| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * NVMe I/O command implementation. |
| * Copyright (c) 2015-2016 HGST, a Western Digital Company. |
| */ |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| #include <linux/blkdev.h> |
| #include <linux/blk-integrity.h> |
| #include <linux/memremap.h> |
| #include <linux/module.h> |
| #include "nvmet.h" |
| |
| void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id) |
| { |
| const struct queue_limits *ql = &bdev_get_queue(bdev)->limits; |
| /* Number of logical blocks per physical block. */ |
| const u32 lpp = ql->physical_block_size / ql->logical_block_size; |
| /* Logical blocks per physical block, 0's based. */ |
| const __le16 lpp0b = to0based(lpp); |
| |
| /* |
| * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN, |
| * NAWUPF, and NACWU are defined for this namespace and should be |
| * used by the host for this namespace instead of the AWUN, AWUPF, |
| * and ACWU fields in the Identify Controller data structure. If |
| * any of these fields are zero that means that the corresponding |
| * field from the identify controller data structure should be used. |
| */ |
| id->nsfeat |= 1 << 1; |
| id->nawun = lpp0b; |
| id->nawupf = lpp0b; |
| id->nacwu = lpp0b; |
| |
| /* |
| * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and |
| * NOWS are defined for this namespace and should be used by |
| * the host for I/O optimization. |
| */ |
| id->nsfeat |= 1 << 4; |
| /* NPWG = Namespace Preferred Write Granularity. 0's based */ |
| id->npwg = lpp0b; |
| /* NPWA = Namespace Preferred Write Alignment. 0's based */ |
| id->npwa = id->npwg; |
| /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */ |
| id->npdg = to0based(ql->discard_granularity / ql->logical_block_size); |
| /* NPDG = Namespace Preferred Deallocate Alignment */ |
| id->npda = id->npdg; |
| /* NOWS = Namespace Optimal Write Size */ |
| id->nows = to0based(ql->io_opt / ql->logical_block_size); |
| } |
| |
| void nvmet_bdev_ns_disable(struct nvmet_ns *ns) |
| { |
| if (ns->bdev) { |
| blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ); |
| ns->bdev = NULL; |
| } |
| } |
| |
| static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns) |
| { |
| struct blk_integrity *bi = bdev_get_integrity(ns->bdev); |
| |
| if (bi) { |
| ns->metadata_size = bi->tuple_size; |
| if (bi->profile == &t10_pi_type1_crc) |
| ns->pi_type = NVME_NS_DPS_PI_TYPE1; |
| else if (bi->profile == &t10_pi_type3_crc) |
| ns->pi_type = NVME_NS_DPS_PI_TYPE3; |
| else |
| /* Unsupported metadata type */ |
| ns->metadata_size = 0; |
| } |
| } |
| |
| int nvmet_bdev_ns_enable(struct nvmet_ns *ns) |
| { |
| int ret; |
| |
| /* |
| * When buffered_io namespace attribute is enabled that means user want |
| * this block device to be used as a file, so block device can take |
| * an advantage of cache. |
| */ |
| if (ns->buffered_io) |
| return -ENOTBLK; |
| |
| ns->bdev = blkdev_get_by_path(ns->device_path, |
| FMODE_READ | FMODE_WRITE, NULL); |
| if (IS_ERR(ns->bdev)) { |
| ret = PTR_ERR(ns->bdev); |
| if (ret != -ENOTBLK) { |
| pr_err("failed to open block device %s: (%ld)\n", |
| ns->device_path, PTR_ERR(ns->bdev)); |
| } |
| ns->bdev = NULL; |
| return ret; |
| } |
| ns->size = bdev_nr_bytes(ns->bdev); |
| ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev)); |
| |
| ns->pi_type = 0; |
| ns->metadata_size = 0; |
| if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10)) |
| nvmet_bdev_ns_enable_integrity(ns); |
| |
| if (bdev_is_zoned(ns->bdev)) { |
| if (!nvmet_bdev_zns_enable(ns)) { |
| nvmet_bdev_ns_disable(ns); |
| return -EINVAL; |
| } |
| ns->csi = NVME_CSI_ZNS; |
| } |
| |
| return 0; |
| } |
| |
| void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns) |
| { |
| ns->size = bdev_nr_bytes(ns->bdev); |
| } |
| |
| u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts) |
| { |
| u16 status = NVME_SC_SUCCESS; |
| |
| if (likely(blk_sts == BLK_STS_OK)) |
| return status; |
| /* |
| * Right now there exists M : 1 mapping between block layer error |
| * to the NVMe status code (see nvme_error_status()). For consistency, |
| * when we reverse map we use most appropriate NVMe Status code from |
| * the group of the NVMe staus codes used in the nvme_error_status(). |
| */ |
| switch (blk_sts) { |
| case BLK_STS_NOSPC: |
| status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR; |
