blob: 79823facce7fef2965d700faa096ecaad7811f58 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2022 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <linux/slab.h>
#include <linux/pci.h>
#include "../habanalabs.h"
#include <trace/events/habanalabs.h>
/**
* hl_mmu_get_funcs() - get MMU functions structure
* @hdev: habanalabs device structure.
* @pgt_residency: page table residency.
* @is_dram_addr: true if we need HMMU functions
*
* @return appropriate MMU functions structure
*/
static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
bool is_dram_addr)
{
return &hdev->mmu_func[pgt_residency];
}
bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
}
/**
* hl_mmu_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
*
* Return: 0 for success, non-zero for failure.
*/
int hl_mmu_init(struct hl_device *hdev)
{
int rc = -EOPNOTSUPP;
if (hdev->mmu_disable)
return 0;
mutex_init(&hdev->mmu_lock);
if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
if (rc)
goto fini_dr_mmu;
}
return 0;
fini_dr_mmu:
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
return rc;
}
/**
* hl_mmu_fini() - release the MMU module.
* @hdev: habanalabs device structure.
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_fini(struct hl_device *hdev)
{
if (hdev->mmu_disable)
return;
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
hdev->mmu_func[MMU_HR_PGT].fini(hdev);
mutex_destroy(&hdev->mmu_lock);
}
/**
* hl_mmu_ctx_init() - initialize a context for using the MMU module.
* @ctx: pointer to the context structure to initialize.
*
* Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
* page tables hops related to this context.
* Return: 0 on success, non-zero otherwise.
*/
int hl_mmu_ctx_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
int rc = -EOPNOTSUPP;
if (hdev->mmu_disable)
return 0;
if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
if (rc)
return rc;
}
if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
if (rc)
goto fini_dr_ctx;
}
return 0;
fini_dr_ctx:
if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
hdev->mmu_func[MMU_DR_PGT].fini(hdev);
return rc;
}
/*
* hl_mmu_ctx_fini - disable a ctx from using the mmu module
*
* @ctx: pointer to the context structure
*
* This function does the following:
* - Free any pgts which were not freed yet
* - Free the mutex
* - Free DRAM default page mapping hops
*/
void hl_mmu_ctx_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (hdev->mmu_disable)
return;
if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
}
/*
* hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
*
* @hdev: pointer to device data.
* @mmu_prop: MMU properties.
* @page_size: page size
* @real_page_size: set here the actual page size to use for the operation
* @is_dram_addr: true if DRAM address, otherwise false.
*
* @return 0 on success, otherwise non 0 error code
*
* note that this is general implementation that can fit most MMU arch. but as this is used as an
* MMU function:
* 1. it shall not be called directly- only from mmu_func structure instance
* 2. each MMU may modify the implementation internally
*/
int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
u32 page_size, u32 *real_page_size, bool is_dram_addr)
{
/*
* The H/W handles mapping of specific page sizes. Hence if the page
* size is bigger, we break it to sub-pages and map them separately.
*/
if ((page_size % mmu_prop->page_size) == 0) {
*real_page_size = mmu_prop->page_size;
return 0;
}
dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
page_size, mmu_prop->page_size >> 10);
return -EFAULT;
}
static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
bool is_dram_addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (is_dram_addr)
return &prop->dmmu;
else if ((page_size % prop->pmmu_huge.page_size) == 0)
return &prop->pmmu_huge;
return &prop->pmmu;
}
/*
* hl_mmu_unmap_page - unmaps a virtual addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @page_size: size of the page to unmap
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is mapped
* - Unmap the virt addr and frees pgts if possible
* - Returns 0 on success, -EINVAL if the given addr is not mapped
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after unmapping of
* large area.
*/
int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
{
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
struct hl_mmu_funcs *mmu_funcs;
int i, pgt_residency, rc = 0;
u32 real_page_size, npages;
u64 real_virt_addr;
bool is_dram_addr;
if (hdev->mmu_disable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
is_dram_addr);
if (rc)
return rc;
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
for (i = 0 ; i < npages ; i++) {
rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
if (rc)
break;
real_virt_addr += real_page_size;
}
if (flush_pte)
mmu_funcs->flush(ctx);
if (trace_habanalabs_mmu_unmap_enabled() && !rc)
trace_habanalabs_mmu_unmap(&hdev->pdev->dev, virt_addr, 0, page_size, flush_pte);
return rc;
}
/*
* hl_mmu_map_page - maps a virtual addr to physical addr
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @page_size: physical page size
* @flush_pte: whether to do a PCI flush
*
* This function does the following:
* - Check that the virt addr is not mapped
* - Allocate pgts as necessary in order to map the virt addr to the phys
* - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
*
* Because this function changes the page tables in the device and because it
* changes the MMU hash, it must be protected by a lock.
