| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* Kernel module help for PPC64. |
| Copyright (C) 2001, 2003 Rusty Russell IBM Corporation. |
| |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/elf.h> |
| #include <linux/moduleloader.h> |
| #include <linux/err.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ftrace.h> |
| #include <linux/bug.h> |
| #include <linux/uaccess.h> |
| #include <linux/kernel.h> |
| #include <asm/module.h> |
| #include <asm/firmware.h> |
| #include <asm/code-patching.h> |
| #include <linux/sort.h> |
| #include <asm/setup.h> |
| #include <asm/sections.h> |
| #include <asm/inst.h> |
| |
| /* FIXME: We don't do .init separately. To do this, we'd need to have |
| a separate r2 value in the init and core section, and stub between |
| them, too. |
| |
| Using a magic allocator which places modules within 32MB solves |
| this, and makes other things simpler. Anton? |
| --RR. */ |
| |
| bool module_elf_check_arch(Elf_Ehdr *hdr) |
| { |
| unsigned long abi_level = hdr->e_flags & 0x3; |
| |
| if (IS_ENABLED(CONFIG_PPC64_ELF_ABI_V2)) |
| return abi_level == 2; |
| else |
| return abi_level < 2; |
| } |
| |
| #ifdef CONFIG_PPC64_ELF_ABI_V2 |
| |
| static func_desc_t func_desc(unsigned long addr) |
| { |
| func_desc_t desc = { |
| .addr = addr, |
| }; |
| |
| return desc; |
| } |
| |
| /* PowerPC64 specific values for the Elf64_Sym st_other field. */ |
| #define STO_PPC64_LOCAL_BIT 5 |
| #define STO_PPC64_LOCAL_MASK (7 << STO_PPC64_LOCAL_BIT) |
| #define PPC64_LOCAL_ENTRY_OFFSET(other) \ |
| (((1 << (((other) & STO_PPC64_LOCAL_MASK) >> STO_PPC64_LOCAL_BIT)) >> 2) << 2) |
| |
| static unsigned int local_entry_offset(const Elf64_Sym *sym) |
| { |
| /* sym->st_other indicates offset to local entry point |
| * (otherwise it will assume r12 is the address of the start |
| * of function and try to derive r2 from it). */ |
| return PPC64_LOCAL_ENTRY_OFFSET(sym->st_other); |
| } |
| #else |
| |
| static func_desc_t func_desc(unsigned long addr) |
| { |
| return *(struct func_desc *)addr; |
| } |
| static unsigned int local_entry_offset(const Elf64_Sym *sym) |
| { |
| return 0; |
| } |
| |
| void *dereference_module_function_descriptor(struct module *mod, void *ptr) |
| { |
| if (ptr < (void *)mod->arch.start_opd || |
| ptr >= (void *)mod->arch.end_opd) |
| return ptr; |
| |
| return dereference_function_descriptor(ptr); |
| } |
| #endif |
| |
| static unsigned long func_addr(unsigned long addr) |
| { |
| return func_desc(addr).addr; |
| } |
| |
| static unsigned long stub_func_addr(func_desc_t func) |
| { |
| return func.addr; |
| } |
| |
| #define STUB_MAGIC 0x73747562 /* stub */ |
| |
| /* Like PPC32, we need little trampolines to do > 24-bit jumps (into |
| the kernel itself). But on PPC64, these need to be used for every |
| jump, actually, to reset r2 (TOC+0x8000). */ |
| struct ppc64_stub_entry { |
| /* |
| * 28 byte jump instruction sequence (7 instructions) that can |
| * hold ppc64_stub_insns or stub_insns. Must be 8-byte aligned |
| * with PCREL kernels that use prefix instructions in the stub. |
| */ |
| u32 jump[7]; |
| /* Used by ftrace to identify stubs */ |
| u32 magic; |
| /* Data for the above code */ |
| func_desc_t funcdata; |
| } __aligned(8); |
| |
| struct ppc64_got_entry { |
| u64 addr; |
| }; |
| |
| /* |
| * PPC64 uses 24 bit jumps, but we need to jump into other modules or |
| * the kernel which may be further. So we jump to a stub. |
| * |
| * Target address and TOC are loaded from function descriptor in the |
| * ppc64_stub_entry. |
| * |
| * r12 is used to generate the target address, which is required for the |
| * ELFv2 global entry point calling convention. |
| * |
| * TOC handling: |
| * - PCREL does not have a TOC. |
| * - ELFv2 non-PCREL just has to save r2, the callee is responsible for |
| * setting its own TOC pointer at the global entry address. |
| * - ELFv1 must load the new TOC pointer from the function descriptor. |
| */ |
