| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2022 Intel Corporation |
| */ |
| |
| #include "xe_pcode.h" |
| |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| |
| #include <drm/drm_managed.h> |
| |
| #include "xe_assert.h" |
| #include "xe_device.h" |
| #include "xe_gt.h" |
| #include "xe_mmio.h" |
| #include "xe_pcode_api.h" |
| |
| /** |
| * DOC: PCODE |
| * |
| * Xe PCODE is the component responsible for interfacing with the PCODE |
| * firmware. |
| * It shall provide a very simple ABI to other Xe components, but be the |
| * single and consolidated place that will communicate with PCODE. All read |
| * and write operations to PCODE will be internal and private to this component. |
| * |
| * What's next: |
| * - PCODE hw metrics |
| * - PCODE for display operations |
| */ |
| |
| static int pcode_mailbox_status(struct xe_gt *gt) |
| { |
| u32 err; |
| static const struct pcode_err_decode err_decode[] = { |
| [PCODE_ILLEGAL_CMD] = {-ENXIO, "Illegal Command"}, |
| [PCODE_TIMEOUT] = {-ETIMEDOUT, "Timed out"}, |
| [PCODE_ILLEGAL_DATA] = {-EINVAL, "Illegal Data"}, |
| [PCODE_ILLEGAL_SUBCOMMAND] = {-ENXIO, "Illegal Subcommand"}, |
| [PCODE_LOCKED] = {-EBUSY, "PCODE Locked"}, |
| [PCODE_GT_RATIO_OUT_OF_RANGE] = {-EOVERFLOW, |
| "GT ratio out of range"}, |
| [PCODE_REJECTED] = {-EACCES, "PCODE Rejected"}, |
| [PCODE_ERROR_MASK] = {-EPROTO, "Unknown"}, |
| }; |
| |
| err = xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_ERROR_MASK; |
| if (err) { |
| drm_err(>_to_xe(gt)->drm, "PCODE Mailbox failed: %d %s", err, |
| err_decode[err].str ?: "Unknown"); |
| return err_decode[err].errno ?: -EPROTO; |
| } |
| |
| return 0; |
| } |
| |
| static int __pcode_mailbox_rw(struct xe_gt *gt, u32 mbox, u32 *data0, u32 *data1, |
| unsigned int timeout_ms, bool return_data, |
| bool atomic) |
| { |
| int err; |
| |
| if (gt_to_xe(gt)->info.skip_pcode) |
| return 0; |
| |
| if ((xe_mmio_read32(gt, PCODE_MAILBOX) & PCODE_READY) != 0) |
| return -EAGAIN; |
| |
| xe_mmio_write32(gt, PCODE_DATA0, *data0); |
| xe_mmio_write32(gt, PCODE_DATA1, data1 ? *data1 : 0); |
| xe_mmio_write32(gt, PCODE_MAILBOX, PCODE_READY | mbox); |
| |
| err = xe_mmio_wait32(gt, PCODE_MAILBOX, PCODE_READY, 0, |
| timeout_ms * USEC_PER_MSEC, NULL, atomic); |
| if (err) |
| return err; |
| |
| if (return_data) { |
| *data0 = xe_mmio_read32(gt, PCODE_DATA0); |
| if (data1) |
| *data1 = xe_mmio_read32(gt, PCODE_DATA1); |
| } |
| |
| return pcode_mailbox_status(gt); |
| } |
| |
| static int pcode_mailbox_rw(struct xe_gt *gt, u32 mbox, u32 *data0, u32 *data1, |
| unsigned int timeout_ms, bool return_data, |
| bool atomic) |
| { |
| if (gt_to_xe(gt)->info.skip_pcode) |
| return 0; |
| |
| lockdep_assert_held(>->pcode.lock); |
| |
| return __pcode_mailbox_rw(gt, mbox, data0, data1, timeout_ms, return_data, atomic); |
| } |
| |
| int xe_pcode_write_timeout(struct xe_gt *gt, u32 mbox, u32 data, int timeout) |
| { |
| int err; |
| |
| mutex_lock(>->pcode.lock); |
| err = pcode_mailbox_rw(gt, mbox, &data, NULL, timeout, false, false); |
| mutex_unlock(>->pcode.lock); |
| |
| return err; |
| } |
| |
| int xe_pcode_read(struct xe_gt *gt, u32 mbox, u32 *val, u32 *val1) |
| { |
| int err; |
| |
| mutex_lock(>->pcode.lock); |
| err = pcode_mailbox_rw(gt, mbox, val, val1, 1, true, false); |