* However, because it maps only a single page, the lock should be implemented
* in a higher level in order to protect the entire mapping of the memory area
*
* For optimization reasons PCI flush may be requested once after mapping of
* large area.
*/
int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
bool flush_pte)
{
int i, rc, pgt_residency, mapped_cnt = 0;
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
u64 real_virt_addr, real_phys_addr;
struct hl_mmu_funcs *mmu_funcs;
u32 real_page_size, npages;
bool is_dram_addr;
if (hdev->mmu_disable)
return 0;
is_dram_addr = hl_is_dram_va(hdev, virt_addr);
mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
is_dram_addr);
if (rc)
return rc;
/*
* Verify that the phys and virt addresses are aligned with the
* MMU page size (in dram this means checking the address and MMU
* after scrambling)
*/
if ((is_dram_addr &&
((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
(mmu_prop->page_size - 1)) ||
(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
(mmu_prop->page_size - 1)))) ||
(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
(virt_addr & (real_page_size - 1)))))
dev_crit(hdev->dev,
"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
phys_addr, virt_addr, real_page_size);
npages = page_size / real_page_size;
real_virt_addr = virt_addr;
real_phys_addr = phys_addr;
for (i = 0 ; i < npages ; i++) {
rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
is_dram_addr);
if (rc)
goto err;
real_virt_addr += real_page_size;
real_phys_addr += real_page_size;
mapped_cnt++;
}
if (flush_pte)
mmu_funcs->flush(ctx);
trace_habanalabs_mmu_map(&hdev->pdev->dev, virt_addr, phys_addr, page_size, flush_pte);
return 0;
err:
real_virt_addr = virt_addr;
for (i = 0 ; i < mapped_cnt ; i++) {
if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va: 0x%llx\n", real_virt_addr);
real_virt_addr += real_page_size;
}
mmu_funcs->flush(ctx);
return rc;
}
/*
* hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
* for mapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to map from
* @phys_addr: phys addr to map to
* @size: size to map
*
*/
int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
u64 phys_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va, curr_pa;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
curr_pa = phys_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
flush_pte);
if (rc) {
dev_err(hdev->dev,
"Map failed for va 0x%llx to pa 0x%llx\n",
curr_va, curr_pa);
/* last mapping failed so don't try to unmap it - reduce off by page_size */
off -= page_size;
goto unmap;
}
}
return rc;
unmap:
for (; off >= 0 ; off -= page_size) {
curr_va = virt_addr + off;
flush_pte = (off - (s32) page_size) < 0;
if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
dev_warn_ratelimited(hdev->dev,
"failed to unmap va 0x%llx\n", curr_va);
}
return rc;
}
/*
* hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
* for unmapping contiguous physical memory
*
* @ctx: pointer to the context structure
* @virt_addr: virt addr to unmap
* @size: size to unmap
*
*/
int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 curr_va;
u32 page_size;
bool flush_pte;
int rc = 0, off;
if (hl_mem_area_inside_range(virt_addr, size,
prop->dmmu.start_addr, prop->dmmu.end_addr))
page_size = prop->dmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu.start_addr, prop->pmmu.end_addr))
page_size = prop->pmmu.page_size;
else if (hl_mem_area_inside_range(virt_addr, size,
prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
page_size = prop->pmmu_huge.page_size;
else
return -EINVAL;
for (off = 0 ; off < size ; off += page_size) {
curr_va = virt_addr + off;
flush_pte = (off + page_size) >= size;
rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
if (rc)
dev_warn_ratelimited(hdev->dev,
"Unmap failed for va 0x%llx\n", curr_va);
}
return rc;
}
static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops,
u64 *phys_addr)
{
struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
struct hl_mmu_properties *mmu_prop;
/* last hop holds the phys address and flags */
if (hops->unscrambled_paddr)
tmp_phys_addr = hops->unscrambled_paddr;
else
tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
mmu_prop = &prop->pmmu_huge;
else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
mmu_prop = &prop->pmmu;
else /* HL_VA_RANGE_TYPE_DRAM */
mmu_prop = &prop->dmmu;
if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
!is_power_of_2(prop->dram_page_size)) {
u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
page_id, page_start;
u32 page_off;
/*
* Bit arithmetic cannot be used for non power of two page
* sizes. In addition, since bit arithmetic is not used,
* we cannot ignore dram base. All that shall be considered.
