blob: bb26338204f4ba84b5ae41a781e1becdf9ad72bb [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/* To compile this assembly code:
*
* gfx9:
* cpp -DASIC_FAMILY=CHIP_VEGAM cwsr_trap_handler_gfx9.asm -P -o gfx9.sp3
* sp3 gfx9.sp3 -hex gfx9.hex
*
* arcturus:
* cpp -DASIC_FAMILY=CHIP_ARCTURUS cwsr_trap_handler_gfx9.asm -P -o arcturus.sp3
* sp3 arcturus.sp3 -hex arcturus.hex
*
* aldebaran:
* cpp -DASIC_FAMILY=CHIP_ALDEBARAN cwsr_trap_handler_gfx9.asm -P -o aldebaran.sp3
* sp3 aldebaran.sp3 -hex aldebaran.hex
*
* gc_9_4_3:
* cpp -DASIC_FAMILY=GC_9_4_3 cwsr_trap_handler_gfx9.asm -P -o gc_9_4_3.sp3
* sp3 gc_9_4_3.sp3 -hex gc_9_4_3.hex
*/
#define CHIP_VEGAM 18
#define CHIP_ARCTURUS 23
#define CHIP_ALDEBARAN 25
#define CHIP_GC_9_4_3 26
var ACK_SQC_STORE = 1 //workaround for suspected SQC store bug causing incorrect stores under concurrency
var SAVE_AFTER_XNACK_ERROR = 1 //workaround for TCP store failure after XNACK error when ALLOW_REPLAY=0, for debugger
var SINGLE_STEP_MISSED_WORKAROUND = (ASIC_FAMILY <= CHIP_ALDEBARAN) //workaround for lost MODE.DEBUG_EN exception when SAVECTX raised
/**************************************************************************/
/* variables */
/**************************************************************************/
var SQ_WAVE_STATUS_SPI_PRIO_SHIFT = 1
var SQ_WAVE_STATUS_SPI_PRIO_MASK = 0x00000006
var SQ_WAVE_STATUS_HALT_MASK = 0x2000
var SQ_WAVE_STATUS_PRE_SPI_PRIO_SHIFT = 0
var SQ_WAVE_STATUS_PRE_SPI_PRIO_SIZE = 1
var SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT = 3
var SQ_WAVE_STATUS_POST_SPI_PRIO_SIZE = 29
var SQ_WAVE_STATUS_ALLOW_REPLAY_MASK = 0x400000
var SQ_WAVE_STATUS_ECC_ERR_MASK = 0x20000
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT = 12
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE = 9
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE = 6
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE = 3 //FIXME sq.blk still has 4 bits at this time while SQ programming guide has 3 bits
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT = 24
#if ASIC_FAMILY >= CHIP_ALDEBARAN
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 6
var SQ_WAVE_GPR_ALLOC_ACCV_OFFSET_SHIFT = 12
var SQ_WAVE_GPR_ALLOC_ACCV_OFFSET_SIZE = 6
#else
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 8
#endif
var SQ_WAVE_TRAPSTS_SAVECTX_MASK = 0x400
var SQ_WAVE_TRAPSTS_EXCP_MASK = 0x1FF
var SQ_WAVE_TRAPSTS_SAVECTX_SHIFT = 10
var SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK = 0x80
var SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT = 7
var SQ_WAVE_TRAPSTS_MEM_VIOL_MASK = 0x100
var SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT = 8
var SQ_WAVE_TRAPSTS_HOST_TRAP_MASK = 0x400000
var SQ_WAVE_TRAPSTS_WAVE_BEGIN_MASK = 0x800000
var SQ_WAVE_TRAPSTS_WAVE_END_MASK = 0x1000000
var SQ_WAVE_TRAPSTS_TRAP_AFTER_INST_MASK = 0x2000000
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK = 0x3FF
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT = 0x0
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE = 10
var SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK = 0xFFFFF800
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT = 11
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE = 21
var SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK = 0x800
var SQ_WAVE_TRAPSTS_EXCP_HI_MASK = 0x7000
var SQ_WAVE_TRAPSTS_XNACK_ERROR_MASK = 0x10000000
var SQ_WAVE_MODE_EXCP_EN_SHIFT = 12
var SQ_WAVE_MODE_EXCP_EN_ADDR_WATCH_SHIFT = 19
var SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT = 15 //FIXME
var SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK = 0x1F8000
var SQ_WAVE_MODE_DEBUG_EN_MASK = 0x800
var TTMP_SAVE_RCNT_FIRST_REPLAY_SHIFT = 26 // bits [31:26] unused by SPI debug data
var TTMP_SAVE_RCNT_FIRST_REPLAY_MASK = 0xFC000000
var TTMP_DEBUG_TRAP_ENABLED_SHIFT = 23
var TTMP_DEBUG_TRAP_ENABLED_MASK = 0x800000
/* Save */
var S_SAVE_BUF_RSRC_WORD1_STRIDE = 0x00040000 //stride is 4 bytes
var S_SAVE_BUF_RSRC_WORD3_MISC = 0x00807FAC //SQ_SEL_X/Y/Z/W, BUF_NUM_FORMAT_FLOAT, (0 for MUBUF stride[17:14] when ADD_TID_ENABLE and BUF_DATA_FORMAT_32 for MTBUF), ADD_TID_ENABLE
var S_SAVE_PC_HI_TRAP_ID_MASK = 0x00FF0000
var S_SAVE_PC_HI_HT_MASK = 0x01000000