| mutex_unlock(>->pcode.lock); |
| |
| return err; |
| } |
| |
| static int pcode_try_request(struct xe_gt *gt, u32 mbox, |
| u32 request, u32 reply_mask, u32 reply, |
| u32 *status, bool atomic, int timeout_us, bool locked) |
| { |
| int slept, wait = 10; |
| |
| xe_gt_assert(gt, timeout_us > 0); |
| |
| for (slept = 0; slept < timeout_us; slept += wait) { |
| if (locked) |
| *status = pcode_mailbox_rw(gt, mbox, &request, NULL, 1, true, |
| atomic); |
| else |
| *status = __pcode_mailbox_rw(gt, mbox, &request, NULL, 1, true, |
| atomic); |
| if ((*status == 0) && ((request & reply_mask) == reply)) |
| return 0; |
| |
| if (atomic) |
| udelay(wait); |
| else |
| usleep_range(wait, wait << 1); |
| wait <<= 1; |
| } |
| |
| return -ETIMEDOUT; |
| } |
| |
| /** |
| * xe_pcode_request - send PCODE request until acknowledgment |
| * @gt: gt |
| * @mbox: PCODE mailbox ID the request is targeted for |
| * @request: request ID |
| * @reply_mask: mask used to check for request acknowledgment |
| * @reply: value used to check for request acknowledgment |
| * @timeout_base_ms: timeout for polling with preemption enabled |
| * |
| * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE |
| * reports an error or an overall timeout of @timeout_base_ms+50 ms expires. |
| * The request is acknowledged once the PCODE reply dword equals @reply after |
| * applying @reply_mask. Polling is first attempted with preemption enabled |
| * for @timeout_base_ms and if this times out for another 50 ms with |
| * preemption disabled. |
| * |
| * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some |
| * other error as reported by PCODE. |
| */ |
| int xe_pcode_request(struct xe_gt *gt, u32 mbox, u32 request, |
| u32 reply_mask, u32 reply, int timeout_base_ms) |
| { |
| u32 status; |
| int ret; |
| |
| xe_gt_assert(gt, timeout_base_ms <= 3); |
| |
| mutex_lock(>->pcode.lock); |
| |
| ret = pcode_try_request(gt, mbox, request, reply_mask, reply, &status, |
| false, timeout_base_ms * 1000, true); |
| if (!ret) |
| goto out; |
| |
| /* |
| * The above can time out if the number of requests was low (2 in the |
| * worst case) _and_ PCODE was busy for some reason even after a |
| * (queued) request and @timeout_base_ms delay. As a workaround retry |
| * the poll with preemption disabled to maximize the number of |
| * requests. Increase the timeout from @timeout_base_ms to 50ms to |
| * account for interrupts that could reduce the number of these |
| * requests, and for any quirks of the PCODE firmware that delays |
| * the request completion. |
| */ |
| drm_err(>_to_xe(gt)->drm, |
| "PCODE timeout, retrying with preemption disabled\n"); |
| preempt_disable(); |
| ret = pcode_try_request(gt, mbox, request, reply_mask, reply, &status, |
| true, 50 * 1000, true); |
| preempt_enable(); |
| |
| out: |
| mutex_unlock(>->pcode.lock); |
| return status ? status : ret; |
| } |
| /** |
| * xe_pcode_init_min_freq_table - Initialize PCODE's QOS frequency table |
| * @gt: gt instance |
| * @min_gt_freq: Minimal (RPn) GT frequency in units of 50MHz. |
| * @max_gt_freq: Maximal (RP0) GT frequency in units of 50MHz. |
| * |
| * This function initialize PCODE's QOS frequency table for a proper minimal |
| * frequency/power steering decision, depending on the current requested GT |