| static u32 ppc64_stub_insns[] = { |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| /* pld r12,addr */ |
| PPC_PREFIX_8LS | __PPC_PRFX_R(1), |
| PPC_INST_PLD | ___PPC_RT(_R12), |
| #else |
| PPC_RAW_ADDIS(_R11, _R2, 0), |
| PPC_RAW_ADDI(_R11, _R11, 0), |
| /* Save current r2 value in magic place on the stack. */ |
| PPC_RAW_STD(_R2, _R1, R2_STACK_OFFSET), |
| PPC_RAW_LD(_R12, _R11, 32), |
| #ifdef CONFIG_PPC64_ELF_ABI_V1 |
| /* Set up new r2 from function descriptor */ |
| PPC_RAW_LD(_R2, _R11, 40), |
| #endif |
| #endif |
| PPC_RAW_MTCTR(_R12), |
| PPC_RAW_BCTR(), |
| }; |
| |
| /* |
| * Count how many different r_type relocations (different symbol, |
| * different addend). |
| */ |
| static unsigned int count_relocs(const Elf64_Rela *rela, unsigned int num, |
| unsigned long r_type) |
| { |
| unsigned int i, r_info, r_addend, _count_relocs; |
| |
| /* FIXME: Only count external ones --RR */ |
| _count_relocs = 0; |
| r_info = 0; |
| r_addend = 0; |
| for (i = 0; i < num; i++) |
| /* Only count r_type relocs, others don't need stubs */ |
| if (ELF64_R_TYPE(rela[i].r_info) == r_type && |
| (r_info != ELF64_R_SYM(rela[i].r_info) || |
| r_addend != rela[i].r_addend)) { |
| _count_relocs++; |
| r_info = ELF64_R_SYM(rela[i].r_info); |
| r_addend = rela[i].r_addend; |
| } |
| |
| return _count_relocs; |
| } |
| |
| static int relacmp(const void *_x, const void *_y) |
| { |
| const Elf64_Rela *x, *y; |
| |
| y = (Elf64_Rela *)_x; |
| x = (Elf64_Rela *)_y; |
| |
| /* Compare the entire r_info (as opposed to ELF64_R_SYM(r_info) only) to |
| * make the comparison cheaper/faster. It won't affect the sorting or |
| * the counting algorithms' performance |
| */ |
| if (x->r_info < y->r_info) |
| return -1; |
| else if (x->r_info > y->r_info) |
| return 1; |
| else if (x->r_addend < y->r_addend) |
| return -1; |
| else if (x->r_addend > y->r_addend) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* Get size of potential trampolines required. */ |
| static unsigned long get_stubs_size(const Elf64_Ehdr *hdr, |
| const Elf64_Shdr *sechdrs) |
| { |
| /* One extra reloc so it's always 0-addr terminated */ |
| unsigned long relocs = 1; |
| unsigned i; |
| |
| /* Every relocated section... */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (sechdrs[i].sh_type == SHT_RELA) { |
| pr_debug("Found relocations in section %u\n", i); |
| pr_debug("Ptr: %p. Number: %Lu\n", |
| (void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela)); |
| |
| /* Sort the relocation information based on a symbol and |
| * addend key. This is a stable O(n*log n) complexity |
| * algorithm but it will reduce the complexity of |
| * count_relocs() to linear complexity O(n) |
| */ |
| sort((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela), |
| sizeof(Elf64_Rela), relacmp, NULL); |
| |
| relocs += count_relocs((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size |
| / sizeof(Elf64_Rela), |
| R_PPC_REL24); |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| relocs += count_relocs((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size |
| / sizeof(Elf64_Rela), |
| R_PPC64_REL24_NOTOC); |
| #endif |
| } |
| } |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| /* make the trampoline to the ftrace_caller */ |
| relocs++; |
| #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS |
| /* an additional one for ftrace_regs_caller */ |
| relocs++; |
| #endif |
| #endif |
| |
| pr_debug("Looks like a total of %lu stubs, max\n", relocs); |
| return relocs * sizeof(struct ppc64_stub_entry); |
| } |
| |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| static int count_pcpu_relocs(const Elf64_Shdr *sechdrs, |
| const Elf64_Rela *rela, unsigned int num, |
| unsigned int symindex, unsigned int pcpu) |
| { |
| unsigned int i, r_info, r_addend, _count_relocs; |
| |
| _count_relocs = 0; |
| r_info = 0; |
| r_addend = 0; |
| |
| for (i = 0; i < num; i++) { |
| Elf64_Sym *sym; |
| |
| /* This is the symbol it is referring to */ |
| sym = (Elf64_Sym *)sechdrs[symindex].sh_addr |
