| /* |
| * drivers/mtd/nand/fsmc_nand.c |
| * |
| * ST Microelectronics |
| * Flexible Static Memory Controller (FSMC) |
| * Driver for NAND portions |
| * |
| * Copyright © 2010 ST Microelectronics |
| * Vipin Kumar <vipin.kumar@st.com> |
| * Ashish Priyadarshi |
| * |
| * Based on drivers/mtd/nand/nomadik_nand.c |
| * |
| * This file is licensed under the terms of the GNU General Public |
| * License version 2. This program is licensed "as is" without any |
| * warranty of any kind, whether express or implied. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/resource.h> |
| #include <linux/sched.h> |
| #include <linux/types.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <linux/platform_device.h> |
| #include <linux/mtd/partitions.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/mtd/fsmc.h> |
| #include <linux/amba/bus.h> |
| #include <mtd/mtd-abi.h> |
| |
| static struct nand_ecclayout fsmc_ecc1_layout = { |
| .eccbytes = 24, |
| .eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, |
| 66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, |
| .oobfree = { |
| {.offset = 8, .length = 8}, |
| {.offset = 24, .length = 8}, |
| {.offset = 40, .length = 8}, |
| {.offset = 56, .length = 8}, |
| {.offset = 72, .length = 8}, |
| {.offset = 88, .length = 8}, |
| {.offset = 104, .length = 8}, |
| {.offset = 120, .length = 8} |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc4_lp_layout = { |
| .eccbytes = 104, |
| .eccpos = { 2, 3, 4, 5, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14, |
| 18, 19, 20, 21, 22, 23, 24, |
| 25, 26, 27, 28, 29, 30, |
| 34, 35, 36, 37, 38, 39, 40, |
| 41, 42, 43, 44, 45, 46, |
| 50, 51, 52, 53, 54, 55, 56, |
| 57, 58, 59, 60, 61, 62, |
| 66, 67, 68, 69, 70, 71, 72, |
| 73, 74, 75, 76, 77, 78, |
| 82, 83, 84, 85, 86, 87, 88, |
| 89, 90, 91, 92, 93, 94, |
| 98, 99, 100, 101, 102, 103, 104, |
| 105, 106, 107, 108, 109, 110, |
| 114, 115, 116, 117, 118, 119, 120, |
| 121, 122, 123, 124, 125, 126 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 3}, |
| {.offset = 31, .length = 3}, |
| {.offset = 47, .length = 3}, |
| {.offset = 63, .length = 3}, |
| {.offset = 79, .length = 3}, |
| {.offset = 95, .length = 3}, |
| {.offset = 111, .length = 3}, |
| {.offset = 127, .length = 1} |
| } |
| }; |
| |
| /* |
| * ECC placement definitions in oobfree type format. |
| * There are 13 bytes of ecc for every 512 byte block and it has to be read |
| * consecutively and immediately after the 512 byte data block for hardware to |
| * generate the error bit offsets in 512 byte data. |
| * Managing the ecc bytes in the following way makes it easier for software to |
| * read ecc bytes consecutive to data bytes. This way is similar to |
| * oobfree structure maintained already in generic nand driver |
| */ |
| static struct fsmc_eccplace fsmc_ecc4_lp_place = { |
| .eccplace = { |
| {.offset = 2, .length = 13}, |
| {.offset = 18, .length = 13}, |
| {.offset = 34, .length = 13}, |
| {.offset = 50, .length = 13}, |
| {.offset = 66, .length = 13}, |
| {.offset = 82, .length = 13}, |
| {.offset = 98, .length = 13}, |
| {.offset = 114, .length = 13} |
| } |
| }; |
| |
| static struct nand_ecclayout fsmc_ecc4_sp_layout = { |
| .eccbytes = 13, |
| .eccpos = { 0, 1, 2, 3, 6, 7, 8, |
| 9, 10, 11, 12, 13, 14 |
| }, |
| .oobfree = { |
| {.offset = 15, .length = 1}, |
| } |
| }; |
| |
| static struct fsmc_eccplace fsmc_ecc4_sp_place = { |
| .eccplace = { |
| {.offset = 0, .length = 4}, |
| {.offset = 6, .length = 9} |
| } |
| }; |
| |
| /* |
| * Default partition tables to be used if the partition information not |
| * provided through platform data. |
| * |
| * Default partition layout for small page(= 512 bytes) devices |
| * Size for "Root file system" is updated in driver based on actual device size |
| */ |
| static struct mtd_partition partition_info_16KB_blk[] = { |
| { |
| .name = "X-loader", |
| .offset = 0, |
| .size = 4*0x4000, |
| }, |