var S_SAVE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var s_save_spi_init_lo = exec_lo
var s_save_spi_init_hi = exec_hi
var s_save_pc_lo = ttmp0 //{TTMP1, TTMP0} = {3'h0,pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}
var s_save_pc_hi = ttmp1
var s_save_exec_lo = ttmp2
var s_save_exec_hi = ttmp3
var s_save_tmp = ttmp14
var s_save_trapsts = ttmp15 //not really used until the end of the SAVE routine
var s_save_xnack_mask_lo = ttmp6
var s_save_xnack_mask_hi = ttmp7
var s_save_buf_rsrc0 = ttmp8
var s_save_buf_rsrc1 = ttmp9
var s_save_buf_rsrc2 = ttmp10
var s_save_buf_rsrc3 = ttmp11
var s_save_status = ttmp12
var s_save_mem_offset = ttmp4
var s_save_alloc_size = s_save_trapsts //conflict
var s_save_m0 = ttmp5
var s_save_ttmps_lo = s_save_tmp //no conflict
var s_save_ttmps_hi = s_save_trapsts //no conflict
#if ASIC_FAMILY >= CHIP_GC_9_4_3
var s_save_ib_sts = ttmp13
#else
var s_save_ib_sts = ttmp11
#endif
/* Restore */
var S_RESTORE_BUF_RSRC_WORD1_STRIDE = S_SAVE_BUF_RSRC_WORD1_STRIDE
var S_RESTORE_BUF_RSRC_WORD3_MISC = S_SAVE_BUF_RSRC_WORD3_MISC
var S_RESTORE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_RESTORE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var s_restore_spi_init_lo = exec_lo
var s_restore_spi_init_hi = exec_hi
var s_restore_mem_offset = ttmp12
var s_restore_tmp2 = ttmp13
var s_restore_alloc_size = ttmp3
var s_restore_tmp = ttmp2
var s_restore_mem_offset_save = s_restore_tmp //no conflict
var s_restore_accvgpr_offset_save = ttmp7
var s_restore_m0 = s_restore_alloc_size //no conflict
var s_restore_mode = s_restore_accvgpr_offset_save
var s_restore_pc_lo = ttmp0
var s_restore_pc_hi = ttmp1
var s_restore_exec_lo = ttmp4
var s_restore_exec_hi = ttmp5
var s_restore_status = ttmp14
var s_restore_trapsts = ttmp15
var s_restore_xnack_mask_lo = xnack_mask_lo
var s_restore_xnack_mask_hi = xnack_mask_hi
var s_restore_buf_rsrc0 = ttmp8
var s_restore_buf_rsrc1 = ttmp9
var s_restore_buf_rsrc2 = ttmp10
var s_restore_buf_rsrc3 = ttmp11
var s_restore_ttmps_lo = s_restore_tmp //no conflict
var s_restore_ttmps_hi = s_restore_alloc_size //no conflict
/**************************************************************************/
/* trap handler entry points */
/**************************************************************************/
/* Shader Main*/
shader main
asic(DEFAULT)
type(CS)
s_branch L_SKIP_RESTORE //NOT restore. might be a regular trap or save
L_JUMP_TO_RESTORE:
s_branch L_RESTORE //restore
L_SKIP_RESTORE:
s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
// Clear SPI_PRIO: do not save with elevated priority.
// Clear ECC_ERR: prevents SQC store and triggers FATAL_HALT if setreg'd.
s_andn2_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_SPI_PRIO_MASK|SQ_WAVE_STATUS_ECC_ERR_MASK
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 ttmp2, s_save_status, SQ_WAVE_STATUS_HALT_MASK
s_cbranch_scc0 L_NOT_HALTED
L_HALTED:
// Host trap may occur while wave is halted.
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
L_CHECK_SAVE:
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK //check whether this is for save
s_cbranch_scc1 L_SAVE //this is the operation for save
// Wave is halted but neither host trap nor SAVECTX is raised.
// Caused by instruction fetch memory violation.
// Spin wait until context saved to prevent interrupt storm.
s_sleep 0x10
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_branch L_CHECK_SAVE
L_NOT_HALTED:
// Let second-level handle non-SAVECTX exception or trap.
// Any concurrent SAVECTX will be handled upon re-entry once halted.
// Check non-maskable exceptions. memory_violation, illegal_instruction
// and debugger (host trap, wave start/end, trap after instruction)
// exceptions always cause the wave to enter the trap handler.
s_and_b32 ttmp2, s_save_trapsts, \
SQ_WAVE_TRAPSTS_MEM_VIOL_MASK | \
SQ_WAVE_TRAPSTS_ILLEGAL_INST_MASK | \
SQ_WAVE_TRAPSTS_HOST_TRAP_MASK | \
SQ_WAVE_TRAPSTS_WAVE_BEGIN_MASK | \
SQ_WAVE_TRAPSTS_WAVE_END_MASK | \
SQ_WAVE_TRAPSTS_TRAP_AFTER_INST_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
// Check for maskable exceptions in trapsts.excp and trapsts.excp_hi.
// Maskable exceptions only cause the wave to enter the trap handler if
// their respective bit in mode.excp_en is set.