| + ELF64_R_SYM(rela[i].r_info); |
| |
| if (sym->st_shndx == pcpu && |
| (r_info != ELF64_R_SYM(rela[i].r_info) || |
| r_addend != rela[i].r_addend)) { |
| _count_relocs++; |
| r_info = ELF64_R_SYM(rela[i].r_info); |
| r_addend = rela[i].r_addend; |
| } |
| } |
| |
| return _count_relocs; |
| } |
| |
| /* Get size of potential GOT required. */ |
| static unsigned long get_got_size(const Elf64_Ehdr *hdr, |
| const Elf64_Shdr *sechdrs, |
| struct module *me) |
| { |
| /* One extra reloc so it's always 0-addr terminated */ |
| unsigned long relocs = 1; |
| unsigned int i, symindex = 0; |
| |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (sechdrs[i].sh_type == SHT_SYMTAB) { |
| symindex = i; |
| break; |
| } |
| } |
| WARN_ON_ONCE(!symindex); |
| |
| /* Every relocated section... */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (sechdrs[i].sh_type == SHT_RELA) { |
| pr_debug("Found relocations in section %u\n", i); |
| pr_debug("Ptr: %p. Number: %llu\n", (void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela)); |
| |
| /* |
| * Sort the relocation information based on a symbol and |
| * addend key. This is a stable O(n*log n) complexity |
| * algorithm but it will reduce the complexity of |
| * count_relocs() to linear complexity O(n) |
| */ |
| sort((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size / sizeof(Elf64_Rela), |
| sizeof(Elf64_Rela), relacmp, NULL); |
| |
| relocs += count_relocs((void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size |
| / sizeof(Elf64_Rela), |
| R_PPC64_GOT_PCREL34); |
| |
| /* |
| * Percpu data access typically gets linked with |
| * REL34 relocations, but the percpu section gets |
| * moved at load time and requires that to be |
| * converted to GOT linkage. |
| */ |
| if (IS_ENABLED(CONFIG_SMP) && symindex) |
| relocs += count_pcpu_relocs(sechdrs, |
| (void *)sechdrs[i].sh_addr, |
| sechdrs[i].sh_size |
| / sizeof(Elf64_Rela), |
| symindex, me->arch.pcpu_section); |
| } |
| } |
| |
| pr_debug("Looks like a total of %lu GOT entries, max\n", relocs); |
| return relocs * sizeof(struct ppc64_got_entry); |
| } |
| #else /* CONFIG_PPC_KERNEL_PCREL */ |
| |
| /* Still needed for ELFv2, for .TOC. */ |
| static void dedotify_versions(struct modversion_info *vers, |
| unsigned long size) |
| { |
| struct modversion_info *end; |
| |
| for (end = (void *)vers + size; vers < end; vers++) |
| if (vers->name[0] == '.') { |
| memmove(vers->name, vers->name+1, strlen(vers->name)); |
| } |
| } |
| |
| /* |
| * Undefined symbols which refer to .funcname, hack to funcname. Make .TOC. |
| * seem to be defined (value set later). |
| */ |
| static void dedotify(Elf64_Sym *syms, unsigned int numsyms, char *strtab) |
| { |
| unsigned int i; |
| |
| for (i = 1; i < numsyms; i++) { |
| if (syms[i].st_shndx == SHN_UNDEF) { |
| char *name = strtab + syms[i].st_name; |
| if (name[0] == '.') { |
| if (strcmp(name+1, "TOC.") == 0) |
| syms[i].st_shndx = SHN_ABS; |
| syms[i].st_name++; |
| } |
| } |
| } |
| } |
| |
| static Elf64_Sym *find_dot_toc(Elf64_Shdr *sechdrs, |
| const char *strtab, |
| unsigned int symindex) |
| { |
| unsigned int i, numsyms; |
| Elf64_Sym *syms; |
| |
| syms = (Elf64_Sym *)sechdrs[symindex].sh_addr; |
| numsyms = sechdrs[symindex].sh_size / sizeof(Elf64_Sym); |
| |
| for (i = 1; i < numsyms; i++) { |
| if (syms[i].st_shndx == SHN_ABS |
| && strcmp(strtab + syms[i].st_name, "TOC.") == 0) |
| return &syms[i]; |
| } |
| return NULL; |
| } |
| #endif /* CONFIG_PPC_KERNEL_PCREL */ |
| |
| bool module_init_section(const char *name) |
| { |
| /* We don't handle .init for the moment: always return false. */ |
| return false; |
| } |
| |
| int module_frob_arch_sections(Elf64_Ehdr *hdr, |
| Elf64_Shdr *sechdrs, |
| char *secstrings, |
| struct module *me) |
| { |
| unsigned int i; |
| |
| /* Find .toc and .stubs sections, symtab and strtab */ |
| for (i = 1; i < hdr->e_shnum; i++) { |
| if (strcmp(secstrings + sechdrs[i].sh_name, ".stubs") == 0) |
