blob: 1e7de0f03290a30e9083f869b36a3d14906b2ecb [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "dc_dmub_srv.h"
#include "../dmub/dmub_srv.h"
#include "dm_helpers.h"
#include "dc_hw_types.h"
#include "core_types.h"
#include "../basics/conversion.h"
#include "cursor_reg_cache.h"
#include "resource.h"
#include "clk_mgr.h"
#include "dc_state_priv.h"
#include "dc_plane_priv.h"
#define CTX dc_dmub_srv->ctx
#define DC_LOGGER CTX->logger
static void dc_dmub_srv_construct(struct dc_dmub_srv *dc_srv, struct dc *dc,
struct dmub_srv *dmub)
{
dc_srv->dmub = dmub;
dc_srv->ctx = dc->ctx;
}
struct dc_dmub_srv *dc_dmub_srv_create(struct dc *dc, struct dmub_srv *dmub)
{
struct dc_dmub_srv *dc_srv =
kzalloc(sizeof(struct dc_dmub_srv), GFP_KERNEL);
if (dc_srv == NULL) {
BREAK_TO_DEBUGGER();
return NULL;
}
dc_dmub_srv_construct(dc_srv, dc, dmub);
return dc_srv;
}
void dc_dmub_srv_destroy(struct dc_dmub_srv **dmub_srv)
{
if (*dmub_srv) {
kfree(*dmub_srv);
*dmub_srv = NULL;
}
}
void dc_dmub_srv_wait_idle(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_srv *dmub = dc_dmub_srv->dmub;
struct dc_context *dc_ctx = dc_dmub_srv->ctx;
enum dmub_status status;
do {
status = dmub_srv_wait_for_idle(dmub, 100000);
} while (dc_dmub_srv->ctx->dc->debug.disable_timeout && status != DMUB_STATUS_OK);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error waiting for DMUB idle: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
}
void dc_dmub_srv_clear_inbox0_ack(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_srv *dmub = dc_dmub_srv->dmub;
struct dc_context *dc_ctx = dc_dmub_srv->ctx;
enum dmub_status status = DMUB_STATUS_OK;
status = dmub_srv_clear_inbox0_ack(dmub);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error clearing INBOX0 ack: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
}
void dc_dmub_srv_wait_for_inbox0_ack(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_srv *dmub = dc_dmub_srv->dmub;
struct dc_context *dc_ctx = dc_dmub_srv->ctx;
enum dmub_status status = DMUB_STATUS_OK;
status = dmub_srv_wait_for_inbox0_ack(dmub, 100000);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error waiting for INBOX0 HW Lock Ack\n");
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
}
void dc_dmub_srv_send_inbox0_cmd(struct dc_dmub_srv *dc_dmub_srv,
union dmub_inbox0_data_register data)
{
struct dmub_srv *dmub = dc_dmub_srv->dmub;
struct dc_context *dc_ctx = dc_dmub_srv->ctx;
enum dmub_status status = DMUB_STATUS_OK;
status = dmub_srv_send_inbox0_cmd(dmub, data);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error sending INBOX0 cmd\n");
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
}
bool dc_dmub_srv_cmd_list_queue_execute(struct dc_dmub_srv *dc_dmub_srv,
unsigned int count,
union dmub_rb_cmd *cmd_list)
{
struct dc_context *dc_ctx;
struct dmub_srv *dmub;
enum dmub_status status;
int i;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
dc_ctx = dc_dmub_srv->ctx;
dmub = dc_dmub_srv->dmub;
for (i = 0 ; i < count; i++) {
// Queue command
status = dmub_srv_cmd_queue(dmub, &cmd_list[i]);
if (status == DMUB_STATUS_QUEUE_FULL) {
/* Execute and wait for queue to become empty again. */
status = dmub_srv_cmd_execute(dmub);
if (status == DMUB_STATUS_POWER_STATE_D3)
return false;
do {
status = dmub_srv_wait_for_idle(dmub, 100000);
} while (dc_dmub_srv->ctx->dc->debug.disable_timeout && status != DMUB_STATUS_OK);
/* Requeue the command. */
status = dmub_srv_cmd_queue(dmub, &cmd_list[i]);
}
if (status != DMUB_STATUS_OK) {
if (status != DMUB_STATUS_POWER_STATE_D3) {
DC_ERROR("Error queueing DMUB command: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
return false;
}
}
status = dmub_srv_cmd_execute(dmub);
if (status != DMUB_STATUS_OK) {
if (status != DMUB_STATUS_POWER_STATE_D3) {
DC_ERROR("Error starting DMUB execution: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
return false;
}
return true;
}
bool dc_dmub_srv_wait_for_idle(struct dc_dmub_srv *dc_dmub_srv,
enum dm_dmub_wait_type wait_type,
union dmub_rb_cmd *cmd_list)
{
struct dmub_srv *dmub;
enum dmub_status status;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
dmub = dc_dmub_srv->dmub;
// Wait for DMUB to process command
if (wait_type != DM_DMUB_WAIT_TYPE_NO_WAIT) {
do {
status = dmub_srv_wait_for_idle(dmub, 100000);
} while (dc_dmub_srv->ctx->dc->debug.disable_timeout && status != DMUB_STATUS_OK);
if (status != DMUB_STATUS_OK) {
DC_LOG_DEBUG("No reply for DMUB command: status=%d\n", status);
if (!dmub->debug.timeout_occured) {
dmub->debug.timeout_occured = true;
dmub->debug.timeout_cmd = *cmd_list;
dmub->debug.timestamp = dm_get_timestamp(dc_dmub_srv->ctx);
}
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
return false;
}
// Copy data back from ring buffer into command
if (wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)
dmub_rb_get_return_data(&dmub->inbox1_rb, cmd_list);
}
return true;
}
bool dc_dmub_srv_cmd_run(struct dc_dmub_srv *dc_dmub_srv, union dmub_rb_cmd *cmd, enum dm_dmub_wait_type wait_type)
{
return dc_dmub_srv_cmd_run_list(dc_dmub_srv, 1, cmd, wait_type);
}
bool dc_dmub_srv_cmd_run_list(struct dc_dmub_srv *dc_dmub_srv, unsigned int count, union dmub_rb_cmd *cmd_list, enum dm_dmub_wait_type wait_type)
{
struct dc_context *dc_ctx;
struct dmub_srv *dmub;
enum dmub_status status;
int i;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
dc_ctx = dc_dmub_srv->ctx;
dmub = dc_dmub_srv->dmub;
for (i = 0 ; i < count; i++) {
// Queue command
status = dmub_srv_cmd_queue(dmub, &cmd_list[i]);
if (status == DMUB_STATUS_QUEUE_FULL) {
/* Execute and wait for queue to become empty again. */
status = dmub_srv_cmd_execute(dmub);
if (status == DMUB_STATUS_POWER_STATE_D3)
return false;
status = dmub_srv_wait_for_idle(dmub, 100000);
if (status != DMUB_STATUS_OK)
return false;
