| // SPDX-License-Identifier: GPL-2.0 |
| |
| /* |
| * Copyright 2016-2022 HabanaLabs, Ltd. |
| * All Rights Reserved. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/pci.h> |
| |
| #include "../habanalabs.h" |
| |
| #include <trace/events/habanalabs.h> |
| |
| /** |
| * hl_mmu_get_funcs() - get MMU functions structure |
| * @hdev: habanalabs device structure. |
| * @pgt_residency: page table residency. |
| * @is_dram_addr: true if we need HMMU functions |
| * |
| * @return appropriate MMU functions structure |
| */ |
| static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, |
| bool is_dram_addr) |
| { |
| return &hdev->mmu_func[pgt_residency]; |
| } |
| |
| bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, |
| prop->dmmu.start_addr, |
| prop->dmmu.end_addr); |
| } |
| |
| /** |
| * hl_mmu_init() - initialize the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * Return: 0 for success, non-zero for failure. |
| */ |
| int hl_mmu_init(struct hl_device *hdev) |
| { |
| int rc = -EOPNOTSUPP; |
| |
| if (hdev->mmu_disable) |
| return 0; |
| |
| mutex_init(&hdev->mmu_lock); |
| |
| if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { |
| rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); |
| if (rc) |
| return rc; |
| } |
| |
| if (hdev->mmu_func[MMU_HR_PGT].init != NULL) { |
| rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); |
| if (rc) |
| goto fini_dr_mmu; |
| } |
| |
| return 0; |
| |
| fini_dr_mmu: |
| if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].fini(hdev); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_mmu_fini() - release the MMU module. |
| * @hdev: habanalabs device structure. |
| * |
| * This function does the following: |
| * - Disable MMU in H/W. |
| * - Free the pgt_infos pool. |
| * |
| * All contexts should be freed before calling this function. |
| */ |
| void hl_mmu_fini(struct hl_device *hdev) |
| { |
| if (hdev->mmu_disable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].fini(hdev); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_HR_PGT].fini(hdev); |
| |
| mutex_destroy(&hdev->mmu_lock); |
| } |
| |
| /** |
| * hl_mmu_ctx_init() - initialize a context for using the MMU module. |
| * @ctx: pointer to the context structure to initialize. |
| * |
| * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all |
| * page tables hops related to this context. |
| * Return: 0 on success, non-zero otherwise. |
| */ |
| int hl_mmu_ctx_init(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| int rc = -EOPNOTSUPP; |
| |
| if (hdev->mmu_disable) |
| return 0; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { |
| rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); |
| if (rc) |
| return rc; |
| } |
| |
| if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) { |
| rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); |
| if (rc) |
| goto fini_dr_ctx; |
| } |
| |
| return 0; |
| |
| fini_dr_ctx: |
| if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].fini(hdev); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_ctx_fini - disable a ctx from using the mmu module |
| * |
| * @ctx: pointer to the context structure |
| * |
| * This function does the following: |
| * - Free any pgts which were not freed yet |
| * - Free the mutex |
| * - Free DRAM default page mapping hops |
| */ |
| void hl_mmu_ctx_fini(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (hdev->mmu_disable) |
| return; |
| |
| if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) |
| hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); |
| |
| if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) |
| hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); |
| } |
| |
| /* |
| * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation |
| * |
| * @hdev: pointer to device data. |
| * @mmu_prop: MMU properties. |
| * @page_size: page size |
| * @real_page_size: set here the actual page size to use for the operation |
| * @is_dram_addr: true if DRAM address, otherwise false. |
| * |
| * @return 0 on success, otherwise non 0 error code |
| * |
| * note that this is general implementation that can fit most MMU arch. but as this is used as an |
| * MMU function: |
| * 1. it shall not be called directly- only from mmu_func structure instance |
| * 2. each MMU may modify the implementation internally |
| */ |
| int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, |
| u32 page_size, u32 *real_page_size, bool is_dram_addr) |
| { |
| /* |
| * The H/W handles mapping of specific page sizes. Hence if the page |
| * size is bigger, we break it to sub-pages and map them separately. |
| */ |
| if ((page_size % mmu_prop->page_size) == 0) { |
| *real_page_size = mmu_prop->page_size; |
| return 0; |
| } |
| |
| dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", |
| page_size, mmu_prop->page_size >> 10); |
| |
| return -EFAULT; |
| } |
| |
| static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, |
| bool is_dram_addr) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| if (is_dram_addr) |
| return &prop->dmmu; |