| me->arch.stubs_section = i; |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| else if (strcmp(secstrings + sechdrs[i].sh_name, ".data..percpu") == 0) |
| me->arch.pcpu_section = i; |
| else if (strcmp(secstrings + sechdrs[i].sh_name, ".mygot") == 0) { |
| me->arch.got_section = i; |
| if (sechdrs[i].sh_addralign < 8) |
| sechdrs[i].sh_addralign = 8; |
| } |
| #else |
| else if (strcmp(secstrings + sechdrs[i].sh_name, ".toc") == 0) { |
| me->arch.toc_section = i; |
| if (sechdrs[i].sh_addralign < 8) |
| sechdrs[i].sh_addralign = 8; |
| } |
| else if (strcmp(secstrings+sechdrs[i].sh_name,"__versions")==0) |
| dedotify_versions((void *)hdr + sechdrs[i].sh_offset, |
| sechdrs[i].sh_size); |
| |
| if (sechdrs[i].sh_type == SHT_SYMTAB) |
| dedotify((void *)hdr + sechdrs[i].sh_offset, |
| sechdrs[i].sh_size / sizeof(Elf64_Sym), |
| (void *)hdr |
| + sechdrs[sechdrs[i].sh_link].sh_offset); |
| #endif |
| } |
| |
| if (!me->arch.stubs_section) { |
| pr_err("%s: doesn't contain .stubs.\n", me->name); |
| return -ENOEXEC; |
| } |
| |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| if (!me->arch.got_section) { |
| pr_err("%s: doesn't contain .mygot.\n", me->name); |
| return -ENOEXEC; |
| } |
| |
| /* Override the got size */ |
| sechdrs[me->arch.got_section].sh_size = get_got_size(hdr, sechdrs, me); |
| #else |
| /* If we don't have a .toc, just use .stubs. We need to set r2 |
| to some reasonable value in case the module calls out to |
| other functions via a stub, or if a function pointer escapes |
| the module by some means. */ |
| if (!me->arch.toc_section) |
| me->arch.toc_section = me->arch.stubs_section; |
| #endif |
| |
| /* Override the stubs size */ |
| sechdrs[me->arch.stubs_section].sh_size = get_stubs_size(hdr, sechdrs); |
| |
| return 0; |
| } |
| |
| #if defined(CONFIG_MPROFILE_KERNEL) || defined(CONFIG_ARCH_USING_PATCHABLE_FUNCTION_ENTRY) |
| |
| static u32 stub_insns[] = { |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| PPC_RAW_LD(_R12, _R13, offsetof(struct paca_struct, kernelbase)), |
| PPC_RAW_NOP(), /* align the prefix insn */ |
| /* paddi r12,r12,addr */ |
| PPC_PREFIX_MLS | __PPC_PRFX_R(0), |
| PPC_INST_PADDI | ___PPC_RT(_R12) | ___PPC_RA(_R12), |
| PPC_RAW_MTCTR(_R12), |
| PPC_RAW_BCTR(), |
| #else |
| PPC_RAW_LD(_R12, _R13, offsetof(struct paca_struct, kernel_toc)), |
| PPC_RAW_ADDIS(_R12, _R12, 0), |
| PPC_RAW_ADDI(_R12, _R12, 0), |
| PPC_RAW_MTCTR(_R12), |
| PPC_RAW_BCTR(), |
| #endif |
| }; |
| |
| /* |
| * For mprofile-kernel we use a special stub for ftrace_caller() because we |
| * can't rely on r2 containing this module's TOC when we enter the stub. |
| * |
| * That can happen if the function calling us didn't need to use the toc. In |
| * that case it won't have setup r2, and the r2 value will be either the |
| * kernel's toc, or possibly another modules toc. |
| * |
| * To deal with that this stub uses the kernel toc, which is always accessible |
| * via the paca (in r13). The target (ftrace_caller()) is responsible for |
| * saving and restoring the toc before returning. |
| */ |
| static inline int create_ftrace_stub(struct ppc64_stub_entry *entry, |
| unsigned long addr, |
| struct module *me) |
| { |
| long reladdr; |
| |
| if ((unsigned long)entry->jump % 8 != 0) { |
| pr_err("%s: Address of stub entry is not 8-byte aligned\n", me->name); |
| return 0; |
| } |
| |
| BUILD_BUG_ON(sizeof(stub_insns) > sizeof(entry->jump)); |
| memcpy(entry->jump, stub_insns, sizeof(stub_insns)); |
| |
| if (IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) { |
| /* Stub uses address relative to kernel base (from the paca) */ |
| reladdr = addr - local_paca->kernelbase; |
| if (reladdr > 0x1FFFFFFFFL || reladdr < -0x200000000L) { |
| pr_err("%s: Address of %ps out of range of 34-bit relative address.\n", |
| me->name, (void *)addr); |
| return 0; |
| } |
| |
| entry->jump[2] |= IMM_H18(reladdr); |
| entry->jump[3] |= IMM_L(reladdr); |
| } else { |
| /* Stub uses address relative to kernel toc (from the paca) */ |
| reladdr = addr - kernel_toc_addr(); |
