg->mrxpee = 0;
plat->safety_feat_cfg->mestee = 1;
plat->safety_feat_cfg->mrxee = 1;
plat->safety_feat_cfg->mtxee = 1;
plat->safety_feat_cfg->epsi = 0;
plat->safety_feat_cfg->edpp = 0;
plat->safety_feat_cfg->prtyen = 0;
plat->safety_feat_cfg->tmouten = 0;
return intel_mgbe_common_data(pdev, plat);
}
static int tgl_sgmii_phy0_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 1;
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
plat->serdes_powerup = intel_serdes_powerup;
plat->serdes_powerdown = intel_serdes_powerdown;
return tgl_common_data(pdev, plat);
}
static struct stmmac_pci_info tgl_sgmii1g_phy0_info = {
.setup = tgl_sgmii_phy0_data,
};
static int tgl_sgmii_phy1_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 2;
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
plat->serdes_powerup = intel_serdes_powerup;
plat->serdes_powerdown = intel_serdes_powerdown;
return tgl_common_data(pdev, plat);
}
static struct stmmac_pci_info tgl_sgmii1g_phy1_info = {
.setup = tgl_sgmii_phy1_data,
};
static int adls_sgmii_phy0_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 1;
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
/* SerDes power up and power down are done in BIOS for ADL */
return tgl_common_data(pdev, plat);
}
static struct stmmac_pci_info adls_sgmii1g_phy0_info = {
.setup = adls_sgmii_phy0_data,
};
static int adls_sgmii_phy1_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
plat->bus_id = 2;
plat->phy_interface = PHY_INTERFACE_MODE_SGMII;
/* SerDes power up and power down are done in BIOS for ADL */
return tgl_common_data(pdev, plat);
}
static struct stmmac_pci_info adls_sgmii1g_phy1_info = {
.setup = adls_sgmii_phy1_data,
};
static const struct stmmac_pci_func_data galileo_stmmac_func_data[] = {
{
.func = 6,
.phy_addr = 1,
},
};
static const struct stmmac_pci_dmi_data galileo_stmmac_dmi_data = {
.func = galileo_stmmac_func_data,
.nfuncs = ARRAY_SIZE(galileo_stmmac_func_data),
};
static const struct stmmac_pci_func_data iot2040_stmmac_func_data[] = {
{
.func = 6,
.phy_addr = 1,
},
{
.func = 7,
.phy_addr = 1,
},
};
static const struct stmmac_pci_dmi_data iot2040_stmmac_dmi_data = {
.func = iot2040_stmmac_func_data,
.nfuncs = ARRAY_SIZE(iot2040_stmmac_func_data),
};
static const struct dmi_system_id quark_pci_dmi[] = {
{
.matches = {
DMI_EXACT_MATCH(DMI_BOARD_NAME, "Galileo"),
},
.driver_data = (void *)&galileo_stmmac_dmi_data,
},
{
.matches = {
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GalileoGen2"),
},
.driver_data = (void *)&galileo_stmmac_dmi_data,
},
/* There are 2 types of SIMATIC IOT2000: IOT2020 and IOT2040.
* The asset tag "6ES7647-0AA00-0YA2" is only for IOT2020 which
* has only one pci network device while other asset tags are
* for IOT2040 which has two.
*/
{
.matches = {
DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
DMI_EXACT_MATCH(DMI_BOARD_ASSET_TAG,
"6ES7647-0AA00-0YA2"),
},
.driver_data = (void *)&galileo_stmmac_dmi_data,
},
{
.matches = {
DMI_EXACT_MATCH(DMI_BOARD_NAME, "SIMATIC IOT2000"),
},
.driver_data = (void *)&iot2040_stmmac_dmi_data,
},
{}
};
static int quark_default_data(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat)
{
int ret;
/* Set common default data first */
common_default_data(plat);
/* Refuse to load the driver and register net device if MAC controller
* does not connect to any PHY interface.