| else if ((page_size % prop->pmmu_huge.page_size) == 0) |
| return &prop->pmmu_huge; |
| |
| return &prop->pmmu; |
| } |
| |
| /* |
| * hl_mmu_unmap_page - unmaps a virtual addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @page_size: size of the page to unmap |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is mapped |
| * - Unmap the virt addr and frees pgts if possible |
| * - Returns 0 on success, -EINVAL if the given addr is not mapped |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after unmapping of |
| * large area. |
| */ |
| int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_mmu_properties *mmu_prop; |
| struct hl_mmu_funcs *mmu_funcs; |
| int i, pgt_residency, rc = 0; |
| u32 real_page_size, npages; |
| u64 real_virt_addr; |
| bool is_dram_addr; |
| |
| if (hdev->mmu_disable) |
| return 0; |
| |
| is_dram_addr = hl_is_dram_va(hdev, virt_addr); |
| mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); |
| |
| pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; |
| mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); |
| |
| rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, |
| is_dram_addr); |
| if (rc) |
| return rc; |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); |
| if (rc) |
| break; |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| if (flush_pte) |
| mmu_funcs->flush(ctx); |
| |
| if (trace_habanalabs_mmu_unmap_enabled() && !rc) |
| trace_habanalabs_mmu_unmap(&hdev->pdev->dev, virt_addr, 0, page_size, flush_pte); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_map_page - maps a virtual addr to physical addr |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @phys_addr: phys addr to map to |
| * @page_size: physical page size |
| * @flush_pte: whether to do a PCI flush |
| * |
| * This function does the following: |
| * - Check that the virt addr is not mapped |
| * - Allocate pgts as necessary in order to map the virt addr to the phys |
| * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. |
| * |
| * Because this function changes the page tables in the device and because it |
| * changes the MMU hash, it must be protected by a lock. |
| * However, because it maps only a single page, the lock should be implemented |
| * in a higher level in order to protect the entire mapping of the memory area |
| * |
| * For optimization reasons PCI flush may be requested once after mapping of |
| * large area. |
| */ |
| int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, |
| bool flush_pte) |
| { |
| int i, rc, pgt_residency, mapped_cnt = 0; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_mmu_properties *mmu_prop; |
| u64 real_virt_addr, real_phys_addr; |
| struct hl_mmu_funcs *mmu_funcs; |
| u32 real_page_size, npages; |
| bool is_dram_addr; |
| |
| |
| if (hdev->mmu_disable) |
| return 0; |
| |
| is_dram_addr = hl_is_dram_va(hdev, virt_addr); |
| mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); |
| |
| pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; |
| mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); |
| |
| rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, |
| is_dram_addr); |
| if (rc) |
| return rc; |
| |
| /* |
| * Verify that the phys and virt addresses are aligned with the |
| * MMU page size (in dram this means checking the address and MMU |
| * after scrambling) |
| */ |
| if ((is_dram_addr && |
| ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & |
| (mmu_prop->page_size - 1)) || |
| (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & |
| (mmu_prop->page_size - 1)))) || |
| (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || |
| (virt_addr & (real_page_size - 1))))) |
| dev_crit(hdev->dev, |
| "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", |
| phys_addr, virt_addr, real_page_size); |
| |
| npages = page_size / real_page_size; |
| real_virt_addr = virt_addr; |
| real_phys_addr = phys_addr; |
| |
| for (i = 0 ; i < npages ; i++) { |
| rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, |
| is_dram_addr); |
| if (rc) |
| goto err; |
| |
| real_virt_addr += real_page_size; |
| real_phys_addr += real_page_size; |
| mapped_cnt++; |
| } |
| |
| if (flush_pte) |
| mmu_funcs->flush(ctx); |
| |
| trace_habanalabs_mmu_map(&hdev->pdev->dev, virt_addr, phys_addr, page_size, flush_pte); |
| |
| return 0; |
| |
| err: |
| real_virt_addr = virt_addr; |
| for (i = 0 ; i < mapped_cnt ; i++) { |
| if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) |
| dev_warn_ratelimited(hdev->dev, |
| "failed to unmap va: 0x%llx\n", real_virt_addr); |
| |
| real_virt_addr += real_page_size; |
| } |
| |
| mmu_funcs->flush(ctx); |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page |
| * for mapping contiguous physical memory |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to map from |
| * @phys_addr: phys addr to map to |
| * @size: size to map |
| * |
| */ |
| int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, |
| u64 phys_addr, u32 size) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 curr_va, curr_pa; |
| u32 page_size; |
| bool flush_pte; |
| int rc = 0, off; |