| if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) { |
| pr_err("%s: Address of %ps out of range of kernel_toc.\n", |
| me->name, (void *)addr); |
| return 0; |
| } |
| |
| entry->jump[1] |= PPC_HA(reladdr); |
| entry->jump[2] |= PPC_LO(reladdr); |
| } |
| |
| /* Even though we don't use funcdata in the stub, it's needed elsewhere. */ |
| entry->funcdata = func_desc(addr); |
| entry->magic = STUB_MAGIC; |
| |
| return 1; |
| } |
| |
| static bool is_mprofile_ftrace_call(const char *name) |
| { |
| if (!strcmp("_mcount", name)) |
| return true; |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| if (!strcmp("ftrace_caller", name)) |
| return true; |
| #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS |
| if (!strcmp("ftrace_regs_caller", name)) |
| return true; |
| #endif |
| #endif |
| |
| return false; |
| } |
| #else |
| static inline int create_ftrace_stub(struct ppc64_stub_entry *entry, |
| unsigned long addr, |
| struct module *me) |
| { |
| return 0; |
| } |
| |
| static bool is_mprofile_ftrace_call(const char *name) |
| { |
| return false; |
| } |
| #endif |
| |
| /* |
| * r2 is the TOC pointer: it actually points 0x8000 into the TOC (this gives the |
| * value maximum span in an instruction which uses a signed offset). Round down |
| * to a 256 byte boundary for the odd case where we are setting up r2 without a |
| * .toc section. |
| */ |
| static inline unsigned long my_r2(const Elf64_Shdr *sechdrs, struct module *me) |
| { |
| #ifndef CONFIG_PPC_KERNEL_PCREL |
| return (sechdrs[me->arch.toc_section].sh_addr & ~0xfful) + 0x8000; |
| #else |
| return -1; |
| #endif |
| } |
| |
| /* Patch stub to reference function and correct r2 value. */ |
| static inline int create_stub(const Elf64_Shdr *sechdrs, |
| struct ppc64_stub_entry *entry, |
| unsigned long addr, |
| struct module *me, |
| const char *name) |
| { |
| long reladdr; |
| func_desc_t desc; |
| int i; |
| |
| if (is_mprofile_ftrace_call(name)) |
| return create_ftrace_stub(entry, addr, me); |
| |
| if ((unsigned long)entry->jump % 8 != 0) { |
| pr_err("%s: Address of stub entry is not 8-byte aligned\n", me->name); |
| return 0; |
| } |
| |
| BUILD_BUG_ON(sizeof(ppc64_stub_insns) > sizeof(entry->jump)); |
| for (i = 0; i < ARRAY_SIZE(ppc64_stub_insns); i++) { |
| if (patch_instruction(&entry->jump[i], |
| ppc_inst(ppc64_stub_insns[i]))) |
| return 0; |
| } |
| |
| if (IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) { |
| /* Stub uses address relative to itself! */ |
| reladdr = 0 + offsetof(struct ppc64_stub_entry, funcdata); |
| BUILD_BUG_ON(reladdr != 32); |
| if (reladdr > 0x1FFFFFFFFL || reladdr < -0x200000000L) { |
| pr_err("%s: Address of %p out of range of 34-bit relative address.\n", |
| me->name, (void *)reladdr); |
| return 0; |
| } |
| pr_debug("Stub %p get data from reladdr %li\n", entry, reladdr); |
| |
| /* May not even need this if we're relative to 0 */ |
| if (patch_instruction(&entry->jump[0], |
| ppc_inst_prefix(entry->jump[0] | IMM_H18(reladdr), |
| entry->jump[1] | IMM_L(reladdr)))) |
| return 0; |
| |
| } else { |
| /* Stub uses address relative to r2. */ |
| reladdr = (unsigned long)entry - my_r2(sechdrs, me); |
| if (reladdr > 0x7FFFFFFF || reladdr < -(0x80000000L)) { |
| pr_err("%s: Address %p of stub out of range of %p.\n", |
| me->name, (void *)reladdr, (void *)my_r2); |
| return 0; |
| } |
| pr_debug("Stub %p get data from reladdr %li\n", entry, reladdr); |
| |
| if (patch_instruction(&entry->jump[0], |
| ppc_inst(entry->jump[0] | PPC_HA(reladdr)))) |
| return 0; |
| |
| if (patch_instruction(&entry->jump[1], |
| ppc_inst(entry->jump[1] | PPC_LO(reladdr)))) |
| return 0; |
| } |
| |
| // func_desc_t is 8 bytes if ABIv2, else 16 bytes |
| desc = func_desc(addr); |
| for (i = 0; i < sizeof(func_desc_t) / sizeof(u32); i++) { |
| if (patch_u32(((u32 *)&entry->funcdata) + i, ((u32 *)&desc)[i])) |
| return 0; |
| } |
| |