| { |
| .name = "U-Boot", |
| .offset = 0x10000, |
| .size = 20*0x4000, |
| }, |
| { |
| .name = "Kernel", |
| .offset = 0x60000, |
| .size = 256*0x4000, |
| }, |
| { |
| .name = "Root File System", |
| .offset = 0x460000, |
| .size = MTDPART_SIZ_FULL, |
| }, |
| }; |
| |
| /* |
| * Default partition layout for large page(> 512 bytes) devices |
| * Size for "Root file system" is updated in driver based on actual device size |
| */ |
| static struct mtd_partition partition_info_128KB_blk[] = { |
| { |
| .name = "X-loader", |
| .offset = 0, |
| .size = 4*0x20000, |
| }, |
| { |
| .name = "U-Boot", |
| .offset = 0x80000, |
| .size = 12*0x20000, |
| }, |
| { |
| .name = "Kernel", |
| .offset = 0x200000, |
| .size = 48*0x20000, |
| }, |
| { |
| .name = "Root File System", |
| .offset = 0x800000, |
| .size = MTDPART_SIZ_FULL, |
| }, |
| }; |
| |
| |
| /** |
| * struct fsmc_nand_data - structure for FSMC NAND device state |
| * |
| * @pid: Part ID on the AMBA PrimeCell format |
| * @mtd: MTD info for a NAND flash. |
| * @nand: Chip related info for a NAND flash. |
| * |
| * @ecc_place: ECC placing locations in oobfree type format. |
| * @bank: Bank number for probed device. |
| * @clk: Clock structure for FSMC. |
| * |
| * @data_va: NAND port for Data. |
| * @cmd_va: NAND port for Command. |
| * @addr_va: NAND port for Address. |
| * @regs_va: FSMC regs base address. |
| */ |
| struct fsmc_nand_data { |
| u32 pid; |
| struct mtd_info mtd; |
| struct nand_chip nand; |
| |
| struct fsmc_eccplace *ecc_place; |
| unsigned int bank; |
| struct clk *clk; |
| |
| struct resource *resregs; |
| struct resource *rescmd; |
| struct resource *resaddr; |
| struct resource *resdata; |
| |
| void __iomem *data_va; |
| void __iomem *cmd_va; |
| void __iomem *addr_va; |
| void __iomem *regs_va; |
| |
| void (*select_chip)(uint32_t bank, uint32_t busw); |
| }; |
| |
| /* Assert CS signal based on chipnr */ |
| static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) |
| { |
| struct nand_chip *chip = mtd->priv; |
| struct fsmc_nand_data *host; |
| |
| host = container_of(mtd, struct fsmc_nand_data, mtd); |
| |
| switch (chipnr) { |
| case -1: |
| chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); |
| break; |
| case 0: |
| case 1: |
| case 2: |
| case 3: |
| if (host->select_chip) |
| host->select_chip(chipnr, |
| chip->options & NAND_BUSWIDTH_16); |
| break; |
| |
| default: |
| BUG(); |
| } |
| } |
| |
| /* |
| * fsmc_cmd_ctrl - For facilitaing Hardware access |
| * This routine allows hardware specific access to control-lines(ALE,CLE) |
| */ |
| static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) |
| { |
| struct nand_chip *this = mtd->priv; |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_regs *regs = host->regs_va; |
| unsigned int bank = host->bank; |
| |
| if (ctrl & NAND_CTRL_CHANGE) { |
| if (ctrl & NAND_CLE) { |
| this->IO_ADDR_R = (void __iomem *)host->cmd_va; |
| this->IO_ADDR_W = (void __iomem *)host->cmd_va; |
| } else if (ctrl & NAND_ALE) { |
| this->IO_ADDR_R = (void __iomem *)host->addr_va; |
| this->IO_ADDR_W = (void __iomem *)host->addr_va; |
| } else { |
| this->IO_ADDR_R = (void __iomem *)host->data_va; |
| this->IO_ADDR_W = (void __iomem *)host->data_va; |
| } |
| |
| if (ctrl & NAND_NCE) { |
| writel(readl(®s->bank_regs[bank].pc) | FSMC_ENABLE, |
| ®s->bank_regs[bank].pc); |
| } else { |
| writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ENABLE, |
| ®s->bank_regs[bank].pc); |
| } |
| } |
| |
| mb(); |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| /* |
| * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine |
| * |
| * This routine initializes timing parameters related to NAND memory access in |
| * FSMC registers |
| */ |
| static void __init fsmc_nand_setup(struct fsmc_regs *regs, uint32_t bank, |
| uint32_t busw) |
| { |
| uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; |
| |
| if (busw) |