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_EXCP_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK
s_cbranch_scc0 L_CHECK_TRAP_ID
s_and_b32 ttmp3, s_save_trapsts, SQ_WAVE_TRAPSTS_ADDR_WATCH_MASK|SQ_WAVE_TRAPSTS_EXCP_HI_MASK
s_cbranch_scc0 L_NOT_ADDR_WATCH
s_bitset1_b32 ttmp2, SQ_WAVE_TRAPSTS_ADDR_WATCH_SHIFT // Check all addr_watch[123] exceptions against excp_en.addr_watch
L_NOT_ADDR_WATCH:
s_getreg_b32 ttmp3, hwreg(HW_REG_MODE)
s_lshl_b32 ttmp2, ttmp2, SQ_WAVE_MODE_EXCP_EN_SHIFT
s_and_b32 ttmp2, ttmp2, ttmp3
s_cbranch_scc1 L_FETCH_2ND_TRAP
L_CHECK_TRAP_ID:
// Check trap_id != 0
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_TRAP_ID_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
if SINGLE_STEP_MISSED_WORKAROUND
// Prioritize single step exception over context save.
// Second-level trap will halt wave and RFE, re-entering for SAVECTX.
s_getreg_b32 ttmp2, hwreg(HW_REG_MODE)
s_and_b32 ttmp2, ttmp2, SQ_WAVE_MODE_DEBUG_EN_MASK
s_cbranch_scc1 L_FETCH_2ND_TRAP
end
s_and_b32 ttmp2, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK
s_cbranch_scc1 L_SAVE
L_FETCH_2ND_TRAP:
// Preserve and clear scalar XNACK state before issuing scalar reads.
save_and_clear_ib_sts(ttmp14)
// Read second-level TBA/TMA from first-level TMA and jump if available.
// ttmp[2:5] and ttmp12 can be used (others hold SPI-initialized debug data)
// ttmp12 holds SQ_WAVE_STATUS
s_getreg_b32 ttmp14, hwreg(HW_REG_SQ_SHADER_TMA_LO)
s_getreg_b32 ttmp15, hwreg(HW_REG_SQ_SHADER_TMA_HI)
s_lshl_b64 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8
s_bitcmp1_b32 ttmp15, 0xF
s_cbranch_scc0 L_NO_SIGN_EXTEND_TMA
s_or_b32 ttmp15, ttmp15, 0xFFFF0000
L_NO_SIGN_EXTEND_TMA:
s_load_dword ttmp2, [ttmp14, ttmp15], 0x10 glc:1 // debug trap enabled flag
s_waitcnt lgkmcnt(0)
s_lshl_b32 ttmp2, ttmp2, TTMP_DEBUG_TRAP_ENABLED_SHIFT
s_andn2_b32 s_save_ib_sts, s_save_ib_sts, TTMP_DEBUG_TRAP_ENABLED_MASK
s_or_b32 s_save_ib_sts, s_save_ib_sts, ttmp2
s_load_dwordx2 [ttmp2, ttmp3], [ttmp14, ttmp15], 0x0 glc:1 // second-level TBA
s_waitcnt lgkmcnt(0)
s_load_dwordx2 [ttmp14, ttmp15], [ttmp14, ttmp15], 0x8 glc:1 // second-level TMA
s_waitcnt lgkmcnt(0)
s_and_b64 [ttmp2, ttmp3], [ttmp2, ttmp3], [ttmp2, ttmp3]
s_cbranch_scc0 L_NO_NEXT_TRAP // second-level trap handler not been set
s_setpc_b64 [ttmp2, ttmp3] // jump to second-level trap handler
L_NO_NEXT_TRAP:
// If not caused by trap then halt wave to prevent re-entry.
s_and_b32 ttmp2, s_save_pc_hi, (S_SAVE_PC_HI_TRAP_ID_MASK|S_SAVE_PC_HI_HT_MASK)
s_cbranch_scc1 L_TRAP_CASE
s_or_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_HALT_MASK
// If the PC points to S_ENDPGM then context save will fail if STATUS.HALT is set.
// Rewind the PC to prevent this from occurring.
s_sub_u32 ttmp0, ttmp0, 0x8
s_subb_u32 ttmp1, ttmp1, 0x0
s_branch L_EXIT_TRAP
L_TRAP_CASE:
// Host trap will not cause trap re-entry.
s_and_b32 ttmp2, s_save_pc_hi, S_SAVE_PC_HI_HT_MASK
s_cbranch_scc1 L_EXIT_TRAP
// Advance past trap instruction to prevent re-entry.
s_add_u32 ttmp0, ttmp0, 0x4
s_addc_u32 ttmp1, ttmp1, 0x0
L_EXIT_TRAP:
s_and_b32 ttmp1, ttmp1, 0xFFFF
restore_ib_sts(ttmp14)
// Restore SQ_WAVE_STATUS.
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
set_status_without_spi_prio(s_save_status, ttmp2)
s_rfe_b64 [ttmp0, ttmp1]
// ********* End handling of non-CWSR traps *******************
/**************************************************************************/
/* save routine */
/**************************************************************************/
L_SAVE:
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_mov_b32 s_save_tmp, 0 //clear saveCtx bit
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_SAVECTX_SHIFT, 1), s_save_tmp //clear saveCtx bit
save_and_clear_ib_sts(s_save_tmp)
/* inform SPI the readiness and wait for SPI's go signal */
s_mov_b32 s_save_exec_lo, exec_lo //save EXEC and use EXEC for the go signal from SPI
s_mov_b32 s_save_exec_hi, exec_hi
s_mov_b64 exec, 0x0 //clear EXEC to get ready to receive
s_sendmsg sendmsg(MSG_SAVEWAVE) //send SPI a message and wait for SPI's write to EXEC
// Set SPI_PRIO=2 to avoid starving instruction fetch in the waves we're waiting for.