/* Requeue the command. */
status = dmub_srv_cmd_queue(dmub, &cmd_list[i]);
}
if (status != DMUB_STATUS_OK) {
if (status != DMUB_STATUS_POWER_STATE_D3) {
DC_ERROR("Error queueing DMUB command: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
return false;
}
}
status = dmub_srv_cmd_execute(dmub);
if (status != DMUB_STATUS_OK) {
if (status != DMUB_STATUS_POWER_STATE_D3) {
DC_ERROR("Error starting DMUB execution: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
}
return false;
}
// Wait for DMUB to process command
if (wait_type != DM_DMUB_WAIT_TYPE_NO_WAIT) {
if (dc_dmub_srv->ctx->dc->debug.disable_timeout) {
do {
status = dmub_srv_wait_for_idle(dmub, 100000);
} while (status != DMUB_STATUS_OK);
} else
status = dmub_srv_wait_for_idle(dmub, 100000);
if (status != DMUB_STATUS_OK) {
DC_LOG_DEBUG("No reply for DMUB command: status=%d\n", status);
dc_dmub_srv_log_diagnostic_data(dc_dmub_srv);
return false;
}
// Copy data back from ring buffer into command
if (wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)
dmub_rb_get_return_data(&dmub->inbox1_rb, cmd_list);
}
return true;
}
bool dc_dmub_srv_optimized_init_done(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_srv *dmub;
struct dc_context *dc_ctx;
union dmub_fw_boot_status boot_status;
enum dmub_status status;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
dmub = dc_dmub_srv->dmub;
dc_ctx = dc_dmub_srv->ctx;
status = dmub_srv_get_fw_boot_status(dmub, &boot_status);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error querying DMUB boot status: error=%d\n", status);
return false;
}
return boot_status.bits.optimized_init_done;
}
bool dc_dmub_srv_notify_stream_mask(struct dc_dmub_srv *dc_dmub_srv,
unsigned int stream_mask)
{
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
return dc_wake_and_execute_gpint(dc_dmub_srv->ctx, DMUB_GPINT__IDLE_OPT_NOTIFY_STREAM_MASK,
stream_mask, NULL, DM_DMUB_WAIT_TYPE_WAIT);
}
bool dc_dmub_srv_is_restore_required(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_srv *dmub;
struct dc_context *dc_ctx;
union dmub_fw_boot_status boot_status;
enum dmub_status status;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
dmub = dc_dmub_srv->dmub;
dc_ctx = dc_dmub_srv->ctx;
status = dmub_srv_get_fw_boot_status(dmub, &boot_status);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error querying DMUB boot status: error=%d\n", status);
return false;
}
return boot_status.bits.restore_required;
}
bool dc_dmub_srv_get_dmub_outbox0_msg(const struct dc *dc, struct dmcub_trace_buf_entry *entry)
{
struct dmub_srv *dmub = dc->ctx->dmub_srv->dmub;
return dmub_srv_get_outbox0_msg(dmub, entry);
}
void dc_dmub_trace_event_control(struct dc *dc, bool enable)
{
dm_helpers_dmub_outbox_interrupt_control(dc->ctx, enable);
}
void dc_dmub_srv_drr_update_cmd(struct dc *dc, uint32_t tg_inst, uint32_t vtotal_min, uint32_t vtotal_max)
{
union dmub_rb_cmd cmd = { 0 };
cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_DRR_UPDATE;
cmd.drr_update.dmub_optc_state_req.v_total_max = vtotal_max;
cmd.drr_update.dmub_optc_state_req.v_total_min = vtotal_min;
cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst;
cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header);
// Send the command to the DMCUB.
dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
void dc_dmub_srv_set_drr_manual_trigger_cmd(struct dc *dc, uint32_t tg_inst)
{
union dmub_rb_cmd cmd = { 0 };
cmd.drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmd.drr_update.header.sub_type = DMUB_CMD__FAMS_SET_MANUAL_TRIGGER;
cmd.drr_update.dmub_optc_state_req.tg_inst = tg_inst;
cmd.drr_update.header.payload_bytes = sizeof(cmd.drr_update) - sizeof(cmd.drr_update.header);
// Send the command to the DMCUB.
dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
static uint8_t dc_dmub_srv_get_pipes_for_stream(struct dc *dc, struct dc_stream_state *stream)
{
uint8_t pipes = 0;
int i = 0;
for (i = 0; i < MAX_PIPES; i++) {
struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
if (pipe->stream == stream && pipe->stream_res.tg)
pipes = i;
}
return pipes;
}
static void dc_dmub_srv_populate_fams_pipe_info(struct dc *dc, struct dc_state *context,
struct pipe_ctx *head_pipe,
struct dmub_cmd_fw_assisted_mclk_switch_pipe_data *fams_pipe_data)
{
int j;
int pipe_idx = 0;
fams_pipe_data->pipe_index[pipe_idx++] = head_pipe->plane_res.hubp->inst;
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *split_pipe = &context->res_ctx.pipe_ctx[j];
if (split_pipe->stream == head_pipe->stream && (split_pipe->top_pipe || split_pipe->prev_odm_pipe)) {
fams_pipe_data->pipe_index[pipe_idx++] = split_pipe->plane_res.hubp->inst;
}
}
fams_pipe_data->pipe_count = pipe_idx;
}
bool dc_dmub_srv_p_state_delegate(struct dc *dc, bool should_manage_pstate, struct dc_state *context)
{
union dmub_rb_cmd cmd = { 0 };
struct dmub_cmd_fw_assisted_mclk_switch_config *config_data = &cmd.fw_assisted_mclk_switch.config_data;
int i = 0, k = 0;
int ramp_up_num_steps = 1; // TODO: Ramp is currently disabled. Reenable it.
uint8_t visual_confirm_enabled;
int pipe_idx = 0;
struct dc_stream_status *stream_status = NULL;
if (dc == NULL)
return false;
visual_confirm_enabled = dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS;
// Format command.
cmd.fw_assisted_mclk_switch.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmd.fw_assisted_mclk_switch.header.sub_type = DMUB_CMD__FAMS_SETUP_FW_CTRL;
cmd.fw_assisted_mclk_switch.config_data.fams_enabled = should_manage_pstate;
cmd.fw_assisted_mclk_switch.config_data.visual_confirm_enabled = visual_confirm_enabled;
if (should_manage_pstate) {
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!pipe->stream)
continue;
/* If FAMS is being used to support P-State and there is a stream
* that does not use FAMS, we are in an FPO + VActive scenario.