| writel(value | FSMC_DEVWID_16, ®s->bank_regs[bank].pc); |
| else |
| writel(value | FSMC_DEVWID_8, ®s->bank_regs[bank].pc); |
| |
| writel(readl(®s->bank_regs[bank].pc) | FSMC_TCLR_1 | FSMC_TAR_1, |
| ®s->bank_regs[bank].pc); |
| writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| ®s->bank_regs[bank].comm); |
| writel(FSMC_THIZ_1 | FSMC_THOLD_4 | FSMC_TWAIT_6 | FSMC_TSET_0, |
| ®s->bank_regs[bank].attrib); |
| } |
| |
| /* |
| * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers |
| */ |
| static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_regs *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| |
| writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCPLEN_256, |
| ®s->bank_regs[bank].pc); |
| writel(readl(®s->bank_regs[bank].pc) & ~FSMC_ECCEN, |
| ®s->bank_regs[bank].pc); |
| writel(readl(®s->bank_regs[bank].pc) | FSMC_ECCEN, |
| ®s->bank_regs[bank].pc); |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by |
| * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to |
| * max of 8-bits) |
| */ |
| static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_regs *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| uint32_t ecc_tmp; |
| unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; |
| |
| do { |
| if (readl(®s->bank_regs[bank].sts) & FSMC_CODE_RDY) |
| break; |
| else |
| cond_resched(); |
| } while (!time_after_eq(jiffies, deadline)); |
| |
| ecc_tmp = readl(®s->bank_regs[bank].ecc1); |
| ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| ecc[3] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(®s->bank_regs[bank].ecc2); |
| ecc[4] = (uint8_t) (ecc_tmp >> 0); |
| ecc[5] = (uint8_t) (ecc_tmp >> 8); |
| ecc[6] = (uint8_t) (ecc_tmp >> 16); |
| ecc[7] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(®s->bank_regs[bank].ecc3); |
| ecc[8] = (uint8_t) (ecc_tmp >> 0); |
| ecc[9] = (uint8_t) (ecc_tmp >> 8); |
| ecc[10] = (uint8_t) (ecc_tmp >> 16); |
| ecc[11] = (uint8_t) (ecc_tmp >> 24); |
| |
| ecc_tmp = readl(®s->bank_regs[bank].sts); |
| ecc[12] = (uint8_t) (ecc_tmp >> 16); |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by |
| * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to |
| * max of 1-bit) |
| */ |
| static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_regs *regs = host->regs_va; |
| uint32_t bank = host->bank; |
| uint32_t ecc_tmp; |
| |
| ecc_tmp = readl(®s->bank_regs[bank].ecc1); |
| ecc[0] = (uint8_t) (ecc_tmp >> 0); |
| ecc[1] = (uint8_t) (ecc_tmp >> 8); |
| ecc[2] = (uint8_t) (ecc_tmp >> 16); |
| |
| return 0; |
| } |
| |
| /* Count the number of 0's in buff upto a max of max_bits */ |
| static int count_written_bits(uint8_t *buff, int size, int max_bits) |
| { |
| int k, written_bits = 0; |
| |
| for (k = 0; k < size; k++) { |
| written_bits += hweight8(~buff[k]); |
| if (written_bits > max_bits) |
| break; |
| } |
| |
| return written_bits; |
| } |
| |
| /* |
| * fsmc_read_page_hwecc |
| * @mtd: mtd info structure |
| * @chip: nand chip info structure |
| * @buf: buffer to store read data |
| * @page: page number to read |
| * |
| * This routine is needed for fsmc version 8 as reading from NAND chip has to be |
| * performed in a strict sequence as follows: |
| * data(512 byte) -> ecc(13 byte) |
| * After this read, fsmc hardware generates and reports error data bits(up to a |
| * max of 8 bits) |
| */ |
| static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct fsmc_eccplace *ecc_place = host->ecc_place; |
| int i, j, s, stat, eccsize = chip->ecc.size; |
| int eccbytes = chip->ecc.bytes; |
| int eccsteps = chip->ecc.steps; |
| uint8_t *p = buf; |
| uint8_t *ecc_calc = chip->buffers->ecccalc; |
| uint8_t *ecc_code = chip->buffers->ecccode; |
| int off, len, group = 0; |
| /* |
| * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we |
| * end up reading 14 bytes (7 words) from oob. The local array is |
| * to maintain word alignment |
| */ |
| uint16_t ecc_oob[7]; |
| uint8_t *oob = (uint8_t *)&ecc_oob[0]; |