s_or_b32 s_save_tmp, s_save_status, (2 << SQ_WAVE_STATUS_SPI_PRIO_SHIFT)
s_setreg_b32 hwreg(HW_REG_STATUS), s_save_tmp
L_SLEEP:
s_sleep 0x2 // sleep 1 (64clk) is not enough for 8 waves per SIMD, which will cause SQ hang, since the 7,8th wave could not get arbit to exec inst, while other waves are stuck into the sleep-loop and waiting for wrexec!=0
s_cbranch_execz L_SLEEP
// Save trap temporaries 4-11, 13 initialized by SPI debug dispatch logic
// ttmp SR memory offset : size(VGPR)+size(SGPR)+0x40
get_vgpr_size_bytes(s_save_ttmps_lo)
get_sgpr_size_bytes(s_save_ttmps_hi)
s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_ttmps_hi
s_add_u32 s_save_ttmps_lo, s_save_ttmps_lo, s_save_spi_init_lo
s_addc_u32 s_save_ttmps_hi, s_save_spi_init_hi, 0x0
s_and_b32 s_save_ttmps_hi, s_save_ttmps_hi, 0xFFFF
s_store_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_save_ttmps_lo, s_save_ttmps_hi], 0x50 glc:1
ack_sqc_store_workaround()
s_store_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_save_ttmps_lo, s_save_ttmps_hi], 0x60 glc:1
ack_sqc_store_workaround()
s_store_dword ttmp13, [s_save_ttmps_lo, s_save_ttmps_hi], 0x74 glc:1
ack_sqc_store_workaround()
/* setup Resource Contants */
s_mov_b32 s_save_buf_rsrc0, s_save_spi_init_lo //base_addr_lo
s_and_b32 s_save_buf_rsrc1, s_save_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_save_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) although not neccessarily inited
s_mov_b32 s_save_buf_rsrc3, S_SAVE_BUF_RSRC_WORD3_MISC
//FIXME right now s_save_m0/s_save_mem_offset use tma_lo/tma_hi (might need to save them before using them?)
s_mov_b32 s_save_m0, m0 //save M0
/* global mem offset */
s_mov_b32 s_save_mem_offset, 0x0 //mem offset initial value = 0
/* save HW registers */
//////////////////////////////
L_SAVE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_mov_b32 s_save_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) //M0
write_hwreg_to_mem(s_save_pc_lo, s_save_buf_rsrc0, s_save_mem_offset) //PC
write_hwreg_to_mem(s_save_pc_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_exec_lo, s_save_buf_rsrc0, s_save_mem_offset) //EXEC
write_hwreg_to_mem(s_save_exec_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_status, s_save_buf_rsrc0, s_save_mem_offset) //STATUS
//s_save_trapsts conflicts with s_save_alloc_size
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
write_hwreg_to_mem(s_save_trapsts, s_save_buf_rsrc0, s_save_mem_offset) //TRAPSTS
write_hwreg_to_mem(xnack_mask_lo, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_LO
write_hwreg_to_mem(xnack_mask_hi, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_HI
//use s_save_tmp would introduce conflict here between s_save_tmp and s_save_buf_rsrc2
s_getreg_b32 s_save_m0, hwreg(HW_REG_MODE) //MODE
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
/* the first wave in the threadgroup */
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK // extract fisrt wave bit
s_mov_b32 s_save_exec_hi, 0x0
s_or_b32 s_save_exec_hi, s_save_tmp, s_save_exec_hi // save first wave bit to s_save_exec_hi.bits[26]
/* save SGPRs */
// Save SGPR before LDS save, then the s0 to s4 can be used during LDS save...
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_save_mem_offset)
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 2 //NUM_RECORDS in bytes
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// backup s_save_buf_rsrc0,1 to s_save_pc_lo/hi, since write_16sgpr_to_mem function will change the rsrc0
//s_mov_b64 s_save_pc_lo, s_save_buf_rsrc0
s_mov_b64 s_save_xnack_mask_lo, s_save_buf_rsrc0
s_add_u32 s_save_buf_rsrc0, s_save_buf_rsrc0, s_save_mem_offset
s_addc_u32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0
s_mov_b32 m0, 0x0 //SGPR initial index value =0
s_nop 0x0 //Manually inserted wait states
L_SAVE_SGPR_LOOP:
// SGPR is allocated in 16 SGPR granularity
s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0]
s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0]
s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0]
s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0]
s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0]
s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0]
s_movrels_b64 s12, s12 //s12 = s[12+m0], s13 = s[13+m0]
s_movrels_b64 s14, s14 //s14 = s[14+m0], s15 = s[15+m0]
write_16sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset) //PV: the best performance should be using s_buffer_store_dwordx4
s_add_u32 m0, m0, 16 //next sgpr index
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_SGPR_LOOP //SGPR save is complete?
// restore s_save_buf_rsrc0,1
//s_mov_b64 s_save_buf_rsrc0, s_save_pc_lo
s_mov_b64 s_save_buf_rsrc0, s_save_xnack_mask_lo
/* save first 4 VGPR, then LDS save could use */
// each wave will alloc 4 vgprs at least...
/////////////////////////////////////////////////////////////////////////////////////
s_mov_b32 s_save_mem_offset, 0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_mov_b32 xnack_mask_lo, 0x0
s_mov_b32 xnack_mask_hi, 0x0
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR Allocated in 4-GPR granularity
if SAVE_AFTER_XNACK_ERROR
check_if_tcp_store_ok()
s_cbranch_scc1 L_SAVE_FIRST_VGPRS_WITH_TCP
write_vgprs_to_mem_with_sqc(v0, 4, s_save_buf_rsrc0, s_save_mem_offset)
s_branch L_SAVE_LDS
L_SAVE_FIRST_VGPRS_WITH_TCP:
end
write_4vgprs_to_mem(s_save_buf_rsrc0, s_save_mem_offset)
/* save LDS */
//////////////////////////////
L_SAVE_LDS:
// Change EXEC to all threads...