*/
ret = stmmac_pci_find_phy_addr(pdev, quark_pci_dmi);
if (ret < 0) {
/* Return error to the caller on DMI enabled boards. */
if (dmi_get_system_info(DMI_BOARD_NAME))
return ret;
/* Galileo boards with old firmware don't support DMI. We always
* use 1 here as PHY address, so at least the first found MAC
* controller would be probed.
*/
ret = 1;
}
plat->bus_id = pci_dev_id(pdev);
plat->phy_addr = ret;
plat->phy_interface = PHY_INTERFACE_MODE_RMII;
plat->dma_cfg->pbl = 16;
plat->dma_cfg->pblx8 = true;
plat->dma_cfg->fixed_burst = 1;
/* AXI (TODO) */
return 0;
}
static const struct stmmac_pci_info quark_info = {
.setup = quark_default_data,
};
static int stmmac_config_single_msi(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat,
struct stmmac_resources *res)
{
int ret;
ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0) {
dev_info(&pdev->dev, "%s: Single IRQ enablement failed\n",
__func__);
return ret;
}
res->irq = pci_irq_vector(pdev, 0);
res->wol_irq = res->irq;
plat->multi_msi_en = 0;
dev_info(&pdev->dev, "%s: Single IRQ enablement successful\n",
__func__);
return 0;
}
static int stmmac_config_multi_msi(struct pci_dev *pdev,
struct plat_stmmacenet_data *plat,
struct stmmac_resources *res)
{
int ret;
int i;
if (plat->msi_rx_base_vec >= STMMAC_MSI_VEC_MAX ||
plat->msi_tx_base_vec >= STMMAC_MSI_VEC_MAX) {
dev_info(&pdev->dev, "%s: Invalid RX & TX vector defined\n",
__func__);
return -1;
}
ret = pci_alloc_irq_vectors(pdev, 2, STMMAC_MSI_VEC_MAX,
PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (ret < 0) {
dev_info(&pdev->dev, "%s: multi MSI enablement failed\n",
__func__);
return ret;
}
/* For RX MSI */
for (i = 0; i < plat->rx_queues_to_use; i++) {
res->rx_irq[i] = pci_irq_vector(pdev,
plat->msi_rx_base_vec + i * 2);
}
/* For TX MSI */
for (i = 0; i < plat->tx_queues_to_use; i++) {
res->tx_irq[i] = pci_irq_vector(pdev,
plat->msi_tx_base_vec + i * 2);
}
if (plat->msi_mac_vec < STMMAC_MSI_VEC_MAX)
res->irq = pci_irq_vector(pdev, plat->msi_mac_vec);
if (plat->msi_wol_vec < STMMAC_MSI_VEC_MAX)
res->wol_irq = pci_irq_vector(pdev, plat->msi_wol_vec);
if (plat->msi_lpi_vec < STMMAC_MSI_VEC_MAX)
res->lpi_irq = pci_irq_vector(pdev, plat->msi_lpi_vec);
if (plat->msi_sfty_ce_vec < STMMAC_MSI_VEC_MAX)
res->sfty_ce_irq = pci_irq_vector(pdev, plat->msi_sfty_ce_vec);
if (plat->msi_sfty_ue_vec < STMMAC_MSI_VEC_MAX)
res->sfty_ue_irq = pci_irq_vector(pdev, plat->msi_sfty_ue_vec);
plat->multi_msi_en = 1;
dev_info(&pdev->dev, "%s: multi MSI enablement successful\n", __func__);
return 0;
}
/**
* intel_eth_pci_probe
*
* @pdev: pci device pointer
* @id: pointer to table of device id/id's.
*
* Description: This probing function gets called for all PCI devices which
* match the ID table and are not "owned" by other driver yet. This function
* gets passed a "struct pci_dev *" for each device whose entry in the ID table
* matches the device. The probe functions returns zero when the driver choose
* to take "ownership" of the device or an error code(-ve no) otherwise.