| |
| for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { |
| chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); |
| chip->ecc.hwctl(mtd, NAND_ECC_READ); |
| chip->read_buf(mtd, p, eccsize); |
| |
| for (j = 0; j < eccbytes;) { |
| off = ecc_place->eccplace[group].offset; |
| len = ecc_place->eccplace[group].length; |
| group++; |
| |
| /* |
| * length is intentionally kept a higher multiple of 2 |
| * to read at least 13 bytes even in case of 16 bit NAND |
| * devices |
| */ |
| len = roundup(len, 2); |
| chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); |
| chip->read_buf(mtd, oob + j, len); |
| j += len; |
| } |
| |
| memcpy(&ecc_code[i], oob, chip->ecc.bytes); |
| chip->ecc.calculate(mtd, p, &ecc_calc[i]); |
| |
| stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| if (stat < 0) |
| mtd->ecc_stats.failed++; |
| else |
| mtd->ecc_stats.corrected += stat; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * fsmc_correct_data |
| * @mtd: mtd info structure |
| * @dat: buffer of read data |
| * @read_ecc: ecc read from device spare area |
| * @calc_ecc: ecc calculated from read data |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset informations of 13 bits each in 512 bytes of read data. |
| */ |
| static int fsmc_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| struct fsmc_nand_data *host = container_of(mtd, |
| struct fsmc_nand_data, mtd); |
| struct nand_chip *chip = mtd->priv; |
| struct fsmc_regs *regs = host->regs_va; |
| unsigned int bank = host->bank; |
| uint16_t err_idx[8]; |
| uint64_t ecc_data[2]; |
| uint32_t num_err, i; |
| |
| num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; |
| |
| /* no bit flipping */ |
| if (likely(num_err == 0)) |
| return 0; |
| |
| /* too many errors */ |
| if (unlikely(num_err > 8)) { |
| /* |
| * This is a temporary erase check. A newly erased page read |
| * would result in an ecc error because the oob data is also |
| * erased to FF and the calculated ecc for an FF data is not |
| * FF..FF. |
| * This is a workaround to skip performing correction in case |
| * data is FF..FF |
| * |
| * Logic: |
| * For every page, each bit written as 0 is counted until these |
| * number of bits are greater than 8 (the maximum correction |
| * capability of FSMC for each 512 + 13 bytes) |
| */ |
| |
| int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); |
| int bits_data = count_written_bits(dat, chip->ecc.size, 8); |
| |
| if ((bits_ecc + bits_data) <= 8) { |
| if (bits_data) |
| memset(dat, 0xff, chip->ecc.size); |
| return bits_data; |
| } |
| |
| return -EBADMSG; |
| } |
| |
| /* The calculated ecc is actually the correction index in data */ |
| memcpy(ecc_data, calc_ecc, chip->ecc.bytes); |
| |
| /* |
| * ------------------- calc_ecc[] bit wise -----------|--13 bits--| |
| * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| |
| * |
| * calc_ecc is a 104 bit information containing maximum of 8 error |
| * offset informations of 13 bits each. calc_ecc is copied into a |
| * uint64_t array and error offset indexes are populated in err_idx |
| * array |
| */ |
| for (i = 0; i < 8; i++) { |
| if (i == 4) { |
| err_idx[4] = ((ecc_data[1] & 0x1) << 12) | ecc_data[0]; |
| ecc_data[1] >>= 1; |
| continue; |
| } |
| err_idx[i] = (ecc_data[i/4] & 0x1FFF); |
| ecc_data[i/4] >>= 13; |
| } |
| |
| num_err = (readl(®s->bank_regs[bank].sts) >> 10) & 0xF; |
| |
| if (num_err == 0xF) |
| return -EBADMSG; |
| |
| i = 0; |
| while (num_err--) { |
| change_bit(0, (unsigned long *)&err_idx[i]); |
| change_bit(1, (unsigned long *)&err_idx[i]); |
| |
| if (err_idx[i] <= chip->ecc.size * 8) { |
| change_bit(err_idx[i], (unsigned long *)dat); |
| i++; |
| } |
| } |
| return i; |
| } |
| |
| /* |
| * fsmc_nand_probe - Probe function |
| * @pdev: platform device structure |
| */ |
| static int __init fsmc_nand_probe(struct platform_device *pdev) |
| { |
| struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); |