* Assign vactive stretch margin in this case.
*/
stream_status = dc_state_get_stream_status(context, pipe->stream);
if (stream_status && !stream_status->fpo_in_use) {
cmd.fw_assisted_mclk_switch.config_data.vactive_stretch_margin_us = dc->debug.fpo_vactive_margin_us;
break;
}
pipe_idx++;
}
}
for (i = 0, k = 0; context && i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
if (!resource_is_pipe_type(pipe, OTG_MASTER))
continue;
stream_status = dc_state_get_stream_status(context, pipe->stream);
if (stream_status && stream_status->fpo_in_use) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
uint8_t min_refresh_in_hz = (pipe->stream->timing.min_refresh_in_uhz + 999999) / 1000000;
config_data->pipe_data[k].pix_clk_100hz = pipe->stream->timing.pix_clk_100hz;
config_data->pipe_data[k].min_refresh_in_hz = min_refresh_in_hz;
config_data->pipe_data[k].max_ramp_step = ramp_up_num_steps;
config_data->pipe_data[k].pipes = dc_dmub_srv_get_pipes_for_stream(dc, pipe->stream);
dc_dmub_srv_populate_fams_pipe_info(dc, context, pipe, &config_data->pipe_data[k]);
k++;
}
}
cmd.fw_assisted_mclk_switch.header.payload_bytes =
sizeof(cmd.fw_assisted_mclk_switch) - sizeof(cmd.fw_assisted_mclk_switch.header);
// Send the command to the DMCUB.
dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
return true;
}
void dc_dmub_srv_query_caps_cmd(struct dc_dmub_srv *dc_dmub_srv)
{
union dmub_rb_cmd cmd = { 0 };
if (dc_dmub_srv->ctx->dc->debug.dmcub_emulation)
return;
memset(&cmd, 0, sizeof(cmd));
/* Prepare fw command */
cmd.query_feature_caps.header.type = DMUB_CMD__QUERY_FEATURE_CAPS;
cmd.query_feature_caps.header.sub_type = 0;
cmd.query_feature_caps.header.ret_status = 1;
cmd.query_feature_caps.header.payload_bytes = sizeof(struct dmub_cmd_query_feature_caps_data);
/* If command was processed, copy feature caps to dmub srv */
if (dc_wake_and_execute_dmub_cmd(dc_dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) &&
cmd.query_feature_caps.header.ret_status == 0) {
memcpy(&dc_dmub_srv->dmub->feature_caps,
&cmd.query_feature_caps.query_feature_caps_data,
sizeof(struct dmub_feature_caps));
}
}
void dc_dmub_srv_get_visual_confirm_color_cmd(struct dc *dc, struct pipe_ctx *pipe_ctx)
{
union dmub_rb_cmd cmd = { 0 };
unsigned int panel_inst = 0;
if (!dc_get_edp_link_panel_inst(dc, pipe_ctx->stream->link, &panel_inst))
return;
memset(&cmd, 0, sizeof(cmd));
// Prepare fw command
cmd.visual_confirm_color.header.type = DMUB_CMD__GET_VISUAL_CONFIRM_COLOR;
cmd.visual_confirm_color.header.sub_type = 0;
cmd.visual_confirm_color.header.ret_status = 1;
cmd.visual_confirm_color.header.payload_bytes = sizeof(struct dmub_cmd_visual_confirm_color_data);
cmd.visual_confirm_color.visual_confirm_color_data.visual_confirm_color.panel_inst = panel_inst;
// If command was processed, copy feature caps to dmub srv
if (dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY) &&
cmd.visual_confirm_color.header.ret_status == 0) {
memcpy(&dc->ctx->dmub_srv->dmub->visual_confirm_color,
&cmd.visual_confirm_color.visual_confirm_color_data,
sizeof(struct dmub_visual_confirm_color));
}
}
/**
* populate_subvp_cmd_drr_info - Helper to populate DRR pipe info for the DMCUB subvp command
*
* @dc: [in] pointer to dc object
* @subvp_pipe: [in] pipe_ctx for the SubVP pipe
* @vblank_pipe: [in] pipe_ctx for the DRR pipe
* @pipe_data: [in] Pipe data which stores the VBLANK/DRR info
* @context: [in] DC state for access to phantom stream
*
* Populate the DMCUB SubVP command with DRR pipe info. All the information
* required for calculating the SubVP + DRR microschedule is populated here.