| if (patch_u32(&entry->magic, STUB_MAGIC)) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Create stub to jump to function described in this OPD/ptr: we need the |
| stub to set up the TOC ptr (r2) for the function. */ |
| static unsigned long stub_for_addr(const Elf64_Shdr *sechdrs, |
| unsigned long addr, |
| struct module *me, |
| const char *name) |
| { |
| struct ppc64_stub_entry *stubs; |
| unsigned int i, num_stubs; |
| |
| num_stubs = sechdrs[me->arch.stubs_section].sh_size / sizeof(*stubs); |
| |
| /* Find this stub, or if that fails, the next avail. entry */ |
| stubs = (void *)sechdrs[me->arch.stubs_section].sh_addr; |
| for (i = 0; stub_func_addr(stubs[i].funcdata); i++) { |
| if (WARN_ON(i >= num_stubs)) |
| return 0; |
| |
| if (stub_func_addr(stubs[i].funcdata) == func_addr(addr)) |
| return (unsigned long)&stubs[i]; |
| } |
| |
| if (!create_stub(sechdrs, &stubs[i], addr, me, name)) |
| return 0; |
| |
| return (unsigned long)&stubs[i]; |
| } |
| |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| /* Create GOT to load the location described in this ptr */ |
| static unsigned long got_for_addr(const Elf64_Shdr *sechdrs, |
| unsigned long addr, |
| struct module *me, |
| const char *name) |
| { |
| struct ppc64_got_entry *got; |
| unsigned int i, num_got; |
| |
| if (!IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) |
| return addr; |
| |
| num_got = sechdrs[me->arch.got_section].sh_size / sizeof(*got); |
| |
| /* Find this stub, or if that fails, the next avail. entry */ |
| got = (void *)sechdrs[me->arch.got_section].sh_addr; |
| for (i = 0; got[i].addr; i++) { |
| if (WARN_ON(i >= num_got)) |
| return 0; |
| |
| if (got[i].addr == addr) |
| return (unsigned long)&got[i]; |
| } |
| |
| got[i].addr = addr; |
| |
| return (unsigned long)&got[i]; |
| } |
| #endif |
| |
| /* We expect a noop next: if it is, replace it with instruction to |
| restore r2. */ |
| static int restore_r2(const char *name, u32 *instruction, struct module *me) |
| { |
| u32 *prev_insn = instruction - 1; |
| u32 insn_val = *instruction; |
| |
| if (IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) |
| return 0; |
| |
| if (is_mprofile_ftrace_call(name)) |
| return 0; |
| |
| /* |
| * Make sure the branch isn't a sibling call. Sibling calls aren't |
| * "link" branches and they don't return, so they don't need the r2 |
| * restore afterwards. |
| */ |
| if (!instr_is_relative_link_branch(ppc_inst(*prev_insn))) |
| return 0; |
| |
| /* |
| * For livepatch, the restore r2 instruction might have already been |
| * written previously, if the referenced symbol is in a previously |
| * unloaded module which is now being loaded again. In that case, skip |
| * the warning and the instruction write. |
| */ |
| if (insn_val == PPC_INST_LD_TOC) |
| return 0; |
| |
| if (insn_val != PPC_RAW_NOP()) { |
| pr_err("%s: Expected nop after call, got %08x at %pS\n", |
| me->name, insn_val, instruction); |
| return -ENOEXEC; |
| } |
| |
| /* ld r2,R2_STACK_OFFSET(r1) */ |
| return patch_instruction(instruction, ppc_inst(PPC_INST_LD_TOC)); |
| } |
| |
| int apply_relocate_add(Elf64_Shdr *sechdrs, |
| const char *strtab, |
| unsigned int symindex, |
| unsigned int relsec, |
| struct module *me) |
| { |
| unsigned int i; |
| Elf64_Rela *rela = (void *)sechdrs[relsec].sh_addr; |
| Elf64_Sym *sym; |
| unsigned long *location; |
| unsigned long value; |
| |
| pr_debug("Applying ADD relocate section %u to %u\n", relsec, |
| sechdrs[relsec].sh_info); |
| |
| #ifndef CONFIG_PPC_KERNEL_PCREL |
| /* First time we're called, we can fix up .TOC. */ |
| if (!me->arch.toc_fixed) { |
| sym = find_dot_toc(sechdrs, strtab, symindex); |
| /* It's theoretically possible that a module doesn't want a |
| * .TOC. so don't fail it just for that. */ |
| if (sym) |
| sym->st_value = my_r2(sechdrs, me); |
| me->arch.toc_fixed = true; |
| } |
| #endif |
| for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rela); i++) { |
| /* This is where to make the change */ |
| location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr |
| + rela[i].r_offset; |