| struct fsmc_nand_data *host; |
| struct mtd_info *mtd; |
| struct nand_chip *nand; |
| struct fsmc_regs *regs; |
| struct resource *res; |
| int ret = 0; |
| u32 pid; |
| int i; |
| |
| if (!pdata) { |
| dev_err(&pdev->dev, "platform data is NULL\n"); |
| return -EINVAL; |
| } |
| |
| /* Allocate memory for the device structure (and zero it) */ |
| host = kzalloc(sizeof(*host), GFP_KERNEL); |
| if (!host) { |
| dev_err(&pdev->dev, "failed to allocate device structure\n"); |
| return -ENOMEM; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); |
| if (!res) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->resdata = request_mem_region(res->start, resource_size(res), |
| pdev->name); |
| if (!host->resdata) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->data_va = ioremap(res->start, resource_size(res)); |
| if (!host->data_va) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->resaddr = request_mem_region(res->start + PLAT_NAND_ALE, |
| resource_size(res), pdev->name); |
| if (!host->resaddr) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->addr_va = ioremap(res->start + PLAT_NAND_ALE, resource_size(res)); |
| if (!host->addr_va) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->rescmd = request_mem_region(res->start + PLAT_NAND_CLE, |
| resource_size(res), pdev->name); |
| if (!host->rescmd) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->cmd_va = ioremap(res->start + PLAT_NAND_CLE, resource_size(res)); |
| if (!host->cmd_va) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); |
| if (!res) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->resregs = request_mem_region(res->start, resource_size(res), |
| pdev->name); |
| if (!host->resregs) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->regs_va = ioremap(res->start, resource_size(res)); |
| if (!host->regs_va) { |
| ret = -EIO; |
| goto err_probe1; |
| } |
| |
| host->clk = clk_get(&pdev->dev, NULL); |
| if (IS_ERR(host->clk)) { |
| dev_err(&pdev->dev, "failed to fetch block clock\n"); |
| ret = PTR_ERR(host->clk); |
| host->clk = NULL; |
| goto err_probe1; |
| } |
| |
| ret = clk_enable(host->clk); |
| if (ret) |
| goto err_probe1; |
| |
| /* |
| * This device ID is actually a common AMBA ID as used on the |
| * AMBA PrimeCell bus. However it is not a PrimeCell. |
| */ |
| for (pid = 0, i = 0; i < 4; i++) |
| pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); |
| host->pid = pid; |
| dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " |
| "revision %02x, config %02x\n", |
| AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), |
| AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); |
| |
| host->bank = pdata->bank; |
| host->select_chip = pdata->select_bank; |
| regs = host->regs_va; |
| |
| /* Link all private pointers */ |
| mtd = &host->mtd; |
| nand = &host->nand; |
| mtd->priv = nand; |
| nand->priv = host; |
| |
| host->mtd.owner = THIS_MODULE; |
| nand->IO_ADDR_R = host->data_va; |
| nand->IO_ADDR_W = host->data_va; |
| nand->cmd_ctrl = fsmc_cmd_ctrl; |
| nand->chip_delay = 30; |
| |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.hwctl = fsmc_enable_hwecc; |
| nand->ecc.size = 512; |
| nand->options = pdata->options; |
| nand->select_chip = fsmc_select_chip; |
| |
| if (pdata->width == FSMC_NAND_BW16) |
| nand->options |= NAND_BUSWIDTH_16; |
| |
| fsmc_nand_setup(regs, host->bank, nand->options & NAND_BUSWIDTH_16); |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| nand->ecc.read_page = fsmc_read_page_hwecc; |
| nand->ecc.calculate = fsmc_read_hwecc_ecc4; |
| nand->ecc.correct = fsmc_correct_data; |
| nand->ecc.bytes = 13; |
| } else { |
| nand->ecc.calculate = fsmc_read_hwecc_ecc1; |
| nand->ecc.correct = nand_correct_data; |
| nand->ecc.bytes = 3; |
| } |
| |
| /* |
| * Scan to find existence of the device |
| */ |
| if (nand_scan_ident(&host->mtd, 1, NULL)) { |
| ret = -ENXIO; |
| dev_err(&pdev->dev, "No NAND Device found!\n"); |