*
* High level algorithm:
* 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
* 2. Calculate the min and max vtotal which supports SubVP + DRR microschedule
* 3. Populate the drr_info with the min and max supported vtotal values
*/
static void populate_subvp_cmd_drr_info(struct dc *dc,
struct dc_state *context,
struct pipe_ctx *subvp_pipe,
struct pipe_ctx *vblank_pipe,
struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data)
{
struct dc_stream_state *phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing;
struct dc_crtc_timing *phantom_timing;
struct dc_crtc_timing *drr_timing = &vblank_pipe->stream->timing;
uint16_t drr_frame_us = 0;
uint16_t min_drr_supported_us = 0;
uint16_t max_drr_supported_us = 0;
uint16_t max_drr_vblank_us = 0;
uint16_t max_drr_mallregion_us = 0;
uint16_t mall_region_us = 0;
uint16_t prefetch_us = 0;
uint16_t subvp_active_us = 0;
uint16_t drr_active_us = 0;
uint16_t min_vtotal_supported = 0;
uint16_t max_vtotal_supported = 0;
if (!phantom_stream)
return;
phantom_timing = &phantom_stream->timing;
pipe_data->pipe_config.vblank_data.drr_info.drr_in_use = true;
pipe_data->pipe_config.vblank_data.drr_info.use_ramping = false; // for now don't use ramping
pipe_data->pipe_config.vblank_data.drr_info.drr_window_size_ms = 4; // hardcode 4ms DRR window for now
drr_frame_us = div64_u64(((uint64_t)drr_timing->v_total * drr_timing->h_total * 1000000),
(((uint64_t)drr_timing->pix_clk_100hz * 100)));
// P-State allow width and FW delays already included phantom_timing->v_addressable
mall_region_us = div64_u64(((uint64_t)phantom_timing->v_addressable * phantom_timing->h_total * 1000000),
(((uint64_t)phantom_timing->pix_clk_100hz * 100)));
min_drr_supported_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
min_vtotal_supported = div64_u64(((uint64_t)drr_timing->pix_clk_100hz * 100 * min_drr_supported_us),
(((uint64_t)drr_timing->h_total * 1000000)));
prefetch_us = div64_u64(((uint64_t)(phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total * 1000000),
(((uint64_t)phantom_timing->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us));
subvp_active_us = div64_u64(((uint64_t)main_timing->v_addressable * main_timing->h_total * 1000000),
(((uint64_t)main_timing->pix_clk_100hz * 100)));
drr_active_us = div64_u64(((uint64_t)drr_timing->v_addressable * drr_timing->h_total * 1000000),
(((uint64_t)drr_timing->pix_clk_100hz * 100)));
max_drr_vblank_us = div64_u64((subvp_active_us - prefetch_us -
dc->caps.subvp_fw_processing_delay_us - drr_active_us), 2) + drr_active_us;
max_drr_mallregion_us = subvp_active_us - prefetch_us - mall_region_us - dc->caps.subvp_fw_processing_delay_us;
max_drr_supported_us = max_drr_vblank_us > max_drr_mallregion_us ? max_drr_vblank_us : max_drr_mallregion_us;
max_vtotal_supported = div64_u64(((uint64_t)drr_timing->pix_clk_100hz * 100 * max_drr_supported_us),
(((uint64_t)drr_timing->h_total * 1000000)));
/* When calculating the max vtotal supported for SubVP + DRR cases, add
* margin due to possible rounding errors (being off by 1 line in the
* FW calculation can incorrectly push the P-State switch to wait 1 frame
* longer).
*/
max_vtotal_supported = max_vtotal_supported - dc->caps.subvp_drr_max_vblank_margin_us;
pipe_data->pipe_config.vblank_data.drr_info.min_vtotal_supported = min_vtotal_supported;
pipe_data->pipe_config.vblank_data.drr_info.max_vtotal_supported = max_vtotal_supported;
pipe_data->pipe_config.vblank_data.drr_info.drr_vblank_start_margin = dc->caps.subvp_drr_vblank_start_margin_us;
}
/**
* populate_subvp_cmd_vblank_pipe_info - Helper to populate VBLANK pipe info for the DMUB subvp command
*
* @dc: [in] current dc state
* @context: [in] new dc state
* @cmd: [in] DMUB cmd to be populated with SubVP info
* @vblank_pipe: [in] pipe_ctx for the VBLANK pipe
* @cmd_pipe_index: [in] index for the pipe array in DMCUB SubVP cmd
*
* Populate the DMCUB SubVP command with VBLANK pipe info. All the information
* required to calculate the microschedule for SubVP + VBLANK case is stored in
* the pipe_data (subvp_data and vblank_data). Also check if the VBLANK pipe
* is a DRR display -- if it is make a call to populate drr_info.
*/
static void populate_subvp_cmd_vblank_pipe_info(struct dc *dc,
struct dc_state *context,
union dmub_rb_cmd *cmd,
struct pipe_ctx *vblank_pipe,
uint8_t cmd_pipe_index)
{
uint32_t i;
struct pipe_ctx *pipe = NULL;
struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data =
&cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index];
// Find the SubVP pipe
for (i = 0; i < dc->res_pool->pipe_count; i++) {
pipe = &context->res_ctx.pipe_ctx[i];
// We check for master pipe, but it shouldn't matter since we only need
// the pipe for timing info (stream should be same for any pipe splits)
if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
!resource_is_pipe_type(pipe, DPP_PIPE))
continue;
// Find the SubVP pipe
if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN)
break;
}
pipe_data->mode = VBLANK;
pipe_data->pipe_config.vblank_data.pix_clk_100hz = vblank_pipe->stream->timing.pix_clk_100hz;
pipe_data->pipe_config.vblank_data.vblank_start = vblank_pipe->stream->timing.v_total -
vblank_pipe->stream->timing.v_front_porch;
pipe_data->pipe_config.vblank_data.vtotal = vblank_pipe->stream->timing.v_total;
pipe_data->pipe_config.vblank_data.htotal = vblank_pipe->stream->timing.h_total;
pipe_data->pipe_config.vblank_data.vblank_pipe_index = vblank_pipe->pipe_idx;
pipe_data->pipe_config.vblank_data.vstartup_start = vblank_pipe->pipe_dlg_param.vstartup_start;
pipe_data->pipe_config.vblank_data.vblank_end =
vblank_pipe->stream->timing.v_total - vblank_pipe->stream->timing.v_front_porch - vblank_pipe->stream->timing.v_addressable;
if (vblank_pipe->stream->ignore_msa_timing_param &&
(vblank_pipe->stream->allow_freesync || vblank_pipe->stream->vrr_active_variable || vblank_pipe->stream->vrr_active_fixed))
populate_subvp_cmd_drr_info(dc, context, pipe, vblank_pipe, pipe_data);
}
/**
* update_subvp_prefetch_end_to_mall_start - Helper for SubVP + SubVP case
*
* @dc: [in] current dc state
* @context: [in] new dc state
* @cmd: [in] DMUB cmd to be populated with SubVP info
* @subvp_pipes: [in] Array of SubVP pipes (should always be length 2)
*
* For SubVP + SubVP, we use a single vertical interrupt to start the
* microschedule for both SubVP pipes. In order for this to work correctly, the
* MALL REGION of both SubVP pipes must start at the same time. This function
* lengthens the prefetch end to mall start delay of the SubVP pipe that has
* the shorter prefetch so that both MALL REGION's will start at the same time.