*/
dram_page_size = prop->dram_page_size;
dram_base = prop->dram_base_address;
abs_phys_addr = tmp_phys_addr - dram_base;
abs_virt_addr = virt_addr - dram_base;
page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
page_start = page_id * dram_page_size;
div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
*phys_addr = page_start + page_off + dram_base;
} else {
/*
* find the correct hop shift field in hl_mmu_properties
* structure in order to determine the right masks
* for the page offset.
*/
hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
offset_mask = (1ull << hop_shift) - 1;
addr_mask = ~(offset_mask);
*phys_addr = (tmp_phys_addr & addr_mask) |
(virt_addr & offset_mask);
}
}
int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
{
struct hl_mmu_hop_info hops;
int rc;
memset(&hops, 0, sizeof(hops));
rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
if (rc)
return rc;
hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
return 0;
}
int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
struct hl_mmu_hop_info *hops)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop;
struct hl_mmu_properties *mmu_prop;
struct hl_mmu_funcs *mmu_funcs;
int pgt_residency, rc;
bool is_dram_addr;
if (hdev->mmu_disable)
return -EOPNOTSUPP;
prop = &hdev->asic_prop;
hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
prop->dmmu.start_addr,
prop->dmmu.end_addr);
/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
mutex_lock(&hdev->mmu_lock);
rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
mutex_unlock(&hdev->mmu_lock);
if (rc)
return rc;
/* add page offset to physical address */
if (hops->unscrambled_paddr)
hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
return 0;
}
int hl_mmu_if_set_funcs(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (hdev->mmu_disable)
return 0;
switch (hdev->asic_type) {
case ASIC_GOYA:
case ASIC_GAUDI:
case ASIC_GAUDI_SEC:
hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
break;
case ASIC_GAUDI2:
case ASIC_GAUDI2B:
case ASIC_GAUDI2C:
case ASIC_GAUDI2D:
hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
if (prop->pmmu.host_resident)
hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
break;
default:
dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
hdev->asic_type);
return -EOPNOTSUPP;
}
return 0;
}
/**
* hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
* @hdev: pointer to device data.
* @addr: The address to scramble.
*
* Return: The scrambled address.
*/
u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}
/**
* hl_mmu_descramble_addr() - The generic mmu address descrambling
* routine.
* @hdev: pointer to device data.
* @addr: The address to descramble.
*
* Return: The un-scrambled address.
*/
u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
{
return addr;
}
int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
{
int rc;
rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
if (rc)
dev_err_ratelimited(hdev->dev,
"%s: %s cache invalidation failed, rc=%d\n",
dev_name(&hdev->pdev->dev),
flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
return rc;
}
int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
u32 flags, u32 asid, u64 va, u64 size)
{
int rc;
rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
asid, va, size);
if (rc)
dev_err_ratelimited(hdev->dev,
"%s: %s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
dev_name(&hdev->pdev->dev), flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU",
va, size, rc);
return rc;
}
static void hl_mmu_prefetch_work_function(struct work_struct *work)
{
struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
struct hl_ctx *ctx = pfw->ctx;
struct hl_device *hdev = ctx->hdev;
if (!hl_device_operational(hdev, NULL))
goto put_ctx;
mutex_lock(&hdev->mmu_lock);
hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
mutex_unlock(&hdev->mmu_lock);
put_ctx:
/*
* context was taken in the common mmu prefetch function- see comment there about
* context handling.
*/
hl_ctx_put(ctx);
kfree(pfw);
}
int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
{
struct hl_prefetch_work *handle_prefetch_work;
handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
if (!handle_prefetch_work)
return -ENOMEM;
INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
handle_prefetch_work->ctx = ctx;
handle_prefetch_work->va = va;
handle_prefetch_work->size = size;
handle_prefetch_work->flags = flags;
handle_prefetch_work->asid = asid;
/*
* as actual prefetch is done in a WQ we must get the context (and put it
* at the end of the work function)
*/
hl_ctx_get(ctx);
queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
return 0;
}
u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
{
return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
}
/**
* hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
* @ctx: pointer to the context structure to initialize.
* @mmu_prop: MMU properties.
* @hop_idx: HOP index.
* @hop_addr: HOP address.
* @virt_addr: virtual address for the translation.
*
* @return the matching PTE value on success, otherwise U64_MAX.