| /* This is the symbol it is referring to */ |
| sym = (Elf64_Sym *)sechdrs[symindex].sh_addr |
| + ELF64_R_SYM(rela[i].r_info); |
| |
| pr_debug("RELOC at %p: %li-type as %s (0x%lx) + %li\n", |
| location, (long)ELF64_R_TYPE(rela[i].r_info), |
| strtab + sym->st_name, (unsigned long)sym->st_value, |
| (long)rela[i].r_addend); |
| |
| /* `Everything is relative'. */ |
| value = sym->st_value + rela[i].r_addend; |
| |
| switch (ELF64_R_TYPE(rela[i].r_info)) { |
| case R_PPC64_ADDR32: |
| /* Simply set it */ |
| *(u32 *)location = value; |
| break; |
| |
| case R_PPC64_ADDR64: |
| /* Simply set it */ |
| *(unsigned long *)location = value; |
| break; |
| |
| #ifndef CONFIG_PPC_KERNEL_PCREL |
| case R_PPC64_TOC: |
| *(unsigned long *)location = my_r2(sechdrs, me); |
| break; |
| |
| case R_PPC64_TOC16: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if (value + 0x8000 > 0xffff) { |
| pr_err("%s: bad TOC16 relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_TOC16_LO: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_TOC16_DS: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if ((value & 3) != 0 || value + 0x8000 > 0xffff) { |
| pr_err("%s: bad TOC16_DS relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xfffc) |
| | (value & 0xfffc); |
| break; |
| |
| case R_PPC64_TOC16_LO_DS: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| if ((value & 3) != 0) { |
| pr_err("%s: bad TOC16_LO_DS relocation (0x%lx)\n", |
| me->name, value); |
| return -ENOEXEC; |
| } |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xfffc) |
| | (value & 0xfffc); |
| break; |
| |
| case R_PPC64_TOC16_HA: |
| /* Subtract TOC pointer */ |
| value -= my_r2(sechdrs, me); |
| value = ((value + 0x8000) >> 16); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| #endif |
| |
| case R_PPC_REL24: |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| /* PCREL still generates REL24 for mcount */ |
| case R_PPC64_REL24_NOTOC: |
| #endif |
| /* FIXME: Handle weak symbols here --RR */ |
| if (sym->st_shndx == SHN_UNDEF || |
| sym->st_shndx == SHN_LIVEPATCH) { |
| /* External: go via stub */ |
| value = stub_for_addr(sechdrs, value, me, |
| strtab + sym->st_name); |
| if (!value) |
| return -ENOENT; |
| if (restore_r2(strtab + sym->st_name, |
| (u32 *)location + 1, me)) |
| return -ENOEXEC; |
| } else |
| value += local_entry_offset(sym); |
| |
| /* Convert value to relative */ |
| value -= (unsigned long)location; |
| if (value + 0x2000000 > 0x3ffffff || (value & 3) != 0){ |
| pr_err("%s: REL24 %li out of range!\n", |
| me->name, (long int)value); |
| return -ENOEXEC; |
| } |
| |
| /* Only replace bits 2 through 26 */ |
| value = (*(uint32_t *)location & ~PPC_LI_MASK) | PPC_LI(value); |
| |
| if (patch_instruction((u32 *)location, ppc_inst(value))) |
| return -EFAULT; |
| |
| break; |
| |
| case R_PPC64_REL64: |
| /* 64 bits relative (used by features fixups) */ |
| *location = value - (unsigned long)location; |
| break; |
| |
| case R_PPC64_REL32: |
| /* 32 bits relative (used by relative exception tables) */ |
| /* Convert value to relative */ |
| value -= (unsigned long)location; |
| if (value + 0x80000000 > 0xffffffff) { |
| pr_err("%s: REL32 %li out of range!\n", |
| me->name, (long int)value); |
| return -ENOEXEC; |
| } |
| *(u32 *)location = value; |
| break; |
| |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| case R_PPC64_PCREL34: { |
| unsigned long absvalue = value; |
| |
| /* Convert value to relative */ |
| value -= (unsigned long)location; |
| |
| if (value + 0x200000000 > 0x3ffffffff) { |
| if (sym->st_shndx != me->arch.pcpu_section) { |
| pr_err("%s: REL34 %li out of range!\n", |
| me->name, (long)value); |
| return -ENOEXEC; |
| } |
| |
| /* |
| * per-cpu section is special cased because |
| * it is moved during loading, so has to be |
| * converted to use GOT. |
| */ |
| value = got_for_addr(sechdrs, absvalue, me, |
| strtab + sym->st_name); |
| if (!value) |
| return -ENOENT; |
| value -= (unsigned long)location; |