*/
static void update_subvp_prefetch_end_to_mall_start(struct dc *dc,
struct dc_state *context,
union dmub_rb_cmd *cmd,
struct pipe_ctx *subvp_pipes[])
{
uint32_t subvp0_prefetch_us = 0;
uint32_t subvp1_prefetch_us = 0;
uint32_t prefetch_delta_us = 0;
struct dc_stream_state *phantom_stream0 = NULL;
struct dc_stream_state *phantom_stream1 = NULL;
struct dc_crtc_timing *phantom_timing0 = NULL;
struct dc_crtc_timing *phantom_timing1 = NULL;
struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data = NULL;
phantom_stream0 = dc_state_get_paired_subvp_stream(context, subvp_pipes[0]->stream);
if (!phantom_stream0)
return;
phantom_stream1 = dc_state_get_paired_subvp_stream(context, subvp_pipes[1]->stream);
if (!phantom_stream1)
return;
phantom_timing0 = &phantom_stream0->timing;
phantom_timing1 = &phantom_stream1->timing;
subvp0_prefetch_us = div64_u64(((uint64_t)(phantom_timing0->v_total - phantom_timing0->v_front_porch) *
(uint64_t)phantom_timing0->h_total * 1000000),
(((uint64_t)phantom_timing0->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us));
subvp1_prefetch_us = div64_u64(((uint64_t)(phantom_timing1->v_total - phantom_timing1->v_front_porch) *
(uint64_t)phantom_timing1->h_total * 1000000),
(((uint64_t)phantom_timing1->pix_clk_100hz * 100) + dc->caps.subvp_prefetch_end_to_mall_start_us));
// Whichever SubVP PIPE has the smaller prefetch (including the prefetch end to mall start time)
// should increase it's prefetch time to match the other
if (subvp0_prefetch_us > subvp1_prefetch_us) {
pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[1];
prefetch_delta_us = subvp0_prefetch_us - subvp1_prefetch_us;
pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines =
div64_u64(((uint64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us) *
((uint64_t)phantom_timing1->pix_clk_100hz * 100) + ((uint64_t)phantom_timing1->h_total * 1000000 - 1)),
((uint64_t)phantom_timing1->h_total * 1000000));
} else if (subvp1_prefetch_us > subvp0_prefetch_us) {
pipe_data = &cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[0];
prefetch_delta_us = subvp1_prefetch_us - subvp0_prefetch_us;
pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines =
div64_u64(((uint64_t)(dc->caps.subvp_prefetch_end_to_mall_start_us + prefetch_delta_us) *
((uint64_t)phantom_timing0->pix_clk_100hz * 100) + ((uint64_t)phantom_timing0->h_total * 1000000 - 1)),
((uint64_t)phantom_timing0->h_total * 1000000));
}
}
/**
* populate_subvp_cmd_pipe_info - Helper to populate the SubVP pipe info for the DMUB subvp command
*
* @dc: [in] current dc state
* @context: [in] new dc state
* @cmd: [in] DMUB cmd to be populated with SubVP info
* @subvp_pipe: [in] pipe_ctx for the SubVP pipe
* @cmd_pipe_index: [in] index for the pipe array in DMCUB SubVP cmd
*
* Populate the DMCUB SubVP command with SubVP pipe info. All the information
* required to calculate the microschedule for the SubVP pipe is stored in the
* pipe_data of the DMCUB SubVP command.
*/
static void populate_subvp_cmd_pipe_info(struct dc *dc,
struct dc_state *context,
union dmub_rb_cmd *cmd,
struct pipe_ctx *subvp_pipe,
uint8_t cmd_pipe_index)
{
uint32_t j;
struct dmub_cmd_fw_assisted_mclk_switch_pipe_data_v2 *pipe_data =
&cmd->fw_assisted_mclk_switch_v2.config_data.pipe_data[cmd_pipe_index];
struct dc_stream_state *phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
struct dc_crtc_timing *main_timing = &subvp_pipe->stream->timing;
struct dc_crtc_timing *phantom_timing;
uint32_t out_num_stream, out_den_stream, out_num_plane, out_den_plane, out_num, out_den;
if (!phantom_stream)
return;
phantom_timing = &phantom_stream->timing;
pipe_data->mode = SUBVP;
pipe_data->pipe_config.subvp_data.pix_clk_100hz = subvp_pipe->stream->timing.pix_clk_100hz;
pipe_data->pipe_config.subvp_data.htotal = subvp_pipe->stream->timing.h_total;
pipe_data->pipe_config.subvp_data.vtotal = subvp_pipe->stream->timing.v_total;
pipe_data->pipe_config.subvp_data.main_vblank_start =
main_timing->v_total - main_timing->v_front_porch;
pipe_data->pipe_config.subvp_data.main_vblank_end =
main_timing->v_total - main_timing->v_front_porch - main_timing->v_addressable;
pipe_data->pipe_config.subvp_data.mall_region_lines = phantom_timing->v_addressable;
pipe_data->pipe_config.subvp_data.main_pipe_index = subvp_pipe->stream_res.tg->inst;
pipe_data->pipe_config.subvp_data.is_drr = subvp_pipe->stream->ignore_msa_timing_param &&
(subvp_pipe->stream->allow_freesync || subvp_pipe->stream->vrr_active_variable || subvp_pipe->stream->vrr_active_fixed);
/* Calculate the scaling factor from the src and dst height.
* e.g. If 3840x2160 being downscaled to 1920x1080, the scaling factor is 1/2.
* Reduce the fraction 1080/2160 = 1/2 for the "scaling factor"
*
* Make sure to combine stream and plane scaling together.