*/
u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
u8 hop_idx, u64 hop_addr, u64 virt_addr)
{
u64 mask, shift;
if (hop_idx >= mmu_prop->num_hops) {
dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
return U64_MAX;
}
shift = mmu_prop->hop_shifts[hop_idx];
mask = mmu_prop->hop_masks[hop_idx];
return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
}
static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
struct gen_pool_chunk *chunk,
void *data)
{
struct hl_device *hdev = data;
hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
(void *)chunk->start_addr, chunk->phys_addr);
}
void hl_mmu_hr_flush(struct hl_ctx *ctx)
{
/* a flush operation requires memory barrier */
mb();
}
/**
* hl_mmu_hr_pool_destroy() - destroy genpool
* @hdev: habanalabs device structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
*
* This function does the following:
* - free entries allocated for shadow HOP0
* - free pool chunks
* - free pool
*/
static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
struct pgt_info *hop0_pgt;
int asid;
if (ZERO_OR_NULL_PTR(*pool))
return;
/* Free the Fixed allocation of HOPs0 */
if (hr_priv->mmu_asid_hop0) {
for (asid = 0 ; asid < prop->max_asid ; asid++) {
hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
continue;
gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
}
}
gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
gen_pool_destroy(*pool);
/* Make sure that if we arrive here again without init was called we
* won't cause kernel panic. This can happen for example if we fail
* during hard reset code at certain points
*/
*pool = NULL;
}
/**
* hl_mmu_hr_init() - initialize the MMU module.
* @hdev: habanalabs device structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
* @pgt_size: memory size allocated for the page table
*
* @return 0 on success otherwise non-zero error code
*
* This function does the following:
* - Create a pool of pages for pgt_infos.
* - Create a shadow table for pgt
*/
int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
u64 pgt_size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
size_t pool_chunk_size = SZ_4M;
struct pgt_info *hop0_pgt;
dma_addr_t dma_addr;
u64 virt_addr;
int i, rc;
/*
* we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
* PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
* This way we can call "DMA alloc align" according to dma_alloc granularity and supply
* allocations with higher-order alignment restrictions
*/
hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
dev_err(hdev->dev, "Failed to create hr page pool\n");
return -ENOMEM;
}
hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
&dma_addr,
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(virt_addr)) {
dev_err(hdev->dev,
"Failed to allocate memory for host-resident page pool\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
pool_chunk_size, -1);
if (rc) {
dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
goto destroy_mmu_pgt_pool;
}
}
for (i = 0 ; i < prop->max_asid ; i++) {
hop0_pgt = &hr_priv->mmu_asid_hop0[i];
hop0_pgt->virt_addr = (uintptr_t)
gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
hop_table_size,
(dma_addr_t *) &hop0_pgt->phys_addr,
hop_table_size);
if (!hop0_pgt->virt_addr) {
dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
rc = -ENOMEM;
goto destroy_mmu_pgt_pool;
}
}
/* MMU H/W init will be done in device hw_init() */
return 0;
destroy_mmu_pgt_pool:
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
kvfree(hr_priv->mmu_asid_hop0);
return rc;
}
/**
* hl_mmu_hr_fini() - release the MMU module.
* @hdev: habanalabs device structure.
* @hr_priv: MMU host resident private info.
* @hop_table_size: HOP table size
*
* This function does the following:
* - Disable MMU in H/W.
* - Free the pgt_infos pool.
*
* All contexts should be freed before calling this function.
*/
void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
{
/* MMU H/W fini was already done in device hw_fini() */
hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
kvfree(hr_priv->mmu_asid_hop0);
/* Make sure that if we arrive here again without init was
* called we won't cause kernel panic. This can happen for
* example if we fail during hard reset code at certain points
*/
hr_priv->mmu_asid_hop0 = NULL;
}
}
/**
* hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
* @pgt_info: page table info structure.
* @hr_priv: MMU HR private data.
* @hop_table_size: HOP table size.
*/
void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
hash_del(&pgt_info->node);
kfree(pgt_info);
}
/**
* hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
* @ctx: pointer to the context structure
* @pgt: pgt_info for the HOP hosting the PTE
* @phys_pte_addr: phys address of the PTE
* @hop_table_size: HOP table size
*
* @return PTE virtual address
*
* The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
* by adding the PTE offset.