| |
| if (hl_mem_area_inside_range(virt_addr, size, |
| prop->dmmu.start_addr, prop->dmmu.end_addr)) |
| page_size = prop->dmmu.page_size; |
| else if (hl_mem_area_inside_range(virt_addr, size, |
| prop->pmmu.start_addr, prop->pmmu.end_addr)) |
| page_size = prop->pmmu.page_size; |
| else if (hl_mem_area_inside_range(virt_addr, size, |
| prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) |
| page_size = prop->pmmu_huge.page_size; |
| else |
| return -EINVAL; |
| |
| for (off = 0 ; off < size ; off += page_size) { |
| curr_va = virt_addr + off; |
| curr_pa = phys_addr + off; |
| flush_pte = (off + page_size) >= size; |
| rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, |
| flush_pte); |
| if (rc) { |
| dev_err(hdev->dev, |
| "Map failed for va 0x%llx to pa 0x%llx\n", |
| curr_va, curr_pa); |
| /* last mapping failed so don't try to unmap it - reduce off by page_size */ |
| off -= page_size; |
| goto unmap; |
| } |
| } |
| |
| return rc; |
| |
| unmap: |
| for (; off >= 0 ; off -= page_size) { |
| curr_va = virt_addr + off; |
| flush_pte = (off - (s32) page_size) < 0; |
| if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) |
| dev_warn_ratelimited(hdev->dev, |
| "failed to unmap va 0x%llx\n", curr_va); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page |
| * for unmapping contiguous physical memory |
| * |
| * @ctx: pointer to the context structure |
| * @virt_addr: virt addr to unmap |
| * @size: size to unmap |
| * |
| */ |
| int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| u64 curr_va; |
| u32 page_size; |
| bool flush_pte; |
| int rc = 0, off; |
| |
| if (hl_mem_area_inside_range(virt_addr, size, |
| prop->dmmu.start_addr, prop->dmmu.end_addr)) |
| page_size = prop->dmmu.page_size; |
| else if (hl_mem_area_inside_range(virt_addr, size, |
| prop->pmmu.start_addr, prop->pmmu.end_addr)) |
| page_size = prop->pmmu.page_size; |
| else if (hl_mem_area_inside_range(virt_addr, size, |
| prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) |
| page_size = prop->pmmu_huge.page_size; |
| else |
| return -EINVAL; |
| |
| for (off = 0 ; off < size ; off += page_size) { |
| curr_va = virt_addr + off; |
| flush_pte = (off + page_size) >= size; |
| rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); |
| if (rc) |
| dev_warn_ratelimited(hdev->dev, |
| "Unmap failed for va 0x%llx\n", curr_va); |
| } |
| |
| return rc; |
| } |
| |
| static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, |
| struct hl_mmu_hop_info *hops, |
| u64 *phys_addr) |
| { |
| struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; |
| u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; |
| struct hl_mmu_properties *mmu_prop; |
| |
| /* last hop holds the phys address and flags */ |
| if (hops->unscrambled_paddr) |
| tmp_phys_addr = hops->unscrambled_paddr; |
| else |
| tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; |
| |
| if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) |
| mmu_prop = &prop->pmmu_huge; |
| else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) |
| mmu_prop = &prop->pmmu; |
| else /* HL_VA_RANGE_TYPE_DRAM */ |
| mmu_prop = &prop->dmmu; |
| |
| if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && |
| !is_power_of_2(prop->dram_page_size)) { |
| u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, |
| page_id, page_start; |
| u32 page_off; |
| |
| /* |
| * Bit arithmetic cannot be used for non power of two page |
| * sizes. In addition, since bit arithmetic is not used, |
| * we cannot ignore dram base. All that shall be considered. |
| */ |
| |
| dram_page_size = prop->dram_page_size; |
| dram_base = prop->dram_base_address; |
| abs_phys_addr = tmp_phys_addr - dram_base; |
| abs_virt_addr = virt_addr - dram_base; |
| page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); |
| page_start = page_id * dram_page_size; |
| div_u64_rem(abs_virt_addr, dram_page_size, &page_off); |
| |
| *phys_addr = page_start + page_off + dram_base; |
| } else { |
| /* |
| * find the correct hop shift field in hl_mmu_properties |
| * structure in order to determine the right masks |
| * for the page offset. |
| */ |
| hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; |
| offset_mask = (1ull << hop_shift) - 1; |
| addr_mask = ~(offset_mask); |
| *phys_addr = (tmp_phys_addr & addr_mask) | |
| (virt_addr & offset_mask); |
| } |
| } |
| |
| int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) |
| { |
| struct hl_mmu_hop_info hops; |
| int rc; |
| |
| memset(&hops, 0, sizeof(hops)); |
| |
| rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); |
| if (rc) |
| return rc; |
| |
| hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); |
| |
| return 0; |
| } |
| |
| int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, |
| struct hl_mmu_hop_info *hops) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop; |
| struct hl_mmu_properties *mmu_prop; |
| struct hl_mmu_funcs *mmu_funcs; |
| int pgt_residency, rc; |
| bool is_dram_addr; |
| |
| if (hdev->mmu_disable) |
| return -EOPNOTSUPP; |
| |
| prop = &hdev->asic_prop; |
| hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ |
| |
| is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, |
| prop->dmmu.start_addr, |
| prop->dmmu.end_addr); |
| |
| /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ |
| mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; |
| pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; |
| mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); |
| |
| mutex_lock(&hdev->mmu_lock); |
| rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); |
| mutex_unlock(&hdev->mmu_lock); |
| |
| if (rc) |
| return rc; |
| |
| /* add page offset to physical address */ |
| if (hops->unscrambled_paddr) |
| hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); |
| |
| return 0; |
| } |
| |
| int hl_mmu_if_set_funcs(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| |
| if (hdev->mmu_disable) |
| return 0; |
| |
| switch (hdev->asic_type) { |
| case ASIC_GOYA: |
| case ASIC_GAUDI: |
| case ASIC_GAUDI_SEC: |
| hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); |
| break; |
| case ASIC_GAUDI2: |
| case ASIC_GAUDI2B: |
| case ASIC_GAUDI2C: |
| case ASIC_GAUDI2D: |
| hl_mmu_v2_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); |
| if (prop->pmmu.host_resident) |
| hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]); |
| break; |
| default: |
| dev_err(hdev->dev, "Unrecognized ASIC type %d\n", |
| hdev->asic_type); |
| return -EOPNOTSUPP; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. |
| * @hdev: pointer to device data. |
| * @addr: The address to scramble. |
| * |
| * Return: The scrambled address. |
| */ |
| u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) |
| { |
| return addr; |
| } |
| |
| /** |
| * hl_mmu_descramble_addr() - The generic mmu address descrambling |
| * routine. |
| * @hdev: pointer to device data. |
| * @addr: The address to descramble. |
| * |
| * Return: The un-scrambled address. |
| */ |
| u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) |
| { |
| return addr; |
| } |
| |
| int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) |
| { |
| int rc; |
| |
| rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); |
| if (rc) |
| dev_err_ratelimited(hdev->dev, |
| "%s: %s cache invalidation failed, rc=%d\n", |
| dev_name(&hdev->pdev->dev), |
| flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc); |
| |
| return rc; |
| } |
| |
| int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, |
| u32 flags, u32 asid, u64 va, u64 size) |
| { |
| int rc; |
| |
| rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, |
| asid, va, size); |
| if (rc) |
| dev_err_ratelimited(hdev->dev, |
| "%s: %s cache range invalidation failed: va=%#llx, size=%llu, rc=%d", |
| dev_name(&hdev->pdev->dev), flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", |
| va, size, rc); |
| |
| return rc; |
| } |
| |
| static void hl_mmu_prefetch_work_function(struct work_struct *work) |
| { |
| struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work); |
| struct hl_ctx *ctx = pfw->ctx; |
| struct hl_device *hdev = ctx->hdev; |
| |
| if (!hl_device_operational(hdev, NULL)) |
| goto put_ctx; |
| |
| mutex_lock(&hdev->mmu_lock); |
| |
| hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size); |
| |
| mutex_unlock(&hdev->mmu_lock); |
| |
| put_ctx: |
| /* |
| * context was taken in the common mmu prefetch function- see comment there about |
| * context handling. |
| */ |
| hl_ctx_put(ctx); |
| kfree(pfw); |
| } |
| |
| int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) |
| { |
| struct hl_prefetch_work *handle_prefetch_work; |
| |
| handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL); |
| if (!handle_prefetch_work) |
| return -ENOMEM; |
| |
| INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function); |
| handle_prefetch_work->ctx = ctx; |
| handle_prefetch_work->va = va; |
| handle_prefetch_work->size = size; |
| handle_prefetch_work->flags = flags; |
| handle_prefetch_work->asid = asid; |
| |
| /* |
| * as actual prefetch is done in a WQ we must get the context (and put it |
| * at the end of the work function) |
| */ |
| hl_ctx_get(ctx); |
| queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work); |
| |
| return 0; |
| } |
| |
| u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) |
| { |
| return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; |
| } |
| |
| /** |
| * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP |
| * @ctx: pointer to the context structure to initialize. |
| * @mmu_prop: MMU properties. |
| * @hop_idx: HOP index. |
| * @hop_addr: HOP address. |
| * @virt_addr: virtual address for the translation. |
| * |
| * @return the matching PTE value on success, otherwise U64_MAX. |
| */ |
| u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, |
| u8 hop_idx, u64 hop_addr, u64 virt_addr) |
| { |
| u64 mask, shift; |
| |
| if (hop_idx >= mmu_prop->num_hops) { |
| dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); |
| return U64_MAX; |
| } |
| |
| shift = mmu_prop->hop_shifts[hop_idx]; |
| mask = mmu_prop->hop_masks[hop_idx]; |
| |
| return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); |
| } |
| |
| static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool, |
| struct gen_pool_chunk *chunk, |
| void *data) |
| { |
| struct hl_device *hdev = data; |
| |
| hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1, |
| (void *)chunk->start_addr, chunk->phys_addr); |
| } |
| |
| void hl_mmu_hr_flush(struct hl_ctx *ctx) |
| { |
| /* a flush operation requires memory barrier */ |
| mb(); |
| } |
| |
| /** |
| * hl_mmu_hr_pool_destroy() - destroy genpool |
| * @hdev: habanalabs device structure. |
| * @hr_priv: MMU HR private data. |
| * @hop_table_size: HOP table size. |
| * |
| * This function does the following: |
| * - free entries allocated for shadow HOP0 |
| * - free pool chunks |
| * - free pool |
| */ |
| static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, |
| u32 hop_table_size) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct gen_pool **pool = &hr_priv->mmu_pgt_pool; |
| struct pgt_info *hop0_pgt; |
| int asid; |
| |
| if (ZERO_OR_NULL_PTR(*pool)) |
| return; |
| |
| /* Free the Fixed allocation of HOPs0 */ |
| if (hr_priv->mmu_asid_hop0) { |
| for (asid = 0 ; asid < prop->max_asid ; asid++) { |
| hop0_pgt = &hr_priv->mmu_asid_hop0[asid]; |
| if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr)) |
| continue; |
| |
| gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size); |
| } |
| } |
| |
| gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev); |
| gen_pool_destroy(*pool); |
| |
| /* Make sure that if we arrive here again without init was called we |
| * won't cause kernel panic. This can happen for example if we fail |
| * during hard reset code at certain points |
| */ |
| *pool = NULL; |
| } |
| |
| /** |
| * hl_mmu_hr_init() - initialize the MMU module. |
| * @hdev: habanalabs device structure. |
| * @hr_priv: MMU HR private data. |
| * @hop_table_size: HOP table size. |
| * @pgt_size: memory size allocated for the page table |
| * |
| * @return 0 on success otherwise non-zero error code |
| * |
| * This function does the following: |
| * - Create a pool of pages for pgt_infos. |
| * - Create a shadow table for pgt |
| */ |
| int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, |
| u64 pgt_size) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| size_t pool_chunk_size = SZ_4M; |
| struct pgt_info *hop0_pgt; |
| dma_addr_t dma_addr; |
| u64 virt_addr; |
| int i, rc; |
| |
| /* |
| * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is |
| * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment. |
| * This way we can call "DMA alloc align" according to dma_alloc granularity and supply |
| * allocations with higher-order alignment restrictions |
| */ |
| hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1); |
| if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) { |
| dev_err(hdev->dev, "Failed to create hr page pool\n"); |
| return -ENOMEM; |
| } |
| |
| hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL); |
| if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { |
| dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n"); |
| rc = -ENOMEM; |
| goto destroy_mmu_pgt_pool; |
| } |
| |
| for (i = 0 ; i < pgt_size ; i += pool_chunk_size) { |
| virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size, |
| &dma_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| if (ZERO_OR_NULL_PTR(virt_addr)) { |
| dev_err(hdev->dev, |
| "Failed to allocate memory for host-resident page pool\n"); |
| rc = -ENOMEM; |
| goto destroy_mmu_pgt_pool; |
| } |
| |
| rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr, |
| pool_chunk_size, -1); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to fill host-resident page pool\n"); |
| goto destroy_mmu_pgt_pool; |
| } |
| } |
| |
| for (i = 0 ; i < prop->max_asid ; i++) { |
| hop0_pgt = &hr_priv->mmu_asid_hop0[i]; |
| hop0_pgt->virt_addr = (uintptr_t) |
| gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, |
| hop_table_size, |
| (dma_addr_t *) &hop0_pgt->phys_addr, |
| hop_table_size); |
| if (!hop0_pgt->virt_addr) { |
| dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n"); |
| rc = -ENOMEM; |
| goto destroy_mmu_pgt_pool; |
| } |
| } |
| |
| /* MMU H/W init will be done in device hw_init() */ |
| |
| return 0; |
| |
| destroy_mmu_pgt_pool: |
| hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); |
| if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) |
| kvfree(hr_priv->mmu_asid_hop0); |
| |
| return rc; |
| } |
| |
| /** |
| * hl_mmu_hr_fini() - release the MMU module. |
| * @hdev: habanalabs device structure. |
| * @hr_priv: MMU host resident private info. |
| * @hop_table_size: HOP table size |
| * |
| * This function does the following: |
| * - Disable MMU in H/W. |
| * - Free the pgt_infos pool. |
| * |
| * All contexts should be freed before calling this function. |
| */ |
| void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) |
| { |
| /* MMU H/W fini was already done in device hw_fini() */ |
| |
| hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); |
| |
| if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { |
| kvfree(hr_priv->mmu_asid_hop0); |
| |
| /* Make sure that if we arrive here again without init was |
| * called we won't cause kernel panic. This can happen for |
| * example if we fail during hard reset code at certain points |
| */ |
| hr_priv->mmu_asid_hop0 = NULL; |
| } |
| } |
| |
| /** |
| * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash |
| * @pgt_info: page table info structure. |
| * @hr_priv: MMU HR private data. |
| * @hop_table_size: HOP table size. |
| */ |
| void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, |
| u32 hop_table_size) |
| { |
| gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size); |
| hash_del(&pgt_info->node); |
| kfree(pgt_info); |
| } |
| |
| /** |
| * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr |
| * @ctx: pointer to the context structure |
| * @pgt: pgt_info for the HOP hosting the PTE |
| * @phys_pte_addr: phys address of the PTE |
| * @hop_table_size: HOP table size |
| * |
| * @return PTE virtual address |
| * |
| * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr |
| * by adding the PTE offset. |
| */ |
| u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, |
| u64 phys_pte_addr, u32 hop_table_size) |
| { |
| u64 page_mask = (hop_table_size - 1); |
| u64 pte_offset = phys_pte_addr & page_mask; |
| |
| return pgt->virt_addr + pte_offset; |
| } |
| |
| /** |
| * hl_mmu_hr_write_pte() - write HR PTE |
| * @ctx: pointer to the context structure |
| * @pgt_info: HOP's page table info structure |
| * @phys_pte_addr: phys PTE address |
| * @val: raw PTE data |
| * @hop_table_size: HOP table size |
| */ |
| void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, |
| u64 val, u32 hop_table_size) |
| { |
| /* |
| * The value to write is the phys address of the next hop + |
| * flags at the 12 LSBs. |
| */ |
| u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size); |
| |
| *((u64 *) (uintptr_t) virt_addr) = val; |
| } |
| |
| /** |
| * hl_mmu_hr_clear_pte() - clear HR PTE |
| * @ctx: pointer to the context structure |
| * @pgt_info: HOP's page table info structure |
| * @phys_pte_addr: phys PTE address |
| * @hop_table_size: HOP table size |
| */ |
| void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, |
| u32 hop_table_size) |
| { |
| /* no need to transform the value to physical address */ |
| hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size); |
| } |
| |
| /** |
| * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs) |
| * @ctx: pointer to the context structure |
| * @pgt_info: HOP's page table info structure |
| * @hr_priv: HR MMU private info |
| * @hop_table_size: HOP table size |
| * |
| * @return number of PTEs still in the HOP |
| */ |
| int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, |
| struct hl_mmu_hr_priv *hr_priv, |
| u32 hop_table_size) |
| { |
| int num_of_ptes_left; |
| |
| pgt_info->num_of_ptes--; |
| |
| /* |
| * Need to save the number of ptes left because free_hop might free |
| * the pgt_info |
| */ |
| num_of_ptes_left = pgt_info->num_of_ptes; |
| if (!num_of_ptes_left) |
| hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size); |
| |
| return num_of_ptes_left; |
| } |
| |
| /** |
| * hl_mmu_hr_get_pte() - increase PGT PTE count |
| * @ctx: pointer to the context structure |
| * @hr_func: host resident functions |
| * @phys_hop_addr: HOP phys address |
| */ |
| void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr) |
| { |
| hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++; |
| } |
| |
| /** |
| * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP |
| * @ctx: pointer to the context structure. |
| * @hr_func: host resident functions. |
| * @curr_pte: current PTE value. |
| * |
| * @return pgt_info structure on success, otherwise NULL. |
| */ |
| struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, |
| struct hl_hr_mmu_funcs *hr_func, |
| u64 curr_pte) |
| { |
| u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); |
| |
| if (next_hop_phys_addr == ULLONG_MAX) |
| return NULL; |
| |
| return hr_func->get_pgt_info(ctx, next_hop_phys_addr); |
| } |
| |
| /** |
| * hl_mmu_hr_alloc_hop() - allocate HOP |
| * @ctx: pointer to the context structure. |
| * @hr_priv: host resident private info structure. |
| * @hr_func: host resident functions. |
| * @mmu_prop: MMU properties. |
| * |
| * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. |
| */ |
| struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, |
| struct hl_hr_mmu_funcs *hr_func, |
| struct hl_mmu_properties *mmu_prop) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct pgt_info *pgt_info; |
| dma_addr_t phys_addr; |
| void *virt_addr; |
| int i, retry = 1; |
| |
| pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); |
| if (!pgt_info) |
| return NULL; |
| |
| for (i = 0; i <= retry; i++) { |
| virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, |
| mmu_prop->hop_table_size, |
| &phys_addr, |
| mmu_prop->hop_table_size); |
| if (virt_addr) |
| break; |
| |
| /* No memory in pool - get some and try again */ |
| virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr, |
| GFP_KERNEL | __GFP_ZERO); |
| if (ZERO_OR_NULL_PTR(virt_addr)) |
| break; |
| |
| if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr, |
| phys_addr, SZ_2M, -1)) { |
| hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr); |
| virt_addr = NULL; |
| break; |
| } |
| } |
| |
| if (ZERO_OR_NULL_PTR(virt_addr)) { |
| dev_err(hdev->dev, "failed to allocate page\n"); |
| goto pool_alloc_err; |
| } |
| |
| pgt_info->phys_addr = phys_addr; |
| pgt_info->shadow_addr = (unsigned long) NULL; |
| pgt_info->virt_addr = (unsigned long)virt_addr; |
| pgt_info->ctx = ctx; |
| pgt_info->num_of_ptes = 0; |
| hr_func->add_pgt_info(ctx, pgt_info, phys_addr); |
| |
| return pgt_info; |
| |
| pool_alloc_err: |
| kfree(pgt_info); |
| |
| return NULL; |
| } |
| |
| /** |
| * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist |
| * @ctx: pointer to the context structure. |
| * @hr_priv: host resident private info structure. |
| * @hr_func: host resident functions. |
| * @mmu_prop: MMU properties. |
| * @curr_pte: current PTE value. |
| * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false). |
| * |
| * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. |
| */ |
| struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, |
| struct hl_mmu_hr_priv *hr_priv, |
| struct hl_hr_mmu_funcs *hr_func, |
| struct hl_mmu_properties *mmu_prop, |
| u64 curr_pte, bool *is_new_hop) |
| { |
| u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop_addr != ULLONG_MAX) |
| return hr_func->get_pgt_info(ctx, hop_addr); |
| |
| *is_new_hop = true; |
| return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop); |
| } |
| |
| /** |
| * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping) |
| * @ctx: pointer to the context structure. |
| * @virt_addr: the virt address for which to get info. |
| * @hops: HOPs info structure. |
| * @hr_func: host resident functions. |
| * |
| * @return 0 on success, otherwise non 0 error code.. |
| */ |
| int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, |
| struct hl_hr_mmu_funcs *hr_func) |
| { |
| /* using 6 HOPs as this is the maximum number of HOPs */ |
| struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; |
| struct hl_device *hdev = ctx->hdev; |
| struct hl_mmu_properties *mmu_prop; |
| int rc, i, used_hops; |
| bool is_huge; |
| |
| rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge); |
| if (rc) |
| return rc; |
| |
| used_hops = mmu_prop->num_hops; |
| |
| /* huge pages use one less hop */ |
| if (is_huge) |
| used_hops--; |
| |
| hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); |
| |
| for (i = 0 ; i < used_hops ; i++) { |
| if (i == 0) |
| hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx); |
| else |
| hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func, |
| hops->hop_info[i - 1].hop_pte_val); |
| |
| if (!hops_pgt_info[i]) |
| return -EFAULT; |
| |
| hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr; |
| hops->hop_info[i].hop_pte_addr = |
| hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, |
| hops->hop_info[i].hop_addr, |
| hops->scrambled_vaddr); |
| hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t) |
| hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], |
| hops->hop_info[i].hop_pte_addr, |
| mmu_prop->hop_table_size); |
| |
| if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) |
| return -EFAULT; |
| |
| if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) |
| break; |
| } |
| |
| /* if passed over all hops then no last hop was found */ |
| if (i == mmu_prop->num_hops) |
| return -EFAULT; |
| |
| if (hops->scrambled_vaddr != virt_addr) |
| hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr |
| (hdev, hops->hop_info[i].hop_pte_val); |
| else |
| hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; |
| |
| hops->used_hops = i + 1; |
| |
| return 0; |
| } |
| |
| struct pgt_info *hl_mmu_dr_get_pgt_info(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = NULL; |
| |
| hash_for_each_possible(ctx->mmu_shadow_hash, pgt_info, node, |
| (unsigned long) hop_addr) |
| if (hop_addr == pgt_info->shadow_addr) |
| break; |
| |
| return pgt_info; |
| } |
| |
| void hl_mmu_dr_free_hop(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); |
| |
| hl_mmu_dr_free_pgt_node(ctx, pgt_info); |
| } |
| |
| void hl_mmu_dr_free_pgt_node(struct hl_ctx *ctx, struct pgt_info *pgt_info) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| |
| gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, pgt_info->phys_addr, |
| hdev->asic_prop.dmmu.hop_table_size); |
| hash_del(&pgt_info->node); |
| kfree((u64 *) (uintptr_t) pgt_info->shadow_addr); |
| kfree(pgt_info); |
| } |
| |
| u64 hl_mmu_dr_get_phys_hop0_addr(struct hl_ctx *ctx) |
| { |
| return ctx->hdev->asic_prop.mmu_pgt_addr + |
| (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); |
| } |
| |
| u64 hl_mmu_dr_get_hop0_addr(struct hl_ctx *ctx) |
| { |
| return (u64) (uintptr_t) ctx->hdev->mmu_priv.dr.mmu_shadow_hop0 + |
| (ctx->asid * ctx->hdev->asic_prop.dmmu.hop_table_size); |
| } |
| |
| u64 hl_mmu_dr_get_phys_addr(struct hl_ctx *ctx, u64 shadow_addr) |
| { |
| u64 page_mask = ctx->hdev->asic_prop.dmmu.hop_table_size - 1; |
| u64 shadow_hop_addr = shadow_addr & (~page_mask); |
| u64 pte_offset = shadow_addr & page_mask; |
| u64 phys_hop_addr; |
| |
| if (shadow_hop_addr != hl_mmu_dr_get_hop0_addr(ctx)) |
| phys_hop_addr = hl_mmu_dr_get_pgt_info(ctx, shadow_hop_addr)->phys_addr; |
| else |
| phys_hop_addr = hl_mmu_dr_get_phys_hop0_addr(ctx); |
| |
| return phys_hop_addr + pte_offset; |
| } |
| |
| void hl_mmu_dr_write_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) |
| { |
| u64 phys_val = hl_mmu_dr_get_phys_addr(ctx, val); |
| |
| ctx->hdev->asic_funcs->write_pte(ctx->hdev, hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), |
| phys_val); |
| |
| *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| } |
| |
| void hl_mmu_dr_write_final_pte(struct hl_ctx *ctx, u64 shadow_pte_addr, u64 val) |
| { |
| ctx->hdev->asic_funcs->write_pte(ctx->hdev, |
| hl_mmu_dr_get_phys_addr(ctx, shadow_pte_addr), val); |
| *(u64 *) (uintptr_t) shadow_pte_addr = val; |
| } |
| |
| void hl_mmu_dr_clear_pte(struct hl_ctx *ctx, u64 pte_addr) |
| { |
| hl_mmu_dr_write_final_pte(ctx, pte_addr, 0); |
| } |
| |
| void hl_mmu_dr_get_pte(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| hl_mmu_dr_get_pgt_info(ctx, hop_addr)->num_of_ptes++; |
| } |
| |
| int hl_mmu_dr_put_pte(struct hl_ctx *ctx, u64 hop_addr) |
| { |
| struct pgt_info *pgt_info = hl_mmu_dr_get_pgt_info(ctx, hop_addr); |
| int num_of_ptes_left; |
| |
| pgt_info->num_of_ptes--; |
| |
| /* |
| * Need to save the number of ptes left because hl_mmu_free_hop might free |
| * the pgt_info |
| */ |
| num_of_ptes_left = pgt_info->num_of_ptes; |
| if (!num_of_ptes_left) |
| hl_mmu_dr_free_pgt_node(ctx, pgt_info); |
| |
| return num_of_ptes_left; |
| } |
| |
| u64 hl_mmu_dr_alloc_hop(struct hl_ctx *ctx) |
| { |
| struct hl_device *hdev = ctx->hdev; |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| struct pgt_info *pgt_info; |
| u64 phys_addr, shadow_addr; |
| |
| pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); |
| if (!pgt_info) |
| return ULLONG_MAX; |
| |
| phys_addr = (u64) gen_pool_alloc(hdev->mmu_priv.dr.mmu_pgt_pool, |
| prop->dmmu.hop_table_size); |
| if (!phys_addr) { |
| dev_err(hdev->dev, "failed to allocate page\n"); |
| goto pool_add_err; |
| } |
| |
| shadow_addr = (u64) (uintptr_t) kzalloc(prop->dmmu.hop_table_size, |
| GFP_KERNEL); |
| if (!shadow_addr) |
| goto shadow_err; |
| |
| pgt_info->phys_addr = phys_addr; |
| pgt_info->shadow_addr = shadow_addr; |
| pgt_info->ctx = ctx; |
| pgt_info->num_of_ptes = 0; |
| hash_add(ctx->mmu_shadow_hash, &pgt_info->node, shadow_addr); |
| |
| return shadow_addr; |
| |
| shadow_err: |
| gen_pool_free(hdev->mmu_priv.dr.mmu_pgt_pool, |
| phys_addr, prop->dmmu.hop_table_size); |
| pool_add_err: |
| kfree(pgt_info); |
| |
| return ULLONG_MAX; |
| } |
| |
| u64 hl_mmu_dr_get_alloc_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte, bool *is_new_hop) |
| { |
| u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); |
| |
| if (hop_addr == ULLONG_MAX) { |
| hop_addr = hl_mmu_dr_alloc_hop(ctx); |
| *is_new_hop = (hop_addr != ULLONG_MAX); |
| } |
| |
| return hop_addr; |
| } |
| |
| void hl_mmu_dr_flush(struct hl_ctx *ctx) |
| { |
| /* flush all writes from all cores to reach PCI */ |
| mb(); |
| ctx->hdev->asic_funcs->read_pte(ctx->hdev, hl_mmu_dr_get_phys_hop0_addr(ctx)); |
| } |
| |
| int hl_mmu_dr_init(struct hl_device *hdev) |
| { |
| struct asic_fixed_properties *prop = &hdev->asic_prop; |
| int rc; |
| |
| hdev->mmu_priv.dr.mmu_pgt_pool = |
| gen_pool_create(__ffs(prop->dmmu.hop_table_size), -1); |
| |
| if (!hdev->mmu_priv.dr.mmu_pgt_pool) { |
| dev_err(hdev->dev, "Failed to create page gen pool\n"); |
| return -ENOMEM; |
| } |
| |
| rc = gen_pool_add(hdev->mmu_priv.dr.mmu_pgt_pool, prop->mmu_pgt_addr + |
| prop->dmmu.hop0_tables_total_size, |
| prop->dmmu.pgt_size - prop->dmmu.hop0_tables_total_size, |
| -1); |
| if (rc) { |
| dev_err(hdev->dev, "Failed to add memory to page gen pool\n"); |
| goto err_pool_add; |
| } |
| |
| hdev->mmu_priv.dr.mmu_shadow_hop0 = kvcalloc(prop->max_asid, |
| prop->dmmu.hop_table_size, GFP_KERNEL); |
| if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) { |
| rc = -ENOMEM; |
| goto err_pool_add; |
| } |
| |
| /* MMU H/W init will be done in device hw_init() */ |
| |
| return 0; |
| |
| err_pool_add: |
| gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); |
| |
| return rc; |
| } |
| |
| void hl_mmu_dr_fini(struct hl_device *hdev) |
| { |
| /* MMU H/W fini was already done in device hw_fini() */ |
| |
| if (ZERO_OR_NULL_PTR(hdev->mmu_priv.dr.mmu_shadow_hop0)) |
| return; |
| |
| kvfree(hdev->mmu_priv.dr.mmu_shadow_hop0); |
| gen_pool_destroy(hdev->mmu_priv.dr.mmu_pgt_pool); |
| |
| /* Make sure that if we arrive here again without init was |
| * called we won't cause kernel panic. This can happen for |
| * example if we fail during hard reset code at certain points |
| */ |
| hdev->mmu_priv.dr.mmu_shadow_hop0 = NULL; |
| } |