*/
reduce_fraction(subvp_pipe->stream->src.height, subvp_pipe->stream->dst.height,
&out_num_stream, &out_den_stream);
reduce_fraction(subvp_pipe->plane_state->src_rect.height, subvp_pipe->plane_state->dst_rect.height,
&out_num_plane, &out_den_plane);
reduce_fraction(out_num_stream * out_num_plane, out_den_stream * out_den_plane, &out_num, &out_den);
pipe_data->pipe_config.subvp_data.scale_factor_numerator = out_num;
pipe_data->pipe_config.subvp_data.scale_factor_denominator = out_den;
// Prefetch lines is equal to VACTIVE + BP + VSYNC
pipe_data->pipe_config.subvp_data.prefetch_lines =
phantom_timing->v_total - phantom_timing->v_front_porch;
// Round up
pipe_data->pipe_config.subvp_data.prefetch_to_mall_start_lines =
div64_u64(((uint64_t)dc->caps.subvp_prefetch_end_to_mall_start_us * ((uint64_t)phantom_timing->pix_clk_100hz * 100) +
((uint64_t)phantom_timing->h_total * 1000000 - 1)), ((uint64_t)phantom_timing->h_total * 1000000));
pipe_data->pipe_config.subvp_data.processing_delay_lines =
div64_u64(((uint64_t)(dc->caps.subvp_fw_processing_delay_us) * ((uint64_t)phantom_timing->pix_clk_100hz * 100) +
((uint64_t)phantom_timing->h_total * 1000000 - 1)), ((uint64_t)phantom_timing->h_total * 1000000));
if (subvp_pipe->bottom_pipe) {
pipe_data->pipe_config.subvp_data.main_split_pipe_index = subvp_pipe->bottom_pipe->pipe_idx;
} else if (subvp_pipe->next_odm_pipe) {
pipe_data->pipe_config.subvp_data.main_split_pipe_index = subvp_pipe->next_odm_pipe->pipe_idx;
} else {
pipe_data->pipe_config.subvp_data.main_split_pipe_index = 0xF;
}
// Find phantom pipe index based on phantom stream
for (j = 0; j < dc->res_pool->pipe_count; j++) {
struct pipe_ctx *phantom_pipe = &context->res_ctx.pipe_ctx[j];
if (resource_is_pipe_type(phantom_pipe, OTG_MASTER) &&
phantom_pipe->stream == dc_state_get_paired_subvp_stream(context, subvp_pipe->stream)) {
pipe_data->pipe_config.subvp_data.phantom_pipe_index = phantom_pipe->stream_res.tg->inst;
if (phantom_pipe->bottom_pipe) {
pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = phantom_pipe->bottom_pipe->plane_res.hubp->inst;
} else if (phantom_pipe->next_odm_pipe) {
pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = phantom_pipe->next_odm_pipe->plane_res.hubp->inst;
} else {
pipe_data->pipe_config.subvp_data.phantom_split_pipe_index = 0xF;
}
break;
}
}
}
/**
* dc_dmub_setup_subvp_dmub_command - Populate the DMCUB SubVP command
*
* @dc: [in] current dc state
* @context: [in] new dc state
* @enable: [in] if true enables the pipes population
*
* This function loops through each pipe and populates the DMUB SubVP CMD info
* based on the pipe (e.g. SubVP, VBLANK).
*/
void dc_dmub_setup_subvp_dmub_command(struct dc *dc,
struct dc_state *context,
bool enable)
{
uint8_t cmd_pipe_index = 0;
uint32_t i, pipe_idx;
uint8_t subvp_count = 0;
union dmub_rb_cmd cmd;
struct pipe_ctx *subvp_pipes[2];
uint32_t wm_val_refclk = 0;
enum mall_stream_type pipe_mall_type;
memset(&cmd, 0, sizeof(cmd));
// FW command for SUBVP
cmd.fw_assisted_mclk_switch_v2.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmd.fw_assisted_mclk_switch_v2.header.sub_type = DMUB_CMD__HANDLE_SUBVP_CMD;
cmd.fw_assisted_mclk_switch_v2.header.payload_bytes =
sizeof(cmd.fw_assisted_mclk_switch_v2) - sizeof(cmd.fw_assisted_mclk_switch_v2.header);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
/* For SubVP pipe count, only count the top most (ODM / MPC) pipe
*/
if (resource_is_pipe_type(pipe, OTG_MASTER) &&
resource_is_pipe_type(pipe, DPP_PIPE) &&
dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN)
subvp_pipes[subvp_count++] = pipe;
}
if (enable) {
// For each pipe that is a "main" SUBVP pipe, fill in pipe data for DMUB SUBVP cmd
for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
if (!pipe->stream)
continue;
/* When populating subvp cmd info, only pass in the top most (ODM / MPC) pipe.
* Any ODM or MPC splits being used in SubVP will be handled internally in
* populate_subvp_cmd_pipe_info
*/
if (resource_is_pipe_type(pipe, OTG_MASTER) &&
resource_is_pipe_type(pipe, DPP_PIPE) &&
pipe_mall_type == SUBVP_MAIN) {
populate_subvp_cmd_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++);
} else if (resource_is_pipe_type(pipe, OTG_MASTER) &&
resource_is_pipe_type(pipe, DPP_PIPE) &&
pipe_mall_type == SUBVP_NONE) {
// Don't need to check for ActiveDRAMClockChangeMargin < 0, not valid in cases where
// we run through DML without calculating "natural" P-state support
populate_subvp_cmd_vblank_pipe_info(dc, context, &cmd, pipe, cmd_pipe_index++);
}
pipe_idx++;
}
if (subvp_count == 2) {
update_subvp_prefetch_end_to_mall_start(dc, context, &cmd, subvp_pipes);
}
cmd.fw_assisted_mclk_switch_v2.config_data.pstate_allow_width_us = dc->caps.subvp_pstate_allow_width_us;
cmd.fw_assisted_mclk_switch_v2.config_data.vertical_int_margin_us = dc->caps.subvp_vertical_int_margin_us;
// Store the original watermark value for this SubVP config so we can lower it when the
// MCLK switch starts
wm_val_refclk = context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns *
(dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000) / 1000;
cmd.fw_assisted_mclk_switch_v2.config_data.watermark_a_cache = wm_val_refclk < 0xFFFF ? wm_val_refclk : 0xFFFF;
}
dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