| req->error_loc = offsetof(struct nvme_rw_command, length); |
| break; |
| case BLK_STS_TARGET: |
| status = NVME_SC_LBA_RANGE | NVME_SC_DNR; |
| req->error_loc = offsetof(struct nvme_rw_command, slba); |
| break; |
| case BLK_STS_NOTSUPP: |
| req->error_loc = offsetof(struct nvme_common_command, opcode); |
| switch (req->cmd->common.opcode) { |
| case nvme_cmd_dsm: |
| case nvme_cmd_write_zeroes: |
| status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR; |
| break; |
| default: |
| status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR; |
| } |
| break; |
| case BLK_STS_MEDIUM: |
| status = NVME_SC_ACCESS_DENIED; |
| req->error_loc = offsetof(struct nvme_rw_command, nsid); |
| break; |
| case BLK_STS_IOERR: |
| default: |
| status = NVME_SC_INTERNAL | NVME_SC_DNR; |
| req->error_loc = offsetof(struct nvme_common_command, opcode); |
| } |
| |
| switch (req->cmd->common.opcode) { |
| case nvme_cmd_read: |
| case nvme_cmd_write: |
| req->error_slba = le64_to_cpu(req->cmd->rw.slba); |
| break; |
| case nvme_cmd_write_zeroes: |
| req->error_slba = |
| le64_to_cpu(req->cmd->write_zeroes.slba); |
| break; |
| default: |
| req->error_slba = 0; |
| } |
| return status; |
| } |
| |
| static void nvmet_bio_done(struct bio *bio) |
| { |
| struct nvmet_req *req = bio->bi_private; |
| |
| nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status)); |
| nvmet_req_bio_put(req, bio); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, |
| struct sg_mapping_iter *miter) |
| { |
| struct blk_integrity *bi; |
| struct bio_integrity_payload *bip; |
| int rc; |
| size_t resid, len; |
| |
| bi = bdev_get_integrity(req->ns->bdev); |
| if (unlikely(!bi)) { |
| pr_err("Unable to locate bio_integrity\n"); |
| return -ENODEV; |
| } |
| |
| bip = bio_integrity_alloc(bio, GFP_NOIO, |
| bio_max_segs(req->metadata_sg_cnt)); |
| if (IS_ERR(bip)) { |
| pr_err("Unable to allocate bio_integrity_payload\n"); |
| return PTR_ERR(bip); |
| } |
| |
| bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); |
| /* virtual start sector must be in integrity interval units */ |
| bip_set_seed(bip, bio->bi_iter.bi_sector >> |
| (bi->interval_exp - SECTOR_SHIFT)); |
| |
| resid = bip->bip_iter.bi_size; |
| while (resid > 0 && sg_miter_next(miter)) { |
| len = min_t(size_t, miter->length, resid); |
| rc = bio_integrity_add_page(bio, miter->page, len, |
| offset_in_page(miter->addr)); |
| if (unlikely(rc != len)) { |
| pr_err("bio_integrity_add_page() failed; %d\n", rc); |
| sg_miter_stop(miter); |
| return -ENOMEM; |
| } |
| |
| resid -= len; |
| if (len < miter->length) |
| miter->consumed -= miter->length - len; |
| } |
| sg_miter_stop(miter); |
| |
| return 0; |
| } |
| #else |
| static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio, |
| struct sg_mapping_iter *miter) |
| { |
| return -EINVAL; |
| } |
| #endif /* CONFIG_BLK_DEV_INTEGRITY */ |
| |
| static void nvmet_bdev_execute_rw(struct nvmet_req *req) |
| { |
| unsigned int sg_cnt = req->sg_cnt; |
| struct bio *bio; |
| struct scatterlist *sg; |
| struct blk_plug plug; |
| sector_t sector; |
| int op, i, rc; |
| struct sg_mapping_iter prot_miter; |
| unsigned int iter_flags; |
| unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len; |
| |
| if (!nvmet_check_transfer_len(req, total_len)) |
| return; |
| |
| if (!req->sg_cnt) { |
| nvmet_req_complete(req, 0); |
| return; |
| } |
| |
| if (req->cmd->rw.opcode == nvme_cmd_write) { |
| op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; |
| if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA)) |
| op |= REQ_FUA; |
| iter_flags = SG_MITER_TO_SG; |
| } else { |
| op = REQ_OP_READ; |
| iter_flags = SG_MITER_FROM_SG; |
| } |
| |
| if (is_pci_p2pdma_page(sg_page(req->sg))) |
| op |= REQ_NOMERGE; |
| |
| sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba); |
| |
| if (nvmet_use_inline_bvec(req)) { |
| bio = &req->b.inline_bio; |
| bio_init(bio, req->ns->bdev, req->inline_bvec, |
| ARRAY_SIZE(req->inline_bvec), op); |
| } else { |
| bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), op, |
| GFP_KERNEL); |
| } |
| bio->bi_iter.bi_sector = sector; |
| bio->bi_private = req; |
| bio->bi_end_io = nvmet_bio_done; |
| |
| blk_start_plug(&plug); |
| if (req->metadata_len) |
| sg_miter_start(&prot_miter, req->metadata_sg, |
| req->metadata_sg_cnt, iter_flags); |