*/
static int intel_eth_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct stmmac_pci_info *info = (struct stmmac_pci_info *)id->driver_data;
struct intel_priv_data *intel_priv;
struct plat_stmmacenet_data *plat;
struct stmmac_resources res;
int ret;
intel_priv = devm_kzalloc(&pdev->dev, sizeof(*intel_priv), GFP_KERNEL);
if (!intel_priv)
return -ENOMEM;
plat = devm_kzalloc(&pdev->dev, sizeof(*plat), GFP_KERNEL);
if (!plat)
return -ENOMEM;
plat->mdio_bus_data = devm_kzalloc(&pdev->dev,
sizeof(*plat->mdio_bus_data),
GFP_KERNEL);
if (!plat->mdio_bus_data)
return -ENOMEM;
plat->dma_cfg = devm_kzalloc(&pdev->dev, sizeof(*plat->dma_cfg),
GFP_KERNEL);
if (!plat->dma_cfg)
return -ENOMEM;
plat->safety_feat_cfg = devm_kzalloc(&pdev->dev,
sizeof(*plat->safety_feat_cfg),
GFP_KERNEL);
if (!plat->safety_feat_cfg)
return -ENOMEM;
/* Enable pci device */
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "%s: ERROR: failed to enable device\n",
__func__);
return ret;
}
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
plat->bsp_priv = intel_priv;
intel_priv->mdio_adhoc_addr = INTEL_MGBE_ADHOC_ADDR;
intel_priv->crossts_adj = 1;
/* Initialize all MSI vectors to invalid so that it can be set
* according to platform data settings below.
* Note: MSI vector takes value from 0 upto 31 (STMMAC_MSI_VEC_MAX)
*/
plat->msi_mac_vec = STMMAC_MSI_VEC_MAX;
plat->msi_wol_vec = STMMAC_MSI_VEC_MAX;
plat->msi_lpi_vec = STMMAC_MSI_VEC_MAX;
plat->msi_sfty_ce_vec = STMMAC_MSI_VEC_MAX;
plat->msi_sfty_ue_vec = STMMAC_MSI_VEC_MAX;
plat->msi_rx_base_vec = STMMAC_MSI_VEC_MAX;
plat->msi_tx_base_vec = STMMAC_MSI_VEC_MAX;
ret = info->setup(pdev, plat);
if (ret)
return ret;
memset(&res, 0, sizeof(res));
res.addr = pcim_iomap_table(pdev)[0];
if (plat->eee_usecs_rate > 0) {
u32 tx_lpi_usec;
tx_lpi_usec = (plat->eee_usecs_rate / 1000000) - 1;
writel(tx_lpi_usec, res.addr + GMAC_1US_TIC_COUNTER);
}
ret = stmmac_config_multi_msi(pdev, plat, &res);
if (ret) {
ret = stmmac_config_single_msi(pdev, plat, &res);
if (ret) {
dev_err(&pdev->dev, "%s: ERROR: failed to enable IRQ\n",
__func__);
goto err_alloc_irq;
}
}
ret = stmmac_dvr_probe(&pdev->dev, plat, &res);
if (ret) {
goto err_alloc_irq;
}
return 0;
err_alloc_irq:
clk_disable_unprepare(plat->stmmac_clk);
clk_unregister_fixed_rate(plat->stmmac_clk);
return ret;
}
/**
* intel_eth_pci_remove
*
* @pdev: pci device pointer
* Description: this function calls the main to free the net resources
* and releases the PCI resources.