bool dc_dmub_srv_get_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv, struct dmub_diagnostic_data *diag_data)
{
if (!dc_dmub_srv || !dc_dmub_srv->dmub || !diag_data)
return false;
return dmub_srv_get_diagnostic_data(dc_dmub_srv->dmub, diag_data);
}
void dc_dmub_srv_log_diagnostic_data(struct dc_dmub_srv *dc_dmub_srv)
{
struct dmub_diagnostic_data diag_data = {0};
uint32_t i;
if (!dc_dmub_srv || !dc_dmub_srv->dmub) {
DC_LOG_ERROR("%s: invalid parameters.", __func__);
return;
}
DC_LOG_ERROR("%s: DMCUB error - collecting diagnostic data\n", __func__);
if (!dc_dmub_srv_get_diagnostic_data(dc_dmub_srv, &diag_data)) {
DC_LOG_ERROR("%s: dc_dmub_srv_get_diagnostic_data failed.", __func__);
return;
}
DC_LOG_DEBUG("DMCUB STATE:");
DC_LOG_DEBUG(" dmcub_version : %08x", diag_data.dmcub_version);
DC_LOG_DEBUG(" scratch [0] : %08x", diag_data.scratch[0]);
DC_LOG_DEBUG(" scratch [1] : %08x", diag_data.scratch[1]);
DC_LOG_DEBUG(" scratch [2] : %08x", diag_data.scratch[2]);
DC_LOG_DEBUG(" scratch [3] : %08x", diag_data.scratch[3]);
DC_LOG_DEBUG(" scratch [4] : %08x", diag_data.scratch[4]);
DC_LOG_DEBUG(" scratch [5] : %08x", diag_data.scratch[5]);
DC_LOG_DEBUG(" scratch [6] : %08x", diag_data.scratch[6]);
DC_LOG_DEBUG(" scratch [7] : %08x", diag_data.scratch[7]);
DC_LOG_DEBUG(" scratch [8] : %08x", diag_data.scratch[8]);
DC_LOG_DEBUG(" scratch [9] : %08x", diag_data.scratch[9]);
DC_LOG_DEBUG(" scratch [10] : %08x", diag_data.scratch[10]);
DC_LOG_DEBUG(" scratch [11] : %08x", diag_data.scratch[11]);
DC_LOG_DEBUG(" scratch [12] : %08x", diag_data.scratch[12]);
DC_LOG_DEBUG(" scratch [13] : %08x", diag_data.scratch[13]);
DC_LOG_DEBUG(" scratch [14] : %08x", diag_data.scratch[14]);
DC_LOG_DEBUG(" scratch [15] : %08x", diag_data.scratch[15]);
for (i = 0; i < DMUB_PC_SNAPSHOT_COUNT; i++)
DC_LOG_DEBUG(" pc[%d] : %08x", i, diag_data.pc[i]);
DC_LOG_DEBUG(" unk_fault_addr : %08x", diag_data.undefined_address_fault_addr);
DC_LOG_DEBUG(" inst_fault_addr : %08x", diag_data.inst_fetch_fault_addr);
DC_LOG_DEBUG(" data_fault_addr : %08x", diag_data.data_write_fault_addr);
DC_LOG_DEBUG(" inbox1_rptr : %08x", diag_data.inbox1_rptr);
DC_LOG_DEBUG(" inbox1_wptr : %08x", diag_data.inbox1_wptr);
DC_LOG_DEBUG(" inbox1_size : %08x", diag_data.inbox1_size);
DC_LOG_DEBUG(" inbox0_rptr : %08x", diag_data.inbox0_rptr);
DC_LOG_DEBUG(" inbox0_wptr : %08x", diag_data.inbox0_wptr);
DC_LOG_DEBUG(" inbox0_size : %08x", diag_data.inbox0_size);
DC_LOG_DEBUG(" outbox1_rptr : %08x", diag_data.outbox1_rptr);
DC_LOG_DEBUG(" outbox1_wptr : %08x", diag_data.outbox1_wptr);
DC_LOG_DEBUG(" outbox1_size : %08x", diag_data.outbox1_size);
DC_LOG_DEBUG(" is_enabled : %d", diag_data.is_dmcub_enabled);
DC_LOG_DEBUG(" is_soft_reset : %d", diag_data.is_dmcub_soft_reset);
DC_LOG_DEBUG(" is_secure_reset : %d", diag_data.is_dmcub_secure_reset);
DC_LOG_DEBUG(" is_traceport_en : %d", diag_data.is_traceport_en);
DC_LOG_DEBUG(" is_cw0_en : %d", diag_data.is_cw0_enabled);
DC_LOG_DEBUG(" is_cw6_en : %d", diag_data.is_cw6_enabled);
}
static bool dc_can_pipe_disable_cursor(struct pipe_ctx *pipe_ctx)
{
struct pipe_ctx *test_pipe, *split_pipe;
const struct scaler_data *scl_data = &pipe_ctx->plane_res.scl_data;
struct rect r1 = scl_data->recout, r2, r2_half;
int r1_r = r1.x + r1.width, r1_b = r1.y + r1.height, r2_r, r2_b;
int cur_layer = pipe_ctx->plane_state->layer_index;
/**
* Disable the cursor if there's another pipe above this with a
* plane that contains this pipe's viewport to prevent double cursor
* and incorrect scaling artifacts.
*/
for (test_pipe = pipe_ctx->top_pipe; test_pipe;
test_pipe = test_pipe->top_pipe) {
// Skip invisible layer and pipe-split plane on same layer
if (!test_pipe->plane_state->visible || test_pipe->plane_state->layer_index == cur_layer)
continue;
r2 = test_pipe->plane_res.scl_data.recout;
r2_r = r2.x + r2.width;
r2_b = r2.y + r2.height;
split_pipe = test_pipe;
/**
* There is another half plane on same layer because of
* pipe-split, merge together per same height.
*/
for (split_pipe = pipe_ctx->top_pipe; split_pipe;
split_pipe = split_pipe->top_pipe)
if (split_pipe->plane_state->layer_index == test_pipe->plane_state->layer_index) {
r2_half = split_pipe->plane_res.scl_data.recout;
r2.x = (r2_half.x < r2.x) ? r2_half.x : r2.x;
r2.width = r2.width + r2_half.width;
r2_r = r2.x + r2.width;
break;
}
if (r1.x >= r2.x && r1.y >= r2.y && r1_r <= r2_r && r1_b <= r2_b)
return true;
}
return false;
}
static bool dc_dmub_should_update_cursor_data(struct pipe_ctx *pipe_ctx)
{
if (pipe_ctx->plane_state != NULL) {
if (pipe_ctx->plane_state->address.type == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
return false;
if (dc_can_pipe_disable_cursor(pipe_ctx))
return false;
}
if ((pipe_ctx->stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1 ||
pipe_ctx->stream->link->psr_settings.psr_version == DC_PSR_VERSION_1) &&
pipe_ctx->stream->ctx->dce_version >= DCN_VERSION_3_1)
return true;
if (pipe_ctx->stream->link->replay_settings.config.replay_supported)
return true;
return false;
}
static void dc_build_cursor_update_payload0(
struct pipe_ctx *pipe_ctx, uint8_t p_idx,
struct dmub_cmd_update_cursor_payload0 *payload)
{
struct hubp *hubp = pipe_ctx->plane_res.hubp;
unsigned int panel_inst = 0;
if (!dc_get_edp_link_panel_inst(hubp->ctx->dc,
pipe_ctx->stream->link, &panel_inst))
return;