*/
u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
u64 phys_pte_addr, u32 hop_table_size)
{
u64 page_mask = (hop_table_size - 1);
u64 pte_offset = phys_pte_addr & page_mask;
return pgt->virt_addr + pte_offset;
}
/**
* hl_mmu_hr_write_pte() - write HR PTE
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @phys_pte_addr: phys PTE address
* @val: raw PTE data
* @hop_table_size: HOP table size
*/
void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u64 val, u32 hop_table_size)
{
/*
* The value to write is the phys address of the next hop +
* flags at the 12 LSBs.
*/
u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
*((u64 *) (uintptr_t) virt_addr) = val;
}
/**
* hl_mmu_hr_clear_pte() - clear HR PTE
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @phys_pte_addr: phys PTE address
* @hop_table_size: HOP table size
*/
void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
u32 hop_table_size)
{
/* no need to transform the value to physical address */
hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
}
/**
* hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
* @ctx: pointer to the context structure
* @pgt_info: HOP's page table info structure
* @hr_priv: HR MMU private info
* @hop_table_size: HOP table size
*
* @return number of PTEs still in the HOP
*/
int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
struct hl_mmu_hr_priv *hr_priv,
u32 hop_table_size)
{
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
return num_of_ptes_left;
}
/**
* hl_mmu_hr_get_pte() - increase PGT PTE count
* @ctx: pointer to the context structure
* @hr_func: host resident functions
* @phys_hop_addr: HOP phys address
*/
void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
{
hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
}
/**
* hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
* @ctx: pointer to the context structure.
* @hr_func: host resident functions.
* @curr_pte: current PTE value.
*
* @return pgt_info structure on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
struct hl_hr_mmu_funcs *hr_func,
u64 curr_pte)
{
u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (next_hop_phys_addr == ULLONG_MAX)
return NULL;
return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
}
/**
* hl_mmu_hr_alloc_hop() - allocate HOP
* @ctx: pointer to the context structure.
* @hr_priv: host resident private info structure.
* @hr_func: host resident functions.
* @mmu_prop: MMU properties.
*
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop)
{
struct hl_device *hdev = ctx->hdev;
struct pgt_info *pgt_info;
dma_addr_t phys_addr;
void *virt_addr;
int i, retry = 1;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return NULL;
for (i = 0; i <= retry; i++) {
virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
mmu_prop->hop_table_size,
&phys_addr,
mmu_prop->hop_table_size);
if (virt_addr)
break;
/* No memory in pool - get some and try again */
virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
GFP_KERNEL | __GFP_ZERO);
if (ZERO_OR_NULL_PTR(virt_addr))
break;
if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
phys_addr, SZ_2M, -1)) {
hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
virt_addr = NULL;
break;
}
}
if (ZERO_OR_NULL_PTR(virt_addr)) {
dev_err(hdev->dev, "failed to allocate page\n");
goto pool_alloc_err;
}
pgt_info->phys_addr = phys_addr;
pgt_info->shadow_addr = (unsigned long) NULL;
pgt_info->virt_addr = (unsigned long)virt_addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
return pgt_info;
pool_alloc_err:
kfree(pgt_info);
return NULL;
}
/**
* hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
* @ctx: pointer to the context structure.
* @hr_priv: host resident private info structure.
* @hr_func: host resident functions.
* @mmu_prop: MMU properties.
* @curr_pte: current PTE value.
* @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
*
* @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
*/
struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
struct hl_mmu_hr_priv *hr_priv,
struct hl_hr_mmu_funcs *hr_func,
struct hl_mmu_properties *mmu_prop,
u64 curr_pte, bool *is_new_hop)
{
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (hop_addr != ULLONG_MAX)
return hr_func->get_pgt_info(ctx, hop_addr);
*is_new_hop = true;
return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
}
/**
* hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
* @ctx: pointer to the context structure.
* @virt_addr: the virt address for which to get info.
* @hops: HOPs info structure.
* @hr_func: host resident functions.
*
* @return 0 on success, otherwise non 0 error code..