*/
static void intel_eth_pci_remove(struct pci_dev *pdev)
{
struct net_device *ndev = dev_get_drvdata(&pdev->dev);
struct stmmac_priv *priv = netdev_priv(ndev);
stmmac_dvr_remove(&pdev->dev);
clk_disable_unprepare(priv->plat->stmmac_clk);
clk_unregister_fixed_rate(priv->plat->stmmac_clk);
}
static int __maybe_unused intel_eth_pci_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
ret = stmmac_suspend(dev);
if (ret)
return ret;
ret = pci_save_state(pdev);
if (ret)
return ret;
pci_wake_from_d3(pdev, true);
pci_set_power_state(pdev, PCI_D3hot);
return 0;
}
static int __maybe_unused intel_eth_pci_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
pci_restore_state(pdev);
pci_set_power_state(pdev, PCI_D0);
ret = pcim_enable_device(pdev);
if (ret)
return ret;
pci_set_master(pdev);
return stmmac_resume(dev);
}
static SIMPLE_DEV_PM_OPS(intel_eth_pm_ops, intel_eth_pci_suspend,
intel_eth_pci_resume);
#define PCI_DEVICE_ID_INTEL_QUARK 0x0937
#define PCI_DEVICE_ID_INTEL_EHL_RGMII1G 0x4b30
#define PCI_DEVICE_ID_INTEL_EHL_SGMII1G 0x4b31
#define PCI_DEVICE_ID_INTEL_EHL_SGMII2G5 0x4b32
/* Intel(R) Programmable Services Engine (Intel(R) PSE) consist of 2 MAC
* which are named PSE0 and PSE1
*/
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_RGMII1G 0x4ba0
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII1G 0x4ba1
#define PCI_DEVICE_ID_INTEL_EHL_PSE0_SGMII2G5 0x4ba2
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_RGMII1G 0x4bb0
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII1G 0x4bb1
#define PCI_DEVICE_ID_INTEL_EHL_PSE1_SGMII2G5 0x4bb2
#define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_0 0x43ac
#define PCI_DEVICE_ID_INTEL_TGLH_SGMII1G_1 0x43a2
#define PCI_DEVICE_ID_INTEL_TGL_SGMII1G 0xa0ac
#define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_0 0x7aac
#define PCI_DEVICE_ID_INTEL_ADLS_SGMII1G_1 0x7aad
#define PCI_DEVICE_ID_INTEL_ADLN_SGMII1G 0x54ac
#define PCI_DEVICE_ID_INTEL_RPLP_SGMII1G 0x51ac
static const struct pci_device_id intel_eth_pci_id_table[] = {
{ PCI_DEVICE_DATA(INTEL, QUARK, &quark_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_RGMII1G, &ehl_rgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_SGMII1G, &ehl_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_SGMII2G5, &ehl_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_RGMII1G, &ehl_pse0_rgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII1G, &ehl_pse0_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE0_SGMII2G5, &ehl_pse0_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_RGMII1G, &ehl_pse1_rgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII1G, &ehl_pse1_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, EHL_PSE1_SGMII2G5, &ehl_pse1_sgmii1g_info) },
{ PCI_DEVICE_DATA(INTEL, TGL_SGMII1G, &tgl_sgmii1g_phy0_info) },
{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_0, &tgl_sgmii1g_phy0_info) },
{ PCI_DEVICE_DATA(INTEL, TGLH_SGMII1G_1, &tgl_sgmii1g_phy1_info) },
{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_0, &adls_sgmii1g_phy0_info) },
{ PCI_DEVICE_DATA(INTEL, ADLS_SGMII1G_1, &adls_sgmii1g_phy1_info) },
{ PCI_DEVICE_DATA(INTEL, ADLN_SGMII1G, &tgl_sgmii1g_phy0_info) },
{ PCI_DEVICE_DATA(INTEL, RPLP_SGMII1G, &tgl_sgmii1g_phy0_info) },
{}
};
MODULE_DEVICE_TABLE(pci, intel_eth_pci_id_table);
static struct pci_driver intel_eth_pci_driver = {
.name = "intel-eth-pci",
.id_table = intel_eth_pci_id_table,
.probe = intel_eth_pci_probe,
.remove = intel_eth_pci_remove,
.driver = {
.pm = &intel_eth_pm_ops,
},
};
module_pci_driver(intel_eth_pci_driver);
MODULE_DESCRIPTION("INTEL 10/100/1000 Ethernet PCI driver");
MODULE_AUTHOR("Voon Weifeng <weifeng.voon@intel.com>");
MODULE_LICENSE("GPL v2");