| * frequency. For older platforms this was a more complete table including |
| * the IA freq. However for the latest platforms this table become a simple |
| * 1-1 Ring vs GT frequency. Even though, without setting it, PCODE might |
| * not take the right decisions for some memory frequencies and affect latency. |
| * |
| * It returns 0 on success, and -ERROR number on failure, -EINVAL if max |
| * frequency is higher then the minimal, and other errors directly translated |
| * from the PCODE Error returs: |
| * - -ENXIO: "Illegal Command" |
| * - -ETIMEDOUT: "Timed out" |
| * - -EINVAL: "Illegal Data" |
| * - -ENXIO, "Illegal Subcommand" |
| * - -EBUSY: "PCODE Locked" |
| * - -EOVERFLOW, "GT ratio out of range" |
| * - -EACCES, "PCODE Rejected" |
| * - -EPROTO, "Unknown" |
| */ |
| int xe_pcode_init_min_freq_table(struct xe_gt *gt, u32 min_gt_freq, |
| u32 max_gt_freq) |
| { |
| int ret; |
| u32 freq; |
| |
| if (!gt_to_xe(gt)->info.has_llc) |
| return 0; |
| |
| if (max_gt_freq <= min_gt_freq) |
| return -EINVAL; |
| |
| mutex_lock(>->pcode.lock); |
| for (freq = min_gt_freq; freq <= max_gt_freq; freq++) { |
| u32 data = freq << PCODE_FREQ_RING_RATIO_SHIFT | freq; |
| |
| ret = pcode_mailbox_rw(gt, PCODE_WRITE_MIN_FREQ_TABLE, |
| &data, NULL, 1, false, false); |
| if (ret) |
| goto unlock; |
| } |
| |
| unlock: |
| mutex_unlock(>->pcode.lock); |
| return ret; |
| } |
| |
| /** |
| * xe_pcode_ready - Ensure PCODE is initialized |
| * @xe: xe instance |
| * @locked: true if lock held, false otherwise |
| * |
| * PCODE init mailbox is polled only on root gt of root tile |
| * as the root tile provides the initialization is complete only |
| * after all the tiles have completed the initialization. |
| * Called only on early probe without locks and with locks in |
| * resume path. |
| * |
| * Returns 0 on success, and -error number on failure. |
| */ |
| int xe_pcode_ready(struct xe_device *xe, bool locked) |
| { |
| u32 status, request = DGFX_GET_INIT_STATUS; |
| struct xe_gt *gt = xe_root_mmio_gt(xe); |
| int timeout_us = 180000000; /* 3 min */ |
| int ret; |
| |
| if (xe->info.skip_pcode) |
| return 0; |
| |
| if (!IS_DGFX(xe)) |
| return 0; |
| |
| if (locked) |
| mutex_lock(>->pcode.lock); |
| |
| ret = pcode_try_request(gt, DGFX_PCODE_STATUS, request, |
| DGFX_INIT_STATUS_COMPLETE, |
| DGFX_INIT_STATUS_COMPLETE, |
| &status, false, timeout_us, locked); |
| |
| if (locked) |
| mutex_unlock(>->pcode.lock); |
| |
| if (ret) |
| drm_err(&xe->drm, |
| "PCODE initialization timedout after: 3 min\n"); |
| |
| return ret; |
| } |
| |
| /** |
| * xe_pcode_init: initialize components of PCODE |
| * @gt: gt instance |
| * |
| * This function initializes the xe_pcode component. |
| * To be called once only during probe. |
| */ |
| void xe_pcode_init(struct xe_gt *gt) |
| { |
| drmm_mutex_init(>_to_xe(gt)->drm, >->pcode.lock); |
| } |
| |
| /** |
| * xe_pcode_probe_early: initializes PCODE |
| * @xe: xe instance |
| * |
| * This function checks the initialization status of PCODE |
| * To be called once only during early probe without locks. |
| * |
| * Returns 0 on success, error code otherwise |
| */ |
| int xe_pcode_probe_early(struct xe_device *xe) |
| { |
| return xe_pcode_ready(xe, false); |
| } |