*/
int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
struct hl_hr_mmu_funcs *hr_func)
{
/* using 6 HOPs as this is the maximum number of HOPs */
struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
struct hl_device *hdev = ctx->hdev;
struct hl_mmu_properties *mmu_prop;
int rc, i, used_hops;
bool is_huge;
rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
if (rc)
return rc;
used_hops = mmu_prop->num_hops;
/* huge pages use one less hop */
if (is_huge)
used_hops--;
hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
for (i = 0 ; i < used_hops ; i++) {
if (i == 0)
hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
else
hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
hops->hop_info[i - 1].hop_pte_val);
if (!hops_pgt_info[i])
return -EFAULT;
hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
hops->hop_info[i].hop_pte_addr =
hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
hops->hop_info[i].hop_addr,
hops->scrambled_vaddr);
hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
hops->hop_info[i].hop_pte_addr,
mmu_prop->hop_table_size);
if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
return -EFAULT;
if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
break;
}
/* if passed over all hops then no last hop was found */
if (i == mmu_prop->num_hops)
return -EFAULT;
if (hops->scrambled_vaddr != virt_addr)
hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
(hdev, hops->hop_info[i].hop_pte_val);
else
hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
hops->used_hops = i + 1;
return 0;
}
struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = NULL;
hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node,
(unsigned long) hop_addr)
if (hop_addr == pgt_info->shadow_addr)
break;
return pgt_info;
}
void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
}
void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info)
{
struct hl_device *hdev = ctx->hdev;
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr,
hdev->asic_prop.dmmu.hop_table_size);
hash_del(&pgt_info->node);
kfree((u64 *) (uintptr_t) pgt_info->shadow_addr);
kfree(pgt_info);
}
u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx)
{
return ctx->hdev->asic_prop.mmu_pgt_addr +
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
}
u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx)
{
return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 +
(ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size);
}
u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr)
{
u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1;
u64 shadow_hop_addr = shadow_addr & (~page_mask);
u64 pte_offset = shadow_addr & page_mask;
u64 phys_hop_addr;
if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx))
phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr;
else
phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx);
return phys_hop_addr + pte_offset;
}
void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
{
u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val);
ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr),
phys_val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val)
{
ctx->hdev->asic_funcs->write_pte(ctx->hdev,
hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val);
*(u64 *) (uintptr_t) shadow_pte_addr = val;
}
void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr)
{
hl_mmu_dr_write_final_pte(ctx, pte_addr, 0);
}
void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr)
{
hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++;
}
int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr)
{
struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr);
int num_of_ptes_left;
pgt_info->num_of_ptes--;
/*
* Need to save the number of ptes left because hl_mmu_free_hop might free
* the pgt_info
*/
num_of_ptes_left = pgt_info->num_of_ptes;
if (!num_of_ptes_left)
hl_mmu_dr_free_pgt_node(ctx, pgt_info);
return num_of_ptes_left;
}
u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct pgt_info *pgt_info;
u64 phys_addr, shadow_addr;
pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
if (!pgt_info)
return ULLONG_MAX;
phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool,
prop->dmmu.hop_table_size);
if (!phys_addr) {
dev_err(hdev->dev, "failed to allocate page\n");
goto pool_add_err;
}
shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size,
GFP_KERNEL);
if (!shadow_addr)
goto shadow_err;
pgt_info->phys_addr = phys_addr;
pgt_info->shadow_addr = shadow_addr;
pgt_info->ctx = ctx;
pgt_info->num_of_ptes = 0;
hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr);
return shadow_addr;
shadow_err:
gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool,
phys_addr, prop->dmmu.hop_table_size);
pool_add_err:
kfree(pgt_info);
return ULLONG_MAX;
}
u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop)
{
u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
if (hop_addr == ULLONG_MAX) {
hop_addr = hl_mmu_dr_alloc_hop(ctx);
*is_new_hop = (hop_addr != ULLONG_MAX);
}
return hop_addr;
}
void hl_mmu_dr_flush(struct hl_ctx *ctx)
{
/* flush all writes from all cores to reach PCI */
mb();
ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx));
}
int hl_mmu_dr_init(struct hl_device *hdev)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
hdev->mmu_priv.dr.mmu_pgt_pool =
gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1);
if (!hdev->mmu_priv.dr.mmu_pgt_pool) {
dev_err(hdev->dev, "Failed to create page gen pool\n");
return -ENOMEM;
}
rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr +
prop->dmmu.hop0_tables_total_size,
prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size,
-1);
if (rc) {
dev_err(hdev->dev, "Failed to add memory to page gen pool\n");
goto err_pool_add;
}
hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid,
prop->dmmu.hop_table_size, GFP_KERNEL);
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) {
rc = -ENOMEM;
goto err_pool_add;
}
/* MMU H/W init will be done in device hw_init() */
return 0;
err_pool_add:
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
return rc;
}
void hl_mmu_dr_fini(struct hl_device *hdev)
{
/* MMU H/W fini was already done in device hw_fini() */
if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0))
return;
kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0);
gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool);
/* Make sure that if we arrive here again without init was
* called we won't cause kernel panic. This can happen for
* example if we fail during hard reset code at certain points
*/
hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL;
}