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_SAVE_LDS_DONE //no lds used? jump to L_SAVE_DONE
s_barrier //LDS is used? wait for other waves in the same TG
s_and_b32 s_save_tmp, s_save_exec_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK //exec is still used here
s_cbranch_scc0 L_SAVE_LDS_DONE
// first wave do LDS save;
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_save_buf_rsrc2, s_save_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_hwreg_size_bytes()
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
v_mbcnt_lo_u32_b32 v2, 0xffffffff, 0x0
v_mbcnt_hi_u32_b32 v3, 0xffffffff, v2 // tid
if SAVE_AFTER_XNACK_ERROR
check_if_tcp_store_ok()
s_cbranch_scc1 L_SAVE_LDS_WITH_TCP
v_lshlrev_b32 v2, 2, v3
L_SAVE_LDS_LOOP_SQC:
ds_read2_b32 v[0:1], v2 offset0:0 offset1:0x40
s_waitcnt lgkmcnt(0)
write_vgprs_to_mem_with_sqc(v0, 2, s_save_buf_rsrc0, s_save_mem_offset)
v_add_u32 v2, 0x200, v2
v_cmp_lt_u32 vcc[0:1], v2, s_save_alloc_size
s_cbranch_vccnz L_SAVE_LDS_LOOP_SQC
s_branch L_SAVE_LDS_DONE
L_SAVE_LDS_WITH_TCP:
end
v_mul_i32_i24 v2, v3, 8 // tid*8
v_mov_b32 v3, 256*2
s_mov_b32 m0, 0x10000
s_mov_b32 s0, s_save_buf_rsrc3
s_and_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0xFF7FFFFF // disable add_tid
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0x58000 //DFMT
L_SAVE_LDS_LOOP_VECTOR:
ds_read_b64 v[0:1], v2 //x =LDS[a], byte address
s_waitcnt lgkmcnt(0)
buffer_store_dwordx2 v[0:1], v2, s_save_buf_rsrc0, s_save_mem_offset offen:1 glc:1 slc:1
// s_waitcnt vmcnt(0)
// v_add_u32 v2, vcc[0:1], v2, v3
v_add_u32 v2, v2, v3
v_cmp_lt_u32 vcc[0:1], v2, s_save_alloc_size
s_cbranch_vccnz L_SAVE_LDS_LOOP_VECTOR
// restore rsrc3
s_mov_b32 s_save_buf_rsrc3, s0
L_SAVE_LDS_DONE:
/* save VGPRs - set the Rest VGPRs */
//////////////////////////////////////////////////////////////////////////////////////
L_SAVE_VGPR:
// VGPR SR memory offset: 0
// TODO rearrange the RSRC words to use swizzle for VGPR save...
s_mov_b32 s_save_mem_offset, (0+256*4) // for the rest VGPRs
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
get_num_arch_vgprs(s_save_alloc_size)
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// VGPR store using dw burst
s_mov_b32 m0, 0x4 //VGPR initial index value =0
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_END
s_set_gpr_idx_on m0, 0x1 //M0[7:0] = M0[7:0] and M0[15:12] = 0x1
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 //add 0x1000 since we compare m0 against it later
if SAVE_AFTER_XNACK_ERROR
check_if_tcp_store_ok()
s_cbranch_scc1 L_SAVE_VGPR_LOOP
L_SAVE_VGPR_LOOP_SQC:
write_vgprs_to_mem_with_sqc(v0, 4, s_save_buf_rsrc0, s_save_mem_offset)
s_add_u32 m0, m0, 4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc1 L_SAVE_VGPR_LOOP_SQC
s_set_gpr_idx_off
s_branch L_SAVE_VGPR_END
end
L_SAVE_VGPR_LOOP:
v_mov_b32 v0, v0 //v0 = v[0+m0]
v_mov_b32 v1, v1 //v0 = v[0+m0]
v_mov_b32 v2, v2 //v0 = v[0+m0]
v_mov_b32 v3, v3 //v0 = v[0+m0]
write_4vgprs_to_mem(s_save_buf_rsrc0, s_save_mem_offset)
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4 //every buffer_store_dword does 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_VGPR_LOOP //VGPR save is complete?
s_set_gpr_idx_off
L_SAVE_VGPR_END:
#if ASIC_FAMILY >= CHIP_ARCTURUS
// Save ACC VGPRs
#if ASIC_FAMILY >= CHIP_ALDEBARAN
// ACC VGPR count may differ from ARCH VGPR count.