| |
| /* Turn pla into pld */ |
| if (patch_instruction((u32 *)location, |
| ppc_inst_prefix((*(u32 *)location & ~0x02000000), |
| (*((u32 *)location + 1) & ~0xf8000000) | 0xe4000000))) |
| return -EFAULT; |
| } |
| |
| if (patch_instruction((u32 *)location, |
| ppc_inst_prefix((*(u32 *)location & ~0x3ffff) | IMM_H18(value), |
| (*((u32 *)location + 1) & ~0xffff) | IMM_L(value)))) |
| return -EFAULT; |
| |
| break; |
| } |
| |
| #else |
| case R_PPC64_TOCSAVE: |
| /* |
| * Marker reloc indicates we don't have to save r2. |
| * That would only save us one instruction, so ignore |
| * it. |
| */ |
| break; |
| #endif |
| |
| case R_PPC64_ENTRY: |
| if (IS_ENABLED(CONFIG_PPC_KERNEL_PCREL)) |
| break; |
| |
| /* |
| * Optimize ELFv2 large code model entry point if |
| * the TOC is within 2GB range of current location. |
| */ |
| value = my_r2(sechdrs, me) - (unsigned long)location; |
| if (value + 0x80008000 > 0xffffffff) |
| break; |
| /* |
| * Check for the large code model prolog sequence: |
| * ld r2, ...(r12) |
| * add r2, r2, r12 |
| */ |
| if ((((uint32_t *)location)[0] & ~0xfffc) != PPC_RAW_LD(_R2, _R12, 0)) |
| break; |
| if (((uint32_t *)location)[1] != PPC_RAW_ADD(_R2, _R2, _R12)) |
| break; |
| /* |
| * If found, replace it with: |
| * addis r2, r12, (.TOC.-func)@ha |
| * addi r2, r2, (.TOC.-func)@l |
| */ |
| ((uint32_t *)location)[0] = PPC_RAW_ADDIS(_R2, _R12, PPC_HA(value)); |
| ((uint32_t *)location)[1] = PPC_RAW_ADDI(_R2, _R2, PPC_LO(value)); |
| break; |
| |
| case R_PPC64_REL16_HA: |
| /* Subtract location pointer */ |
| value -= (unsigned long)location; |
| value = ((value + 0x8000) >> 16); |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| case R_PPC64_REL16_LO: |
| /* Subtract location pointer */ |
| value -= (unsigned long)location; |
| *((uint16_t *) location) |
| = (*((uint16_t *) location) & ~0xffff) |
| | (value & 0xffff); |
| break; |
| |
| #ifdef CONFIG_PPC_KERNEL_PCREL |
| case R_PPC64_GOT_PCREL34: |
| value = got_for_addr(sechdrs, value, me, |
| strtab + sym->st_name); |
| if (!value) |
| return -ENOENT; |
| value -= (unsigned long)location; |
| ((uint32_t *)location)[0] = (((uint32_t *)location)[0] & ~0x3ffff) | |
| ((value >> 16) & 0x3ffff); |
| ((uint32_t *)location)[1] = (((uint32_t *)location)[1] & ~0xffff) | |
| (value & 0xffff); |
| break; |
| #endif |
| |
| default: |
| pr_err("%s: Unknown ADD relocation: %lu\n", |
| me->name, |
| (unsigned long)ELF64_R_TYPE(rela[i].r_info)); |
| return -ENOEXEC; |
| } |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_DYNAMIC_FTRACE |
| int module_trampoline_target(struct module *mod, unsigned long addr, |
| unsigned long *target) |
| { |
| struct ppc64_stub_entry *stub; |
| func_desc_t funcdata; |
| u32 magic; |
| |
| if (!within_module_core(addr, mod)) { |
| pr_err("%s: stub %lx not in module %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| stub = (struct ppc64_stub_entry *)addr; |
| |
| if (copy_from_kernel_nofault(&magic, &stub->magic, |
| sizeof(magic))) { |
| pr_err("%s: fault reading magic for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| if (magic != STUB_MAGIC) { |
| pr_err("%s: bad magic for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| if (copy_from_kernel_nofault(&funcdata, &stub->funcdata, |
| sizeof(funcdata))) { |
| pr_err("%s: fault reading funcdata for stub %lx for %s\n", __func__, addr, mod->name); |
| return -EFAULT; |
| } |
| |
| *target = stub_func_addr(funcdata); |
| |
| return 0; |
| } |
| |
| int module_finalize_ftrace(struct module *mod, const Elf_Shdr *sechdrs) |
| { |
| mod->arch.tramp = stub_for_addr(sechdrs, |
| (unsigned long)ftrace_caller, |
| mod, |
| "ftrace_caller"); |
| #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS |
| mod->arch.tramp_regs = stub_for_addr(sechdrs, |
| (unsigned long)ftrace_regs_caller, |
| mod, |
| "ftrace_regs_caller"); |
| if (!mod->arch.tramp_regs) |
| return -ENOENT; |
| #endif |
| |
| if (!mod->arch.tramp) |
| return -ENOENT; |
| |
| return 0; |
| } |
| #endif |