| |
| for_each_sg(req->sg, sg, req->sg_cnt, i) { |
| while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset) |
| != sg->length) { |
| struct bio *prev = bio; |
| |
| if (req->metadata_len) { |
| rc = nvmet_bdev_alloc_bip(req, bio, |
| &prot_miter); |
| if (unlikely(rc)) { |
| bio_io_error(bio); |
| return; |
| } |
| } |
| |
| bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), |
| op, GFP_KERNEL); |
| bio->bi_iter.bi_sector = sector; |
| |
| bio_chain(bio, prev); |
| submit_bio(prev); |
| } |
| |
| sector += sg->length >> 9; |
| sg_cnt--; |
| } |
| |
| if (req->metadata_len) { |
| rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter); |
| if (unlikely(rc)) { |
| bio_io_error(bio); |
| return; |
| } |
| } |
| |
| submit_bio(bio); |
| blk_finish_plug(&plug); |
| } |
| |
| static void nvmet_bdev_execute_flush(struct nvmet_req *req) |
| { |
| struct bio *bio = &req->b.inline_bio; |
| |
| if (!nvmet_check_transfer_len(req, 0)) |
| return; |
| |
| bio_init(bio, req->ns->bdev, req->inline_bvec, |
| ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH); |
| bio->bi_private = req; |
| bio->bi_end_io = nvmet_bio_done; |
| |
| submit_bio(bio); |
| } |
| |
| u16 nvmet_bdev_flush(struct nvmet_req *req) |
| { |
| if (blkdev_issue_flush(req->ns->bdev)) |
| return NVME_SC_INTERNAL | NVME_SC_DNR; |
| return 0; |
| } |
| |
| static u16 nvmet_bdev_discard_range(struct nvmet_req *req, |
| struct nvme_dsm_range *range, struct bio **bio) |
| { |
| struct nvmet_ns *ns = req->ns; |
| int ret; |
| |
| ret = __blkdev_issue_discard(ns->bdev, |
| nvmet_lba_to_sect(ns, range->slba), |
| le32_to_cpu(range->nlb) << (ns->blksize_shift - 9), |
| GFP_KERNEL, 0, bio); |
| if (ret && ret != -EOPNOTSUPP) { |
| req->error_slba = le64_to_cpu(range->slba); |
| return errno_to_nvme_status(req, ret); |
| } |
| return NVME_SC_SUCCESS; |
| } |
| |
| static void nvmet_bdev_execute_discard(struct nvmet_req *req) |
| { |
| struct nvme_dsm_range range; |
| struct bio *bio = NULL; |
| int i; |
| u16 status; |
| |
| for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) { |
| status = nvmet_copy_from_sgl(req, i * sizeof(range), &range, |
| sizeof(range)); |
| if (status) |
| break; |
| |
| status = nvmet_bdev_discard_range(req, &range, &bio); |
| if (status) |
| break; |
| } |
| |
| if (bio) { |
| bio->bi_private = req; |
| bio->bi_end_io = nvmet_bio_done; |
| if (status) |
| bio_io_error(bio); |
| else |
| submit_bio(bio); |
| } else { |
| nvmet_req_complete(req, status); |
| } |
| } |
| |
| static void nvmet_bdev_execute_dsm(struct nvmet_req *req) |
| { |
| if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req))) |
| return; |
| |
| switch (le32_to_cpu(req->cmd->dsm.attributes)) { |
| case NVME_DSMGMT_AD: |
| nvmet_bdev_execute_discard(req); |
| return; |
| case NVME_DSMGMT_IDR: |
| case NVME_DSMGMT_IDW: |
| default: |
| /* Not supported yet */ |
| nvmet_req_complete(req, 0); |
| return; |
| } |
| } |
| |
| static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req) |
| { |
| struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes; |
| struct bio *bio = NULL; |
| sector_t sector; |
| sector_t nr_sector; |
| int ret; |
| |
| if (!nvmet_check_transfer_len(req, 0)) |
| return; |
| |
| sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba); |
| nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) << |
| (req->ns->blksize_shift - 9)); |
| |
| ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector, |
| GFP_KERNEL, &bio, 0); |
| if (bio) { |
| bio->bi_private = req; |
| bio->bi_end_io = nvmet_bio_done; |
| submit_bio(bio); |
| } else { |
| nvmet_req_complete(req, errno_to_nvme_status(req, ret)); |
| } |
| } |
| |
| u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req) |
| { |
| switch (req->cmd->common.opcode) { |
| case nvme_cmd_read: |
| case nvme_cmd_write: |
| req->execute = nvmet_bdev_execute_rw; |
| if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns)) |
| req->metadata_len = nvmet_rw_metadata_len(req); |
| return 0; |
| case nvme_cmd_flush: |
| req->execute = nvmet_bdev_execute_flush; |
| return 0; |
| case nvme_cmd_dsm: |
| req->execute = nvmet_bdev_execute_dsm; |
| return 0; |
| case nvme_cmd_write_zeroes: |
| req->execute = nvmet_bdev_execute_write_zeroes; |
| return 0; |
| default: |
| return nvmet_report_invalid_opcode(req); |
| } |
| } |