get_num_acc_vgprs(s_save_alloc_size, s_save_tmp)
s_and_b32 s_save_alloc_size, s_save_alloc_size, s_save_alloc_size
s_cbranch_scc0 L_SAVE_ACCVGPR_END
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 //add 0x1000 since we compare m0 against it later
#endif
s_mov_b32 m0, 0x0 //VGPR initial index value =0
s_set_gpr_idx_on m0, 0x1 //M0[7:0] = M0[7:0] and M0[15:12] = 0x1
if SAVE_AFTER_XNACK_ERROR
check_if_tcp_store_ok()
s_cbranch_scc1 L_SAVE_ACCVGPR_LOOP
L_SAVE_ACCVGPR_LOOP_SQC:
for var vgpr = 0; vgpr < 4; ++ vgpr
v_accvgpr_read v[vgpr], acc[vgpr] // v[N] = acc[N+m0]
end
write_vgprs_to_mem_with_sqc(v0, 4, s_save_buf_rsrc0, s_save_mem_offset)
s_add_u32 m0, m0, 4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc1 L_SAVE_ACCVGPR_LOOP_SQC
s_set_gpr_idx_off
s_branch L_SAVE_ACCVGPR_END
end
L_SAVE_ACCVGPR_LOOP:
for var vgpr = 0; vgpr < 4; ++ vgpr
v_accvgpr_read v[vgpr], acc[vgpr] // v[N] = acc[N+m0]
end
write_4vgprs_to_mem(s_save_buf_rsrc0, s_save_mem_offset)
s_add_u32 m0, m0, 4
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc1 L_SAVE_ACCVGPR_LOOP
s_set_gpr_idx_off
L_SAVE_ACCVGPR_END:
#endif
s_branch L_END_PGM
/**************************************************************************/
/* restore routine */
/**************************************************************************/
L_RESTORE:
/* Setup Resource Contants */
s_mov_b32 s_restore_buf_rsrc0, s_restore_spi_init_lo //base_addr_lo
s_and_b32 s_restore_buf_rsrc1, s_restore_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_restore_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes)
s_mov_b32 s_restore_buf_rsrc3, S_RESTORE_BUF_RSRC_WORD3_MISC
/* global mem offset */
// s_mov_b32 s_restore_mem_offset, 0x0 //mem offset initial value = 0
/* the first wave in the threadgroup */
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_FIRST_WAVE_MASK
s_cbranch_scc0 L_RESTORE_VGPR
/* restore LDS */
//////////////////////////////
L_RESTORE_LDS:
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_RESTORE_VGPR //no lds used? jump to L_RESTORE_VGPR
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_restore_buf_rsrc2, s_restore_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_hwreg_size_bytes() //FIXME, Check if offset overflow???
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
L_RESTORE_LDS_LOOP:
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 offset:256 // second 64DW
s_add_u32 m0, m0, 256*2 // 128 DW
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*2 //mem offset increased by 128DW
s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_LDS_LOOP //LDS restore is complete?
/* restore VGPRs */
//////////////////////////////
L_RESTORE_VGPR:
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
// Save ARCH VGPRs 4-N, then all ACC VGPRs, then ARCH VGPRs 0-3.
get_num_arch_vgprs(s_restore_alloc_size)
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 0x8000 //add 0x8000 since we compare m0 against it later
// ARCH VGPRs at offset: 0
s_mov_b32 s_restore_mem_offset, 0x0
s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v1, v0 will be the last
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_mov_b32 m0, 4 //VGPR initial index value = 1
s_set_gpr_idx_on m0, 0x8 //M0[7:0] = M0[7:0] and M0[15:12] = 0x8
L_RESTORE_VGPR_LOOP:
read_4vgprs_from_mem(s_restore_buf_rsrc0, s_restore_mem_offset)
v_mov_b32 v0, v0 //v[0+m0] = v0
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_VGPR_LOOP //VGPR restore (except v0) is complete?
#if ASIC_FAMILY >= CHIP_ALDEBARAN
// ACC VGPR count may differ from ARCH VGPR count.
get_num_acc_vgprs(s_restore_alloc_size, s_restore_tmp2)
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, s_restore_alloc_size
s_cbranch_scc0 L_RESTORE_ACCVGPR_END
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 0x8000 //add 0x8000 since we compare m0 against it later
#endif
#if ASIC_FAMILY >= CHIP_ARCTURUS
// ACC VGPRs at offset: size(ARCH VGPRs)
s_mov_b32 m0, 0
s_set_gpr_idx_on m0, 0x8 //M0[7:0] = M0[7:0] and M0[15:12] = 0x8
L_RESTORE_ACCVGPR_LOOP:
read_4vgprs_from_mem(s_restore_buf_rsrc0, s_restore_mem_offset)
for var vgpr = 0; vgpr < 4; ++ vgpr
v_accvgpr_write acc[vgpr], v[vgpr]
end
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_ACCVGPR_LOOP //VGPR restore (except v0) is complete?
L_RESTORE_ACCVGPR_END:
#endif
s_set_gpr_idx_off
// Restore VGPRs 0-3 last, no longer needed.
read_4vgprs_from_mem(s_restore_buf_rsrc0, s_restore_mem_offset_save)
/* restore SGPRs */
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 16*4 // restore SGPR from S[n] to S[0], by 16 sgprs group
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 2 //NUM_RECORDS in bytes
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_mov_b32 m0, s_restore_alloc_size
L_RESTORE_SGPR_LOOP:
read_16sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) //PV: further performance improvement can be made
s_waitcnt lgkmcnt(0) //ensure data ready
s_sub_u32 m0, m0, 16 // Restore from S[n] to S[0]
s_nop 0 // hazard SALU M0=> S_MOVREL
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
s_movreld_b64 s4, s4
s_movreld_b64 s6, s6
s_movreld_b64 s8, s8
s_movreld_b64 s10, s10
s_movreld_b64 s12, s12
s_movreld_b64 s14, s14
s_cmp_eq_u32 m0, 0 //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc0 L_RESTORE_SGPR_LOOP //SGPR restore (except s0) is complete?
/* restore HW registers */
//////////////////////////////
L_RESTORE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_mov_b32 s_restore_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
read_hwreg_from_mem(s_restore_m0, s_restore_buf_rsrc0, s_restore_mem_offset) //M0
read_hwreg_from_mem(s_restore_pc_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //PC
read_hwreg_from_mem(s_restore_pc_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_exec_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //EXEC
read_hwreg_from_mem(s_restore_exec_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_status, s_restore_buf_rsrc0, s_restore_mem_offset) //STATUS
read_hwreg_from_mem(s_restore_trapsts, s_restore_buf_rsrc0, s_restore_mem_offset) //TRAPSTS
read_hwreg_from_mem(xnack_mask_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_LO
read_hwreg_from_mem(xnack_mask_hi, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_HI
read_hwreg_from_mem(s_restore_mode, s_restore_buf_rsrc0, s_restore_mem_offset) //MODE
s_waitcnt lgkmcnt(0) //from now on, it is safe to restore STATUS and IB_STS
s_mov_b32 m0, s_restore_m0
s_mov_b32 exec_lo, s_restore_exec_lo
s_mov_b32 exec_hi, s_restore_exec_hi
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK, s_restore_trapsts
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE), s_restore_m0
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK, s_restore_trapsts
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE), s_restore_m0
//s_setreg_b32 hwreg(HW_REG_TRAPSTS), s_restore_trapsts //don't overwrite SAVECTX bit as it may be set through external SAVECTX during restore
s_setreg_b32 hwreg(HW_REG_MODE), s_restore_mode
// Restore trap temporaries 4-11, 13 initialized by SPI debug dispatch logic
// ttmp SR memory offset : size(VGPR)+size(SGPR)+0x40
get_vgpr_size_bytes(s_restore_ttmps_lo)
get_sgpr_size_bytes(s_restore_ttmps_hi)
s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_ttmps_hi
s_add_u32 s_restore_ttmps_lo, s_restore_ttmps_lo, s_restore_buf_rsrc0
s_addc_u32 s_restore_ttmps_hi, s_restore_buf_rsrc1, 0x0
s_and_b32 s_restore_ttmps_hi, s_restore_ttmps_hi, 0xFFFF
s_load_dwordx4 [ttmp4, ttmp5, ttmp6, ttmp7], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x50 glc:1
s_load_dwordx4 [ttmp8, ttmp9, ttmp10, ttmp11], [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x60 glc:1
s_load_dword ttmp13, [s_restore_ttmps_lo, s_restore_ttmps_hi], 0x74 glc:1
s_waitcnt lgkmcnt(0)
restore_ib_sts(s_restore_tmp)
s_and_b32 s_restore_pc_hi, s_restore_pc_hi, 0x0000ffff //pc[47:32] //Do it here in order not to affect STATUS
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
set_status_without_spi_prio(s_restore_status, s_restore_tmp) // SCC is included, which is changed by previous salu
s_barrier //barrier to ensure the readiness of LDS before access attempts from any other wave in the same TG //FIXME not performance-optimal at this time
s_rfe_b64 s_restore_pc_lo //Return to the main shader program and resume execution
/**************************************************************************/
/* the END */
/**************************************************************************/
L_END_PGM:
s_endpgm_saved
end
/**************************************************************************/
/* the helper functions */
/**************************************************************************/
//Only for save hwreg to mem
function write_hwreg_to_mem(s, s_rsrc, s_mem_offset)
s_mov_b32 exec_lo, m0 //assuming exec_lo is not needed anymore from this point on
s_mov_b32 m0, s_mem_offset
s_buffer_store_dword s, s_rsrc, m0 glc:1
ack_sqc_store_workaround()
s_add_u32 s_mem_offset, s_mem_offset, 4
s_mov_b32 m0, exec_lo
end
// HWREG are saved before SGPRs, so all HWREG could be use.
function write_16sgpr_to_mem(s, s_rsrc, s_mem_offset)
s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1
ack_sqc_store_workaround()
s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1
ack_sqc_store_workaround()
s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1
ack_sqc_store_workaround()
s_buffer_store_dwordx4 s[12], s_rsrc, 48 glc:1
ack_sqc_store_workaround()
s_add_u32 s_rsrc[0], s_rsrc[0], 4*16
s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0 // +scc
end
function read_hwreg_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dword s, s_rsrc, s_mem_offset glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
end
function read_16sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dwordx16 s, s_rsrc, s_mem_offset glc:1
s_sub_u32 s_mem_offset, s_mem_offset, 4*16
end
function check_if_tcp_store_ok
// If STATUS.ALLOW_REPLAY=0 and TRAPSTS.XNACK_ERROR=1 then TCP stores will fail.
s_and_b32 s_save_tmp, s_save_status, SQ_WAVE_STATUS_ALLOW_REPLAY_MASK
s_cbranch_scc1 L_TCP_STORE_CHECK_DONE
s_getreg_b32 s_save_tmp, hwreg(HW_REG_TRAPSTS)
s_andn2_b32 s_save_tmp, SQ_WAVE_TRAPSTS_XNACK_ERROR_MASK, s_save_tmp
L_TCP_STORE_CHECK_DONE:
end
function write_4vgprs_to_mem(s_rsrc, s_mem_offset)
buffer_store_dword v0, v0, s_rsrc, s_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256*3
end
function read_4vgprs_from_mem(s_rsrc, s_mem_offset)
buffer_load_dword v0, v0, s_rsrc, s_mem_offset slc:1 glc:1
buffer_load_dword v1, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_rsrc, s_mem_offset slc:1 glc:1 offset:256*3
s_waitcnt vmcnt(0)
end
function write_vgpr_to_mem_with_sqc(v, s_rsrc, s_mem_offset)
s_mov_b32 s4, 0
L_WRITE_VGPR_LANE_LOOP:
for var lane = 0; lane < 4; ++ lane
v_readlane_b32 s[lane], v, s4
s_add_u32 s4, s4, 1
end
s_buffer_store_dwordx4 s[0:3], s_rsrc, s_mem_offset glc:1
ack_sqc_store_workaround()
s_add_u32 s_mem_offset, s_mem_offset, 0x10
s_cmp_eq_u32 s4, 0x40
s_cbranch_scc0 L_WRITE_VGPR_LANE_LOOP
end
function write_vgprs_to_mem_with_sqc(v, n_vgprs, s_rsrc, s_mem_offset)
for var vgpr = 0; vgpr < n_vgprs; ++ vgpr
write_vgpr_to_mem_with_sqc(v[vgpr], s_rsrc, s_mem_offset)
end
end
function get_lds_size_bytes(s_lds_size_byte)
// SQ LDS granularity is 64DW, while PGM_RSRC2.lds_size is in granularity 128DW
s_getreg_b32 s_lds_size_byte, hwreg(HW_REG_LDS_ALLOC, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) // lds_size
s_lshl_b32 s_lds_size_byte, s_lds_size_byte, 8 //LDS size in dwords = lds_size * 64 *4Bytes // granularity 64DW
end
function get_vgpr_size_bytes(s_vgpr_size_byte)
s_getreg_b32 s_vgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_vgpr_size_byte, s_vgpr_size_byte, 1
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+8) //Number of VGPRs = (vgpr_size + 1) * 4 * 64 * 4 (non-zero value) //FIXME for GFX, zero is possible
#if ASIC_FAMILY >= CHIP_ARCTURUS
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, 1 // Double size for ACC VGPRs
#endif
end
function get_sgpr_size_bytes(s_sgpr_size_byte)
s_getreg_b32 s_sgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_sgpr_size_byte, s_sgpr_size_byte, 1
s_lshl_b32 s_sgpr_size_byte, s_sgpr_size_byte, 6 //Number of SGPRs = (sgpr_size + 1) * 16 *4 (non-zero value)
end
function get_hwreg_size_bytes
return 128 //HWREG size 128 bytes
end
function get_num_arch_vgprs(s_num_arch_vgprs)
#if ASIC_FAMILY >= CHIP_ALDEBARAN
// VGPR count includes ACC VGPRs, use ACC VGPR offset for ARCH VGPR count.
s_getreg_b32 s_num_arch_vgprs, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_ACCV_OFFSET_SHIFT,SQ_WAVE_GPR_ALLOC_ACCV_OFFSET_SIZE)
#else
s_getreg_b32 s_num_arch_vgprs, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE)
#endif
// Number of VGPRs = (vgpr_size + 1) * 4
s_add_u32 s_num_arch_vgprs, s_num_arch_vgprs, 1
s_lshl_b32 s_num_arch_vgprs, s_num_arch_vgprs, 2
end
#if ASIC_FAMILY >= CHIP_ALDEBARAN
function get_num_acc_vgprs(s_num_acc_vgprs, s_tmp)
// VGPR count = (GPR_ALLOC.VGPR_SIZE + 1) * 8
s_getreg_b32 s_num_acc_vgprs, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE)
s_add_u32 s_num_acc_vgprs, s_num_acc_vgprs, 1
s_lshl_b32 s_num_acc_vgprs, s_num_acc_vgprs, 3
// ACC VGPR count = VGPR count - ARCH VGPR count.
get_num_arch_vgprs(s_tmp)
s_sub_u32 s_num_acc_vgprs, s_num_acc_vgprs, s_tmp
end
#endif
function ack_sqc_store_workaround
if ACK_SQC_STORE
s_waitcnt lgkmcnt(0)
end
end
function set_status_without_spi_prio(status, tmp)
// Do not restore STATUS.SPI_PRIO since scheduler may have raised it.
s_lshr_b32 tmp, status, SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT
s_setreg_b32 hwreg(HW_REG_STATUS, SQ_WAVE_STATUS_POST_SPI_PRIO_SHIFT, SQ_WAVE_STATUS_POST_SPI_PRIO_SIZE), tmp
s_nop 0x2 // avoid S_SETREG => S_SETREG hazard
s_setreg_b32 hwreg(HW_REG_STATUS, SQ_WAVE_STATUS_PRE_SPI_PRIO_SHIFT, SQ_WAVE_STATUS_PRE_SPI_PRIO_SIZE), status
end
function save_and_clear_ib_sts(tmp)
// Save IB_STS.FIRST_REPLAY[15] and IB_STS.RCNT[20:16] into unused space s_save_ib_sts[31:26].
s_getreg_b32 tmp, hwreg(HW_REG_IB_STS)
s_and_b32 tmp, tmp, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK
s_lshl_b32 tmp, tmp, (TTMP_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT)
s_andn2_b32 s_save_ib_sts, s_save_ib_sts, TTMP_SAVE_RCNT_FIRST_REPLAY_MASK
s_or_b32 s_save_ib_sts, s_save_ib_sts, tmp
s_setreg_imm32_b32 hwreg(HW_REG_IB_STS), 0x0
end
function restore_ib_sts(tmp)
s_lshr_b32 tmp, s_save_ib_sts, (TTMP_SAVE_RCNT_FIRST_REPLAY_SHIFT - SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT)
s_and_b32 tmp, tmp, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK
s_setreg_b32 hwreg(HW_REG_IB_STS), tmp
end