| goto err_probe; |
| } |
| |
| if (AMBA_REV_BITS(host->pid) >= 8) { |
| if (host->mtd.writesize == 512) { |
| nand->ecc.layout = &fsmc_ecc4_sp_layout; |
| host->ecc_place = &fsmc_ecc4_sp_place; |
| } else { |
| nand->ecc.layout = &fsmc_ecc4_lp_layout; |
| host->ecc_place = &fsmc_ecc4_lp_place; |
| } |
| } else { |
| nand->ecc.layout = &fsmc_ecc1_layout; |
| } |
| |
| /* Second stage of scan to fill MTD data-structures */ |
| if (nand_scan_tail(&host->mtd)) { |
| ret = -ENXIO; |
| goto err_probe; |
| } |
| |
| /* |
| * The partition information can is accessed by (in the same precedence) |
| * |
| * command line through Bootloader, |
| * platform data, |
| * default partition information present in driver. |
| */ |
| /* |
| * Check for partition info passed |
| */ |
| host->mtd.name = "nand"; |
| ret = mtd_device_parse_register(&host->mtd, NULL, 0, |
| host->mtd.size <= 0x04000000 ? |
| partition_info_16KB_blk : |
| partition_info_128KB_blk, |
| host->mtd.size <= 0x04000000 ? |
| ARRAY_SIZE(partition_info_16KB_blk) : |
| ARRAY_SIZE(partition_info_128KB_blk)); |
| if (ret) |
| goto err_probe; |
| |
| platform_set_drvdata(pdev, host); |
| dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); |
| return 0; |
| |
| err_probe: |
| clk_disable(host->clk); |
| err_probe1: |
| if (host->clk) |
| clk_put(host->clk); |
| if (host->regs_va) |
| iounmap(host->regs_va); |
| if (host->resregs) |
| release_mem_region(host->resregs->start, |
| resource_size(host->resregs)); |
| if (host->cmd_va) |
| iounmap(host->cmd_va); |
| if (host->rescmd) |
| release_mem_region(host->rescmd->start, |
| resource_size(host->rescmd)); |
| if (host->addr_va) |
| iounmap(host->addr_va); |
| if (host->resaddr) |
| release_mem_region(host->resaddr->start, |
| resource_size(host->resaddr)); |
| if (host->data_va) |
| iounmap(host->data_va); |
| if (host->resdata) |
| release_mem_region(host->resdata->start, |
| resource_size(host->resdata)); |
| |
| kfree(host); |
| return ret; |
| } |
| |
| /* |
| * Clean up routine |
| */ |
| static int fsmc_nand_remove(struct platform_device *pdev) |
| { |
| struct fsmc_nand_data *host = platform_get_drvdata(pdev); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| if (host) { |
| nand_release(&host->mtd); |
| clk_disable(host->clk); |
| clk_put(host->clk); |
| |
| iounmap(host->regs_va); |
| release_mem_region(host->resregs->start, |
| resource_size(host->resregs)); |
| iounmap(host->cmd_va); |
| release_mem_region(host->rescmd->start, |
| resource_size(host->rescmd)); |
| iounmap(host->addr_va); |
| release_mem_region(host->resaddr->start, |
| resource_size(host->resaddr)); |
| iounmap(host->data_va); |
| release_mem_region(host->resdata->start, |
| resource_size(host->resdata)); |
| |
| kfree(host); |
| } |
| return 0; |
| } |
| |
| #ifdef CONFIG_PM |
| static int fsmc_nand_suspend(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| if (host) |
| clk_disable(host->clk); |
| return 0; |
| } |
| |
| static int fsmc_nand_resume(struct device *dev) |
| { |
| struct fsmc_nand_data *host = dev_get_drvdata(dev); |
| if (host) |
| clk_enable(host->clk); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops fsmc_nand_pm_ops = { |
| .suspend = fsmc_nand_suspend, |
| .resume = fsmc_nand_resume, |
| }; |
| #endif |
| |
| static struct platform_driver fsmc_nand_driver = { |
| .remove = fsmc_nand_remove, |
| .driver = { |
| .owner = THIS_MODULE, |
| .name = "fsmc-nand", |
| #ifdef CONFIG_PM |
| .pm = &fsmc_nand_pm_ops, |
| #endif |
| }, |
| }; |
| |
| static int __init fsmc_nand_init(void) |
| { |
| return platform_driver_probe(&fsmc_nand_driver, |
| fsmc_nand_probe); |
| } |
| module_init(fsmc_nand_init); |
| |
| static void __exit fsmc_nand_exit(void) |
| { |
| platform_driver_unregister(&fsmc_nand_driver); |
| } |
| module_exit(fsmc_nand_exit); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); |
| MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |