blob: 15e201d5e911c32289cb31e3d648730ebef42a74 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* amd-pstate.c - AMD Processor P-state Frequency Driver
*
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Huang Rui <ray.huang@amd.com>
*
* AMD P-State introduces a new CPU performance scaling design for AMD
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
* feature which works with the AMD SMU firmware providing a finer grained
* frequency control range. It is to replace the legacy ACPI P-States control,
* allows a flexible, low-latency interface for the Linux kernel to directly
* communicate the performance hints to hardware.
*
* AMD P-State is supported on recent AMD Zen base CPU series include some of
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
* P-State supported system. And there are two types of hardware implementations
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>
#include <linux/topology.h>
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#include "amd-pstate.h"
#include "amd-pstate-trace.h"
#define AMD_PSTATE_TRANSITION_LATENCY 20000
#define AMD_PSTATE_TRANSITION_DELAY 1000
#define AMD_PSTATE_FAST_CPPC_TRANSITION_DELAY 600
#define AMD_CPPC_EPP_PERFORMANCE 0x00
#define AMD_CPPC_EPP_BALANCE_PERFORMANCE 0x80
#define AMD_CPPC_EPP_BALANCE_POWERSAVE 0xBF
#define AMD_CPPC_EPP_POWERSAVE 0xFF
static const char * const amd_pstate_mode_string[] = {
[AMD_PSTATE_UNDEFINED] = "undefined",
[AMD_PSTATE_DISABLE] = "disable",
[AMD_PSTATE_PASSIVE] = "passive",
[AMD_PSTATE_ACTIVE] = "active",
[AMD_PSTATE_GUIDED] = "guided",
NULL,
};
const char *amd_pstate_get_mode_string(enum amd_pstate_mode mode)
{
if (mode < 0 || mode >= AMD_PSTATE_MAX)
return NULL;
return amd_pstate_mode_string[mode];
}
EXPORT_SYMBOL_GPL(amd_pstate_get_mode_string);
struct quirk_entry {
u32 nominal_freq;
u32 lowest_freq;
};
static struct cpufreq_driver *current_pstate_driver;
static struct cpufreq_driver amd_pstate_driver;
static struct cpufreq_driver amd_pstate_epp_driver;
static int cppc_state = AMD_PSTATE_UNDEFINED;
static bool cppc_enabled;
static bool amd_pstate_prefcore = true;
static struct quirk_entry *quirks;
/*
* AMD Energy Preference Performance (EPP)
* The EPP is used in the CCLK DPM controller to drive
* the frequency that a core is going to operate during
* short periods of activity. EPP values will be utilized for
* different OS profiles (balanced, performance, power savings)
* display strings corresponding to EPP index in the
* energy_perf_strings[]
* index String
*-------------------------------------
* 0 default
* 1 performance
* 2 balance_performance
* 3 balance_power
* 4 power
*/
enum energy_perf_value_index {
EPP_INDEX_DEFAULT = 0,
EPP_INDEX_PERFORMANCE,
EPP_INDEX_BALANCE_PERFORMANCE,
EPP_INDEX_BALANCE_POWERSAVE,
EPP_INDEX_POWERSAVE,
};
static const char * const energy_perf_strings[] = {
[EPP_INDEX_DEFAULT] = "default",
[EPP_INDEX_PERFORMANCE] = "performance",
[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
[EPP_INDEX_POWERSAVE] = "power",
NULL
};
static unsigned int epp_values[] = {
[EPP_INDEX_DEFAULT] = 0,
[EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE,
[EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE,
[EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE,
[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
};
typedef int (*cppc_mode_transition_fn)(int);
static struct quirk_entry quirk_amd_7k62 = {
.nominal_freq = 2600,
.lowest_freq = 550,
};
static int __init dmi_matched_7k62_bios_bug(const struct dmi_system_id *dmi)
{
/**
* match the broken bios for family 17h processor support CPPC V2
* broken BIOS lack of nominal_freq and lowest_freq capabilities
* definition in ACPI tables
*/
if (cpu_feature_enabled(X86_FEATURE_ZEN2)) {
quirks = dmi->driver_data;
pr_info("Overriding nominal and lowest frequencies for %s\n", dmi->ident);
return 1;
}
return 0;
}
static const struct dmi_system_id amd_pstate_quirks_table[] __initconst = {
{
.callback = dmi_matched_7k62_bios_bug,
.ident = "AMD EPYC 7K62",
.matches = {
DMI_MATCH(DMI_BIOS_VERSION, "5.14"),
DMI_MATCH(DMI_BIOS_RELEASE, "12/12/2019"),
},
.driver_data = &quirk_amd_7k62,
},
{}
};
MODULE_DEVICE_TABLE(dmi, amd_pstate_quirks_table);
static inline int get_mode_idx_from_str(const char *str, size_t size)
{
int i;
for (i=0; i < AMD_PSTATE_MAX; i++) {
if (!strncmp(str, amd_pstate_mode_string[i], size))
return i;
}
return -EINVAL;
}
static DEFINE_MUTEX(amd_pstate_limits_lock);
static DEFINE_MUTEX(amd_pstate_driver_lock);
static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached)
{
u64 epp;
int ret;
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
if (!cppc_req_cached) {
epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
&cppc_req_cached);
if (epp)
return epp;
}
epp = (cppc_req_cached >> 24) & 0xFF;
} else {
ret = cppc_get_epp_perf(cpudata->cpu, &epp);
if (ret < 0) {
pr_debug("Could not retrieve energy perf value (%d)\n", ret);
return -EIO;
}
}
return (s16)(epp & 0xff);
}
static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata)
{
s16 epp;
int index = -EINVAL;
epp = amd_pstate_get_epp(cpudata, 0);
if (epp < 0)
return epp;
switch (epp) {
case AMD_CPPC_EPP_PERFORMANCE:
index = EPP_INDEX_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_PERFORMANCE:
index = EPP_INDEX_BALANCE_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_POWERSAVE:
index = EPP_INDEX_BALANCE_POWERSAVE;
break;
case AMD_CPPC_EPP_POWERSAVE:
index = EPP_INDEX_POWERSAVE;
break;
default:
break;
}
return index;
}
static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
if (fast_switch)
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
else
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
READ_ONCE(cpudata->cppc_req_cached));
}
DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);
static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp)
{
int ret;
struct cppc_perf_ctrls perf_ctrls;
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
u64 value = READ_ONCE(cpudata->cppc_req_cached);
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
if (!ret)
cpudata->epp_cached = epp;
} else {
amd_pstate_update_perf(cpudata, cpudata->min_limit_perf, 0U,
cpudata->max_limit_perf, false);
perf_ctrls.energy_perf = epp;
ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1);
if (ret) {
pr_debug("failed to set energy perf value (%d)\n", ret);
return ret;
}
cpudata->epp_cached = epp;
}
return ret;
}
static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata,
int pref_index)
{
int epp = -EINVAL;
int ret;
if (!pref_index)
epp = cpudata->epp_default;
if (epp == -EINVAL)
epp = epp_values[pref_index];
if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
pr_debug("EPP cannot be set under performance policy\n");
return -EBUSY;
}
ret = amd_pstate_set_epp(cpudata, epp);
return ret;
}
static inline int pstate_enable(bool enable)
{
int ret, cpu;
unsigned long logical_proc_id_mask = 0;
if (enable == cppc_enabled)
return 0;
for_each_present_cpu(cpu) {
unsigned long logical_id = topology_logical_package_id(cpu);
if (test_bit(logical_id, &logical_proc_id_mask))
continue;
set_bit(logical_id, &logical_proc_id_mask);
ret = wrmsrl_safe_on_cpu(cpu, MSR_AMD_CPPC_ENABLE,
enable);
if (ret)
return ret;
}
cppc_enabled = enable;
return 0;
}
static int cppc_enable(bool enable)
{
int cpu, ret = 0;
struct cppc_perf_ctrls perf_ctrls;
if (enable == cppc_enabled)
return 0;
for_each_present_cpu(cpu) {
ret = cppc_set_enable(cpu, enable);
if (ret)
return ret;
/* Enable autonomous mode for EPP */
if (cppc_state == AMD_PSTATE_ACTIVE) {
/* Set desired perf as zero to allow EPP firmware control */
perf_ctrls.desired_perf = 0;
ret = cppc_set_perf(cpu, &perf_ctrls);
if (ret)
return ret;
}
}
cppc_enabled = enable;
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);
static inline int amd_pstate_enable(bool enable)
{
return static_call(amd_pstate_enable)(enable);
}
static int pstate_init_perf(struct amd_cpudata *cpudata)
{
u64 cap1;
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
&cap1);
if (ret)
return ret;
WRITE_ONCE(cpudata->highest_perf, AMD_CPPC_HIGHEST_PERF(cap1));
WRITE_ONCE(cpudata->max_limit_perf, AMD_CPPC_HIGHEST_PERF(cap1));
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
WRITE_ONCE(cpudata->prefcore_ranking, AMD_CPPC_HIGHEST_PERF(cap1));
WRITE_ONCE(cpudata->min_limit_perf, AMD_CPPC_LOWEST_PERF(cap1));
return 0;
}
static int cppc_init_perf(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
WRITE_ONCE(cpudata->highest_perf, cppc_perf.highest_perf);
WRITE_ONCE(cpudata->max_limit_perf, cppc_perf.highest_perf);
WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
WRITE_ONCE(cpudata->lowest_nonlinear_perf,
cppc_perf.lowest_nonlinear_perf);
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
WRITE_ONCE(cpudata->prefcore_ranking, cppc_perf.highest_perf);
WRITE_ONCE(cpudata->min_limit_perf, cppc_perf.lowest_perf);
if (cppc_state == AMD_PSTATE_ACTIVE)
return 0;
ret = cppc_get_auto_sel_caps(cpudata->cpu, &cppc_perf);
if (ret) {
pr_warn("failed to get auto_sel, ret: %d\n", ret);
return 0;
}
ret = cppc_set_auto_sel(cpudata->cpu,
(cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
if (ret)
pr_warn("failed to set auto_sel, ret: %d\n", ret);
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
return static_call(amd_pstate_init_perf)(cpudata);
}
static void cppc_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
struct cppc_perf_ctrls perf_ctrls;
perf_ctrls.max_perf = max_perf;
perf_ctrls.min_perf = min_perf;
perf_ctrls.desired_perf = des_perf;
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
static inline bool amd_pstate_sample(struct amd_cpudata *cpudata)
{
u64 aperf, mperf, tsc;
unsigned long flags;
local_irq_save(flags);
rdmsrl(MSR_IA32_APERF, aperf);
rdmsrl(MSR_IA32_MPERF, mperf);
tsc = rdtsc();
if (cpudata->prev.mperf == mperf || cpudata->prev.tsc == tsc) {
local_irq_restore(flags);
return false;
}
local_irq_restore(flags);
cpudata->cur.aperf = aperf;
cpudata->cur.mperf = mperf;
cpudata->cur.tsc = tsc;
cpudata->cur.aperf -= cpudata->prev.aperf;
cpudata->cur.mperf -= cpudata->prev.mperf;
cpudata->cur.tsc -= cpudata->prev.tsc;
cpudata->prev.aperf = aperf;
cpudata->prev.mperf = mperf;
cpudata->prev.tsc = tsc;
cpudata->freq = div64_u64((cpudata->cur.aperf * cpu_khz), cpudata->cur.mperf);
return true;
}
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch, int gov_flags)
{
unsigned long max_freq;
struct cpufreq_policy *policy = cpufreq_cpu_get(cpudata->cpu);
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
u32 nominal_perf = READ_ONCE(cpudata->nominal_perf);
u64 value = prev;
min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf,
cpudata->max_limit_perf);
max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf,
cpudata->max_limit_perf);
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
max_freq = READ_ONCE(cpudata->max_limit_freq);
policy->cur = div_u64(des_perf * max_freq, max_perf);
if ((cppc_state == AMD_PSTATE_GUIDED) && (gov_flags & CPUFREQ_GOV_DYNAMIC_SWITCHING)) {
min_perf = des_perf;
des_perf = 0;
}
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(des_perf);
/* limit the max perf when core performance boost feature is disabled */
if (!cpudata->boost_supported)
max_perf = min_t(unsigned long, nominal_perf, max_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
if (trace_amd_pstate_perf_enabled() && amd_pstate_sample(cpudata)) {
trace_amd_pstate_perf(min_perf, des_perf, max_perf, cpudata->freq,
cpudata->cur.mperf, cpudata->cur.aperf, cpudata->cur.tsc,
cpudata->cpu, (value != prev), fast_switch);
}
if (value == prev)
goto cpufreq_policy_put;
WRITE_ONCE(cpudata->cppc_req_cached, value);
amd_pstate_update_perf(cpudata, min_perf, des_perf,
max_perf, fast_switch);
cpufreq_policy_put:
cpufreq_cpu_put(policy);
}
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static int amd_pstate_update_min_max_limit(struct cpufreq_policy *policy)
{
u32 max_limit_perf, min_limit_perf, lowest_perf;
struct amd_cpudata *cpudata = policy->driver_data;
max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq);
min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq);
lowest_perf = READ_ONCE(cpudata->lowest_perf);
if (min_limit_perf < lowest_perf)
min_limit_perf = lowest_perf;
if (max_limit_perf < min_limit_perf)
max_limit_perf = min_limit_perf;
WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf);
WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf);
WRITE_ONCE(cpudata->max_limit_freq, policy->max);
WRITE_ONCE(cpudata->min_limit_freq, policy->min);
return 0;
}
static int amd_pstate_update_freq(struct cpufreq_policy *policy,
unsigned int target_freq, bool fast_switch)
{
struct cpufreq_freqs freqs;
struct amd_cpudata *cpudata = policy->driver_data;
unsigned long max_perf, min_perf, des_perf, cap_perf;
if (!cpudata->max_freq)
return -ENODEV;
if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq)
amd_pstate_update_min_max_limit(policy);
cap_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_perf);
max_perf = cap_perf;
freqs.old = policy->cur;
freqs.new = target_freq;
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
cpudata->max_freq);
WARN_ON(fast_switch && !policy->fast_switch_enabled);
/*
* If fast_switch is desired, then there aren't any registered
* transition notifiers. See comment for
* cpufreq_enable_fast_switch().
*/
if (!fast_switch)
cpufreq_freq_transition_begin(policy, &freqs);
amd_pstate_update(cpudata, min_perf, des_perf,
max_perf, fast_switch, policy->governor->flags);
if (!fast_switch)
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static int amd_pstate_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
return amd_pstate_update_freq(policy, target_freq, false);
}
static unsigned int amd_pstate_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq)
{
if (!amd_pstate_update_freq(policy, target_freq, true))
return target_freq;
return policy->cur;
}
static void amd_pstate_adjust_perf(unsigned int cpu,
unsigned long _min_perf,
unsigned long target_perf,
unsigned long capacity)
{
unsigned long max_perf, min_perf, des_perf,
cap_perf, lowest_nonlinear_perf;
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata;
if (!policy)
return;
cpudata = policy->driver_data;
if (policy->min != cpudata->min_limit_freq || policy->max != cpudata->max_limit_freq)
amd_pstate_update_min_max_limit(policy);
cap_perf = READ_ONCE(cpudata->highest_perf);
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
des_perf = cap_perf;
if (target_perf < capacity)
des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);
min_perf = READ_ONCE(cpudata->lowest_perf);
if (_min_perf < capacity)
min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);
if (min_perf < lowest_nonlinear_perf)
min_perf = lowest_nonlinear_perf;
max_perf = cap_perf;
if (max_perf < min_perf)
max_perf = min_perf;
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true,
policy->governor->flags);
cpufreq_cpu_put(policy);
}
static int amd_pstate_cpu_boost_update(struct cpufreq_policy *policy, bool on)
{
struct amd_cpudata *cpudata = policy->driver_data;
struct cppc_perf_ctrls perf_ctrls;
u32 highest_perf, nominal_perf, nominal_freq, max_freq;
int ret = 0;
highest_perf = READ_ONCE(cpudata->highest_perf);
nominal_perf = READ_ONCE(cpudata->nominal_perf);
nominal_freq = READ_ONCE(cpudata->nominal_freq);
max_freq = READ_ONCE(cpudata->max_freq);
if (boot_cpu_has(X86_FEATURE_CPPC)) {
u64 value = READ_ONCE(cpudata->cppc_req_cached);
value &= ~GENMASK_ULL(7, 0);
value |= on ? highest_perf : nominal_perf;
WRITE_ONCE(cpudata->cppc_req_cached, value);
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.max_perf = on ? highest_perf : nominal_perf;
ret = cppc_set_perf(cpudata->cpu, &perf_ctrls);
if (ret) {
cpufreq_cpu_release(policy);
pr_debug("Failed to set max perf on CPU:%d. ret:%d\n",
cpudata->cpu, ret);
return ret;
}
}
if (on)
policy->cpuinfo.max_freq = max_freq;
else if (policy->cpuinfo.max_freq > nominal_freq * 1000)
policy->cpuinfo.max_freq = nominal_freq * 1000;
policy->max = policy->cpuinfo.max_freq;
if (cppc_state == AMD_PSTATE_PASSIVE) {
ret = freq_qos_update_request(&cpudata->req[1], policy->cpuinfo.max_freq);
if (ret < 0)
pr_debug("Failed to update freq constraint: CPU%d\n", cpudata->cpu);
}
return ret < 0 ? ret : 0;
}
static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
if (!cpudata->boost_supported) {
pr_err("Boost mode is not supported by this processor or SBIOS\n");
return -EOPNOTSUPP;
}
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_cpu_boost_update(policy, state);
WRITE_ONCE(cpudata->boost_state, !ret ? state : false);
policy->boost_enabled = !ret ? state : false;
refresh_frequency_limits(policy);
mutex_unlock(&amd_pstate_driver_lock);
return ret;
}
static int amd_pstate_init_boost_support(struct amd_cpudata *cpudata)
{
u64 boost_val;
int ret = -1;
/*
* If platform has no CPB support or disable it, initialize current driver
* boost_enabled state to be false, it is not an error for cpufreq core to handle.
*/
if (!cpu_feature_enabled(X86_FEATURE_CPB)) {
pr_debug_once("Boost CPB capabilities not present in the processor\n");
ret = 0;
goto exit_err;
}
/* at least one CPU supports CPB, even if others fail later on to set up */
current_pstate_driver->boost_enabled = true;
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_K7_HWCR, &boost_val);
if (ret) {
pr_err_once("failed to read initial CPU boost state!\n");
ret = -EIO;
goto exit_err;
}
if (!(boost_val & MSR_K7_HWCR_CPB_DIS))
cpudata->boost_supported = true;
return 0;
exit_err:
cpudata->boost_supported = false;
return ret;
}
static void amd_perf_ctl_reset(unsigned int cpu)
{
wrmsrl_on_cpu(cpu, MSR_AMD_PERF_CTL, 0);
}
/*
* Set amd-pstate preferred core enable can't be done directly from cpufreq callbacks
* due to locking, so queue the work for later.
*/
static void amd_pstste_sched_prefcore_workfn(struct work_struct *work)
{
sched_set_itmt_support();
}
static DECLARE_WORK(sched_prefcore_work, amd_pstste_sched_prefcore_workfn);
#define CPPC_MAX_PERF U8_MAX
static void amd_pstate_init_prefcore(struct amd_cpudata *cpudata)
{
/* user disabled or not detected */
if (!amd_pstate_prefcore)
return;
cpudata->hw_prefcore = true;
/*
* The priorities can be set regardless of whether or not
* sched_set_itmt_support(true) has been called and it is valid to
* update them at any time after it has been called.
*/
sched_set_itmt_core_prio((int)READ_ONCE(cpudata->highest_perf), cpudata->cpu);
schedule_work(&sched_prefcore_work);
}
static void amd_pstate_update_limits(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata;
u32 prev_high = 0, cur_high = 0;
int ret;
bool highest_perf_changed = false;
if (!policy)
return;
cpudata = policy->driver_data;
if (!amd_pstate_prefcore)
return;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_get_highest_perf(cpu, &cur_high);
if (ret)
goto free_cpufreq_put;
prev_high = READ_ONCE(cpudata->prefcore_ranking);
highest_perf_changed = (prev_high != cur_high);
if (highest_perf_changed) {
WRITE_ONCE(cpudata->prefcore_ranking, cur_high);
if (cur_high < CPPC_MAX_PERF)
sched_set_itmt_core_prio((int)cur_high, cpu);
}
free_cpufreq_put:
cpufreq_cpu_put(policy);
if (!highest_perf_changed)
cpufreq_update_policy(cpu);
mutex_unlock(&amd_pstate_driver_lock);
}
/*
* Get pstate transition delay time from ACPI tables that firmware set
* instead of using hardcode value directly.
*/
static u32 amd_pstate_get_transition_delay_us(unsigned int cpu)
{
u32 transition_delay_ns;
transition_delay_ns = cppc_get_transition_latency(cpu);
if (transition_delay_ns == CPUFREQ_ETERNAL) {
if (cpu_feature_enabled(X86_FEATURE_FAST_CPPC))
return AMD_PSTATE_FAST_CPPC_TRANSITION_DELAY;
else
return AMD_PSTATE_TRANSITION_DELAY;
}
return transition_delay_ns / NSEC_PER_USEC;
}
/*
* Get pstate transition latency value from ACPI tables that firmware
* set instead of using hardcode value directly.
*/
static u32 amd_pstate_get_transition_latency(unsigned int cpu)
{
u32 transition_latency;
transition_latency = cppc_get_transition_latency(cpu);
if (transition_latency == CPUFREQ_ETERNAL)
return AMD_PSTATE_TRANSITION_LATENCY;
return transition_latency;
}
/*
* amd_pstate_init_freq: Initialize the max_freq, min_freq,
* nominal_freq and lowest_nonlinear_freq for
* the @cpudata object.
*
* Requires: highest_perf, lowest_perf, nominal_perf and
* lowest_nonlinear_perf members of @cpudata to be
* initialized.
*
* Returns 0 on success, non-zero value on failure.
*/
static int amd_pstate_init_freq(struct amd_cpudata *cpudata)
{
int ret;
u32 min_freq, max_freq;
u64 numerator;
u32 nominal_perf, nominal_freq;
u32 lowest_nonlinear_perf, lowest_nonlinear_freq;
u32 boost_ratio, lowest_nonlinear_ratio;
struct cppc_perf_caps cppc_perf;
ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
if (quirks && quirks->lowest_freq)
min_freq = quirks->lowest_freq * 1000;
else
min_freq = cppc_perf.lowest_freq * 1000;
if (quirks && quirks->nominal_freq)
nominal_freq = quirks->nominal_freq ;
else
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
ret = amd_get_boost_ratio_numerator(cpudata->cpu, &numerator);
if (ret)
return ret;
boost_ratio = div_u64(numerator << SCHED_CAPACITY_SHIFT, nominal_perf);
max_freq = (nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT) * 1000;
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
lowest_nonlinear_freq = (nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT) * 1000;
WRITE_ONCE(cpudata->min_freq, min_freq);
WRITE_ONCE(cpudata->lowest_nonlinear_freq, lowest_nonlinear_freq);
WRITE_ONCE(cpudata->nominal_freq, nominal_freq);
WRITE_ONCE(cpudata->max_freq, max_freq);
/**
* Below values need to be initialized correctly, otherwise driver will fail to load
* max_freq is calculated according to (nominal_freq * highest_perf)/nominal_perf
* lowest_nonlinear_freq is a value between [min_freq, nominal_freq]
* Check _CPC in ACPI table objects if any values are incorrect
*/
if (min_freq <= 0 || max_freq <= 0 || nominal_freq <= 0 || min_freq > max_freq) {
pr_err("min_freq(%d) or max_freq(%d) or nominal_freq(%d) value is incorrect\n",
min_freq, max_freq, nominal_freq * 1000);
return -EINVAL;
}
if (lowest_nonlinear_freq <= min_freq || lowest_nonlinear_freq > nominal_freq * 1000) {
pr_err("lowest_nonlinear_freq(%d) value is out of range [min_freq(%d), nominal_freq(%d)]\n",
lowest_nonlinear_freq, min_freq, nominal_freq * 1000);
return -EINVAL;
}
return 0;
}
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, ret;
struct device *dev;
struct amd_cpudata *cpudata;
/*
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
* which is ideal for initialization process.
*/
amd_perf_ctl_reset(policy->cpu);
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
amd_pstate_init_prefcore(cpudata);
ret = amd_pstate_init_freq(cpudata);
if (ret)
goto free_cpudata1;
ret = amd_pstate_init_boost_support(cpudata);
if (ret)
goto free_cpudata1;
min_freq = READ_ONCE(cpudata->min_freq);
max_freq = READ_ONCE(cpudata->max_freq);
policy->cpuinfo.transition_latency = amd_pstate_get_transition_latency(policy->cpu);
policy->transition_delay_us = amd_pstate_get_transition_delay_us(policy->cpu);
policy->min = min_freq;
policy->max = max_freq;
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
policy->boost_enabled = READ_ONCE(cpudata->boost_supported);
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
if (cpu_feature_enabled(X86_FEATURE_CPPC))
policy->fast_switch_possible = true;
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
FREQ_QOS_MIN, policy->cpuinfo.min_freq);
if (ret < 0) {
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
goto free_cpudata1;
}
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
FREQ_QOS_MAX, policy->cpuinfo.max_freq);
if (ret < 0) {
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
goto free_cpudata2;
}
cpudata->max_limit_freq = max_freq;
cpudata->min_limit_freq = min_freq;
policy->driver_data = cpudata;
if (!current_pstate_driver->adjust_perf)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
return 0;
free_cpudata2:
freq_qos_remove_request(&cpudata->req[0]);
free_cpudata1:
kfree(cpudata);
return ret;
}
static void amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
freq_qos_remove_request(&cpudata->req[1]);
freq_qos_remove_request(&cpudata->req[0]);
policy->fast_switch_possible = false;
kfree(cpudata);
}
static int amd_pstate_cpu_resume(struct cpufreq_policy *policy)
{
int ret;
ret = amd_pstate_enable(true);
if (ret)
pr_err("failed to enable amd-pstate during resume, return %d\n", ret);
return ret;
}
static int amd_pstate_cpu_suspend(struct cpufreq_policy *policy)
{
int ret;
ret = amd_pstate_enable(false);
if (ret)
pr_err("failed to disable amd-pstate during suspend, return %d\n", ret);
return ret;
}
/* Sysfs attributes */
/*
* This frequency is to indicate the maximum hardware frequency.
* If boost is not active but supported, the frequency will be larger than the
* one in cpuinfo.
*/
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
char *buf)
{
int max_freq;
struct amd_cpudata *cpudata = policy->driver_data;
max_freq = READ_ONCE(cpudata->max_freq);
if (max_freq < 0)
return max_freq;
return sysfs_emit(buf, "%u\n", max_freq);
}
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
char *buf)
{
int freq;
struct amd_cpudata *cpudata = policy->driver_data;
freq = READ_ONCE(cpudata->lowest_nonlinear_freq);
if (freq < 0)
return freq;
return sysfs_emit(buf, "%u\n", freq);
}
/*
* In some of ASICs, the highest_perf is not the one in the _CPC table, so we
* need to expose it to sysfs.
*/
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
char *buf)
{
u32 perf;
struct amd_cpudata *cpudata = policy->driver_data;
perf = READ_ONCE(cpudata->highest_perf);
return sysfs_emit(buf, "%u\n", perf);
}
static ssize_t show_amd_pstate_prefcore_ranking(struct cpufreq_policy *policy,
char *buf)
{
u32 perf;
struct amd_cpudata *cpudata = policy->driver_data;
perf = READ_ONCE(cpudata->prefcore_ranking);
return sysfs_emit(buf, "%u\n", perf);
}
static ssize_t show_amd_pstate_hw_prefcore(struct cpufreq_policy *policy,
char *buf)
{
bool hw_prefcore;
struct amd_cpudata *cpudata = policy->driver_data;
hw_prefcore = READ_ONCE(cpudata->hw_prefcore);
return sysfs_emit(buf, "%s\n", str_enabled_disabled(hw_prefcore));
}
static ssize_t show_energy_performance_available_preferences(
struct cpufreq_policy *policy, char *buf)
{
int i = 0;
int offset = 0;
struct amd_cpudata *cpudata = policy->driver_data;
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
return sysfs_emit_at(buf, offset, "%s\n",
energy_perf_strings[EPP_INDEX_PERFORMANCE]);
while (energy_perf_strings[i] != NULL)
offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]);
offset += sysfs_emit_at(buf, offset, "\n");
return offset;
}
static ssize_t store_energy_performance_preference(
struct cpufreq_policy *policy, const char *buf, size_t count)
{
struct amd_cpudata *cpudata = policy->driver_data;
char str_preference[21];
ssize_t ret;
ret = sscanf(buf, "%20s", str_preference);
if (ret != 1)
return -EINVAL;
ret = match_string(energy_perf_strings, -1, str_preference);
if (ret < 0)
return -EINVAL;
mutex_lock(&amd_pstate_limits_lock);
ret = amd_pstate_set_energy_pref_index(cpudata, ret);
mutex_unlock(&amd_pstate_limits_lock);
return ret ?: count;
}
static ssize_t show_energy_performance_preference(
struct cpufreq_policy *policy, char *buf)
{
struct amd_cpudata *cpudata = policy->driver_data;
int preference;
preference = amd_pstate_get_energy_pref_index(cpudata);
if (preference < 0)
return preference;
return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
}
static void amd_pstate_driver_cleanup(void)
{
amd_pstate_enable(false);
cppc_state = AMD_PSTATE_DISABLE;
current_pstate_driver = NULL;
}
static int amd_pstate_register_driver(int mode)
{
int ret;
if (mode == AMD_PSTATE_PASSIVE || mode == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
else if (mode == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
else
return -EINVAL;
cppc_state = mode;
ret = cpufreq_register_driver(current_pstate_driver);
if (ret) {
amd_pstate_driver_cleanup();
return ret;
}
return 0;
}
static int amd_pstate_unregister_driver(int dummy)
{
cpufreq_unregister_driver(current_pstate_driver);
amd_pstate_driver_cleanup();
return 0;
}
static int amd_pstate_change_mode_without_dvr_change(int mode)
{
int cpu = 0;
cppc_state = mode;
if (cpu_feature_enabled(X86_FEATURE_CPPC) || cppc_state == AMD_PSTATE_ACTIVE)
return 0;
for_each_present_cpu(cpu) {
cppc_set_auto_sel(cpu, (cppc_state == AMD_PSTATE_PASSIVE) ? 0 : 1);
}
return 0;
}
static int amd_pstate_change_driver_mode(int mode)
{
int ret;
ret = amd_pstate_unregister_driver(0);
if (ret)
return ret;
ret = amd_pstate_register_driver(mode);
if (ret)
return ret;
return 0;
}
static cppc_mode_transition_fn mode_state_machine[AMD_PSTATE_MAX][AMD_PSTATE_MAX] = {
[AMD_PSTATE_DISABLE] = {
[AMD_PSTATE_DISABLE] = NULL,
[AMD_PSTATE_PASSIVE] = amd_pstate_register_driver,
[AMD_PSTATE_ACTIVE] = amd_pstate_register_driver,
[AMD_PSTATE_GUIDED] = amd_pstate_register_driver,
},
[AMD_PSTATE_PASSIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = NULL,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = amd_pstate_change_mode_without_dvr_change,
},
[AMD_PSTATE_ACTIVE] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_ACTIVE] = NULL,
[AMD_PSTATE_GUIDED] = amd_pstate_change_driver_mode,
},
[AMD_PSTATE_GUIDED] = {
[AMD_PSTATE_DISABLE] = amd_pstate_unregister_driver,
[AMD_PSTATE_PASSIVE] = amd_pstate_change_mode_without_dvr_change,
[AMD_PSTATE_ACTIVE] = amd_pstate_change_driver_mode,
[AMD_PSTATE_GUIDED] = NULL,
},
};
static ssize_t amd_pstate_show_status(char *buf)
{
if (!current_pstate_driver)
return sysfs_emit(buf, "disable\n");
return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
}
int amd_pstate_update_status(const char *buf, size_t size)
{
int mode_idx;
if (size > strlen("passive") || size < strlen("active"))
return -EINVAL;
mode_idx = get_mode_idx_from_str(buf, size);
if (mode_idx < 0 || mode_idx >= AMD_PSTATE_MAX)
return -EINVAL;
if (mode_state_machine[cppc_state][mode_idx])
return mode_state_machine[cppc_state][mode_idx](mode_idx);
return 0;
}
EXPORT_SYMBOL_GPL(amd_pstate_update_status);
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_show_status(buf);
mutex_unlock(&amd_pstate_driver_lock);
return ret;
}
static ssize_t status_store(struct device *a, struct device_attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
int ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_update_status(buf, p ? p - buf : count);
mutex_unlock(&amd_pstate_driver_lock);
return ret < 0 ? ret : count;
}
static ssize_t prefcore_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%s\n", str_enabled_disabled(amd_pstate_prefcore));
}
cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
cpufreq_freq_attr_ro(amd_pstate_prefcore_ranking);
cpufreq_freq_attr_ro(amd_pstate_hw_prefcore);
cpufreq_freq_attr_rw(energy_performance_preference);
cpufreq_freq_attr_ro(energy_performance_available_preferences);
static DEVICE_ATTR_RW(status);
static DEVICE_ATTR_RO(prefcore);
static struct freq_attr *amd_pstate_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
&amd_pstate_prefcore_ranking,
&amd_pstate_hw_prefcore,
NULL,
};
static struct freq_attr *amd_pstate_epp_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
&amd_pstate_prefcore_ranking,
&amd_pstate_hw_prefcore,
&energy_performance_preference,
&energy_performance_available_preferences,
NULL,
};
static struct attribute *pstate_global_attributes[] = {
&dev_attr_status.attr,
&dev_attr_prefcore.attr,
NULL
};
static const struct attribute_group amd_pstate_global_attr_group = {
.name = "amd_pstate",
.attrs = pstate_global_attributes,
};
static bool amd_pstate_acpi_pm_profile_server(void)
{
switch (acpi_gbl_FADT.preferred_profile) {
case PM_ENTERPRISE_SERVER:
case PM_SOHO_SERVER:
case PM_PERFORMANCE_SERVER:
return true;
}
return false;
}
static bool amd_pstate_acpi_pm_profile_undefined(void)
{
if (acpi_gbl_FADT.preferred_profile == PM_UNSPECIFIED)
return true;
if (acpi_gbl_FADT.preferred_profile >= NR_PM_PROFILES)
return true;
return false;
}
static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, ret;
struct amd_cpudata *cpudata;
struct device *dev;
u64 value;
/*
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
* which is ideal for initialization process.
*/
amd_perf_ctl_reset(policy->cpu);
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
cpudata->epp_policy = 0;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
amd_pstate_init_prefcore(cpudata);
ret = amd_pstate_init_freq(cpudata);
if (ret)
goto free_cpudata1;
ret = amd_pstate_init_boost_support(cpudata);
if (ret)
goto free_cpudata1;
min_freq = READ_ONCE(cpudata->min_freq);
max_freq = READ_ONCE(cpudata->max_freq);
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
policy->driver_data = cpudata;
cpudata->epp_cached = cpudata->epp_default = amd_pstate_get_epp(cpudata, 0);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
policy->boost_enabled = READ_ONCE(cpudata->boost_supported);
/*
* Set the policy to provide a valid fallback value in case
* the default cpufreq governor is neither powersave nor performance.
*/
if (amd_pstate_acpi_pm_profile_server() ||
amd_pstate_acpi_pm_profile_undefined())
policy->policy = CPUFREQ_POLICY_PERFORMANCE;
else
policy->policy = CPUFREQ_POLICY_POWERSAVE;
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_cap1_cached, value);
}
return 0;
free_cpudata1:
kfree(cpudata);
return ret;
}
static void amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (cpudata) {
kfree(cpudata);
policy->driver_data = NULL;
}
pr_debug("CPU %d exiting\n", policy->cpu);
}
static int amd_pstate_epp_update_limit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
u32 max_perf, min_perf, min_limit_perf, max_limit_perf;
u64 value;
s16 epp;
max_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_perf);
max_limit_perf = div_u64(policy->max * cpudata->highest_perf, cpudata->max_freq);
min_limit_perf = div_u64(policy->min * cpudata->highest_perf, cpudata->max_freq);
if (min_limit_perf < min_perf)
min_limit_perf = min_perf;
if (max_limit_perf < min_limit_perf)
max_limit_perf = min_limit_perf;
WRITE_ONCE(cpudata->max_limit_perf, max_limit_perf);
WRITE_ONCE(cpudata->min_limit_perf, min_limit_perf);
max_perf = clamp_t(unsigned long, max_perf, cpudata->min_limit_perf,
cpudata->max_limit_perf);
min_perf = clamp_t(unsigned long, min_perf, cpudata->min_limit_perf,
cpudata->max_limit_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
min_perf = max_perf;
/* Initial min/max values for CPPC Performance Controls Register */
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
/* CPPC EPP feature require to set zero to the desire perf bit */
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(0);
cpudata->epp_policy = cpudata->policy;
/* Get BIOS pre-defined epp value */
epp = amd_pstate_get_epp(cpudata, value);
if (epp < 0) {
/**
* This return value can only be negative for shared_memory
* systems where EPP register read/write not supported.
*/
return epp;
}
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
epp = 0;
/* Set initial EPP value */
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
}
WRITE_ONCE(cpudata->cppc_req_cached, value);
return amd_pstate_set_epp(cpudata, epp);
}
static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
if (!policy->cpuinfo.max_freq)
return -ENODEV;
pr_debug("set_policy: cpuinfo.max %u policy->max %u\n",
policy->cpuinfo.max_freq, policy->max);
cpudata->policy = policy->policy;
ret = amd_pstate_epp_update_limit(policy);
if (ret)
return ret;
/*
* policy->cur is never updated with the amd_pstate_epp driver, but it
* is used as a stale frequency value. So, keep it within limits.
*/
policy->cur = policy->min;
return 0;
}
static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata)
{
struct cppc_perf_ctrls perf_ctrls;
u64 value, max_perf;
int ret;
ret = amd_pstate_enable(true);
if (ret)
pr_err("failed to enable amd pstate during resume, return %d\n", ret);
value = READ_ONCE(cpudata->cppc_req_cached);
max_perf = READ_ONCE(cpudata->highest_perf);
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.max_perf = max_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
}
static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going online\n", cpudata->cpu);
if (cppc_state == AMD_PSTATE_ACTIVE) {
amd_pstate_epp_reenable(cpudata);
cpudata->suspended = false;
}
return 0;
}
static void amd_pstate_epp_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
struct cppc_perf_ctrls perf_ctrls;
int min_perf;
u64 value;
min_perf = READ_ONCE(cpudata->lowest_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
mutex_lock(&amd_pstate_limits_lock);
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN;
/* Set max perf same as min perf */
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(min_perf);
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.desired_perf = 0;
perf_ctrls.max_perf = min_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
mutex_unlock(&amd_pstate_limits_lock);
}
static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu);
if (cpudata->suspended)
return 0;
if (cppc_state == AMD_PSTATE_ACTIVE)
amd_pstate_epp_offline(policy);
return 0;
}
static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min);
return 0;
}
static int amd_pstate_epp_suspend(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
/* avoid suspending when EPP is not enabled */
if (cppc_state != AMD_PSTATE_ACTIVE)
return 0;
/* set this flag to avoid setting core offline*/
cpudata->suspended = true;
/* disable CPPC in lowlevel firmware */
ret = amd_pstate_enable(false);
if (ret)
pr_err("failed to suspend, return %d\n", ret);
return 0;
}
static int amd_pstate_epp_resume(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (cpudata->suspended) {
mutex_lock(&amd_pstate_limits_lock);
/* enable amd pstate from suspend state*/
amd_pstate_epp_reenable(cpudata);
mutex_unlock(&amd_pstate_limits_lock);
cpudata->suspended = false;
}
return 0;
}
static struct cpufreq_driver amd_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
.verify = amd_pstate_verify,
.target = amd_pstate_target,
.fast_switch = amd_pstate_fast_switch,
.init = amd_pstate_cpu_init,
.exit = amd_pstate_cpu_exit,
.suspend = amd_pstate_cpu_suspend,
.resume = amd_pstate_cpu_resume,
.set_boost = amd_pstate_set_boost,
.update_limits = amd_pstate_update_limits,
.name = "amd-pstate",
.attr = amd_pstate_attr,
};
static struct cpufreq_driver amd_pstate_epp_driver = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = amd_pstate_epp_verify_policy,
.setpolicy = amd_pstate_epp_set_policy,
.init = amd_pstate_epp_cpu_init,
.exit = amd_pstate_epp_cpu_exit,
.offline = amd_pstate_epp_cpu_offline,
.online = amd_pstate_epp_cpu_online,
.suspend = amd_pstate_epp_suspend,
.resume = amd_pstate_epp_resume,
.update_limits = amd_pstate_update_limits,
.set_boost = amd_pstate_set_boost,
.name = "amd-pstate-epp",
.attr = amd_pstate_epp_attr,
};
static int __init amd_pstate_set_driver(int mode_idx)
{
if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) {
cppc_state = mode_idx;
if (cppc_state == AMD_PSTATE_DISABLE)
pr_info("driver is explicitly disabled\n");
if (cppc_state == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
if (cppc_state == AMD_PSTATE_PASSIVE || cppc_state == AMD_PSTATE_GUIDED)
current_pstate_driver = &amd_pstate_driver;
return 0;
}
return -EINVAL;
}
/**
* CPPC function is not supported for family ID 17H with model_ID ranging from 0x10 to 0x2F.
* show the debug message that helps to check if the CPU has CPPC support for loading issue.
*/
static bool amd_cppc_supported(void)
{
struct cpuinfo_x86 *c = &cpu_data(0);
bool warn = false;
if ((boot_cpu_data.x86 == 0x17) && (boot_cpu_data.x86_model < 0x30)) {
pr_debug_once("CPPC feature is not supported by the processor\n");
return false;
}
/*
* If the CPPC feature is disabled in the BIOS for processors
* that support MSR-based CPPC, the AMD Pstate driver may not
* function correctly.
*
* For such processors, check the CPPC flag and display a
* warning message if the platform supports CPPC.
*
* Note: The code check below will not abort the driver
* registration process because of the code is added for
* debugging purposes. Besides, it may still be possible for
* the driver to work using the shared-memory mechanism.
*/
if (!cpu_feature_enabled(X86_FEATURE_CPPC)) {
if (cpu_feature_enabled(X86_FEATURE_ZEN2)) {
switch (c->x86_model) {
case 0x60 ... 0x6F:
case 0x80 ... 0xAF:
warn = true;
break;
}
} else if (cpu_feature_enabled(X86_FEATURE_ZEN3) ||
cpu_feature_enabled(X86_FEATURE_ZEN4)) {
switch (c->x86_model) {
case 0x10 ... 0x1F:
case 0x40 ... 0xAF:
warn = true;
break;
}
} else if (cpu_feature_enabled(X86_FEATURE_ZEN5)) {
warn = true;
}
}
if (warn)
pr_warn_once("The CPPC feature is supported but currently disabled by the BIOS.\n"
"Please enable it if your BIOS has the CPPC option.\n");
return true;
}
static int __init amd_pstate_init(void)
{
struct device *dev_root;
int ret;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return -ENODEV;
/* show debug message only if CPPC is not supported */
if (!amd_cppc_supported())
return -EOPNOTSUPP;
/* show warning message when BIOS broken or ACPI disabled */
if (!acpi_cpc_valid()) {
pr_warn_once("the _CPC object is not present in SBIOS or ACPI disabled\n");
return -ENODEV;
}
/* don't keep reloading if cpufreq_driver exists */
if (cpufreq_get_current_driver())
return -EEXIST;
quirks = NULL;
/* check if this machine need CPPC quirks */
dmi_check_system(amd_pstate_quirks_table);
/*
* determine the driver mode from the command line or kernel config.
* If no command line input is provided, cppc_state will be AMD_PSTATE_UNDEFINED.
* command line options will override the kernel config settings.
*/
if (cppc_state == AMD_PSTATE_UNDEFINED) {
/* Disable on the following configs by default:
* 1. Undefined platforms
* 2. Server platforms
*/
if (amd_pstate_acpi_pm_profile_undefined() ||
amd_pstate_acpi_pm_profile_server()) {
pr_info("driver load is disabled, boot with specific mode to enable this\n");
return -ENODEV;
}
/* get driver mode from kernel config option [1:4] */
cppc_state = CONFIG_X86_AMD_PSTATE_DEFAULT_MODE;
}
switch (cppc_state) {
case AMD_PSTATE_DISABLE:
pr_info("driver load is disabled, boot with specific mode to enable this\n");
return -ENODEV;
case AMD_PSTATE_PASSIVE:
case AMD_PSTATE_ACTIVE:
case AMD_PSTATE_GUIDED:
ret = amd_pstate_set_driver(cppc_state);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
/* capability check */
if (cpu_feature_enabled(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is supported\n");
if (cppc_state != AMD_PSTATE_ACTIVE)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
} else {
pr_debug("AMD CPPC shared memory based functionality is supported\n");
static_call_update(amd_pstate_enable, cppc_enable);
static_call_update(amd_pstate_init_perf, cppc_init_perf);
static_call_update(amd_pstate_update_perf, cppc_update_perf);
}
if (amd_pstate_prefcore) {
ret = amd_detect_prefcore(&amd_pstate_prefcore);
if (ret)
return ret;
}
/* enable amd pstate feature */
ret = amd_pstate_enable(true);
if (ret) {
pr_err("failed to enable driver mode(%d)\n", cppc_state);
return ret;
}
ret = cpufreq_register_driver(current_pstate_driver);
if (ret) {
pr_err("failed to register with return %d\n", ret);
goto disable_driver;
}
dev_root = bus_get_dev_root(&cpu_subsys);
if (dev_root) {
ret = sysfs_create_group(&dev_root->kobj, &amd_pstate_global_attr_group);
put_device(dev_root);
if (ret) {
pr_err("sysfs attribute export failed with error %d.\n", ret);
goto global_attr_free;
}
}
return ret;
global_attr_free:
cpufreq_unregister_driver(current_pstate_driver);
disable_driver:
amd_pstate_enable(false);
return ret;
}
device_initcall(amd_pstate_init);
static int __init amd_pstate_param(char *str)
{
size_t size;
int mode_idx;
if (!str)
return -EINVAL;
size = strlen(str);
mode_idx = get_mode_idx_from_str(str, size);
return amd_pstate_set_driver(mode_idx);
}
static int __init amd_prefcore_param(char *str)
{
if (!strcmp(str, "disable"))
amd_pstate_prefcore = false;
return 0;
}
early_param("amd_pstate", amd_pstate_param);
early_param("amd_prefcore", amd_prefcore_param);
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");