/* Payload: Cursor Rect is built from position & attribute
* x & y are obtained from postion
*/
payload->cursor_rect.x = hubp->cur_rect.x;
payload->cursor_rect.y = hubp->cur_rect.y;
/* w & h are obtained from attribute */
payload->cursor_rect.width = hubp->cur_rect.w;
payload->cursor_rect.height = hubp->cur_rect.h;
payload->enable = hubp->pos.cur_ctl.bits.cur_enable;
payload->pipe_idx = p_idx;
payload->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
payload->panel_inst = panel_inst;
}
static void dc_build_cursor_position_update_payload0(
struct dmub_cmd_update_cursor_payload0 *pl, const uint8_t p_idx,
const struct hubp *hubp, const struct dpp *dpp)
{
/* Hubp */
pl->position_cfg.pHubp.cur_ctl.raw = hubp->pos.cur_ctl.raw;
pl->position_cfg.pHubp.position.raw = hubp->pos.position.raw;
pl->position_cfg.pHubp.hot_spot.raw = hubp->pos.hot_spot.raw;
pl->position_cfg.pHubp.dst_offset.raw = hubp->pos.dst_offset.raw;
/* dpp */
pl->position_cfg.pDpp.cur0_ctl.raw = dpp->pos.cur0_ctl.raw;
pl->position_cfg.pipe_idx = p_idx;
}
static void dc_build_cursor_attribute_update_payload1(
struct dmub_cursor_attributes_cfg *pl_A, const uint8_t p_idx,
const struct hubp *hubp, const struct dpp *dpp)
{
/* Hubp */
pl_A->aHubp.SURFACE_ADDR_HIGH = hubp->att.SURFACE_ADDR_HIGH;
pl_A->aHubp.SURFACE_ADDR = hubp->att.SURFACE_ADDR;
pl_A->aHubp.cur_ctl.raw = hubp->att.cur_ctl.raw;
pl_A->aHubp.size.raw = hubp->att.size.raw;
pl_A->aHubp.settings.raw = hubp->att.settings.raw;
/* dpp */
pl_A->aDpp.cur0_ctl.raw = dpp->att.cur0_ctl.raw;
}
/**
* dc_send_update_cursor_info_to_dmu - Populate the DMCUB Cursor update info command
*
* @pCtx: [in] pipe context
* @pipe_idx: [in] pipe index
*
* This function would store the cursor related information and pass it into
* dmub
*/
void dc_send_update_cursor_info_to_dmu(
struct pipe_ctx *pCtx, uint8_t pipe_idx)
{
union dmub_rb_cmd cmd[2];
union dmub_cmd_update_cursor_info_data *update_cursor_info_0 =
&cmd[0].update_cursor_info.update_cursor_info_data;
memset(cmd, 0, sizeof(cmd));
if (!dc_dmub_should_update_cursor_data(pCtx))
return;
/*
* Since we use multi_cmd_pending for dmub command, the 2nd command is
* only assigned to store cursor attributes info.
* 1st command can view as 2 parts, 1st is for PSR/Replay data, the other
* is to store cursor position info.
*
* Command heaer type must be the same type if using multi_cmd_pending.
* Besides, while process 2nd command in DMU, the sub type is useless.
* So it's meanless to pass the sub type header with different type.
*/
{
/* Build Payload#0 Header */
cmd[0].update_cursor_info.header.type = DMUB_CMD__UPDATE_CURSOR_INFO;
cmd[0].update_cursor_info.header.payload_bytes =
sizeof(cmd[0].update_cursor_info.update_cursor_info_data);
cmd[0].update_cursor_info.header.multi_cmd_pending = 1; //To combine multi dmu cmd, 1st cmd
/* Prepare Payload */
dc_build_cursor_update_payload0(pCtx, pipe_idx, &update_cursor_info_0->payload0);
dc_build_cursor_position_update_payload0(&update_cursor_info_0->payload0, pipe_idx,
pCtx->plane_res.hubp, pCtx->plane_res.dpp);
}
{
/* Build Payload#1 Header */
cmd[1].update_cursor_info.header.type = DMUB_CMD__UPDATE_CURSOR_INFO;
cmd[1].update_cursor_info.header.payload_bytes = sizeof(struct cursor_attributes_cfg);
cmd[1].update_cursor_info.header.multi_cmd_pending = 0; //Indicate it's the last command.
dc_build_cursor_attribute_update_payload1(
&cmd[1].update_cursor_info.update_cursor_info_data.payload1.attribute_cfg,
pipe_idx, pCtx->plane_res.hubp, pCtx->plane_res.dpp);
/* Combine 2nd cmds update_curosr_info to DMU */
dc_wake_and_execute_dmub_cmd_list(pCtx->stream->ctx, 2, cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
}
bool dc_dmub_check_min_version(struct dmub_srv *srv)
{
if (!srv->hw_funcs.is_psrsu_supported)
return true;
return srv->hw_funcs.is_psrsu_supported(srv);
}
void dc_dmub_srv_enable_dpia_trace(const struct dc *dc)
{
struct dc_dmub_srv *dc_dmub_srv = dc->ctx->dmub_srv;
if (!dc_dmub_srv || !dc_dmub_srv->dmub) {
DC_LOG_ERROR("%s: invalid parameters.", __func__);
return;
}
if (!dc_wake_and_execute_gpint(dc->ctx, DMUB_GPINT__SET_TRACE_BUFFER_MASK_WORD1,
0x0010, NULL, DM_DMUB_WAIT_TYPE_WAIT)) {
DC_LOG_ERROR("timeout updating trace buffer mask word\n");
return;
}
if (!dc_wake_and_execute_gpint(dc->ctx, DMUB_GPINT__UPDATE_TRACE_BUFFER_MASK,
0x0000, NULL, DM_DMUB_WAIT_TYPE_WAIT)) {
DC_LOG_ERROR("timeout updating trace buffer mask word\n");
return;
}
DC_LOG_DEBUG("Enabled DPIA trace\n");
}
void dc_dmub_srv_subvp_save_surf_addr(const struct dc_dmub_srv *dc_dmub_srv, const struct dc_plane_address *addr, uint8_t subvp_index)
{
dmub_srv_subvp_save_surf_addr(dc_dmub_srv->dmub, addr, subvp_index);
}
bool dc_dmub_srv_is_hw_pwr_up(struct dc_dmub_srv *dc_dmub_srv, bool wait)
{
struct dc_context *dc_ctx;
enum dmub_status status;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return true;
if (dc_dmub_srv->ctx->dc->debug.dmcub_emulation)
return true;
dc_ctx = dc_dmub_srv->ctx;
if (wait) {
if (dc_dmub_srv->ctx->dc->debug.disable_timeout) {
do {
status = dmub_srv_wait_for_hw_pwr_up(dc_dmub_srv->dmub, 500000);
} while (status != DMUB_STATUS_OK);
} else {
status = dmub_srv_wait_for_hw_pwr_up(dc_dmub_srv->dmub, 500000);
if (status != DMUB_STATUS_OK) {
DC_ERROR("Error querying DMUB hw power up status: error=%d\n", status);
return false;
}
}
} else
return dmub_srv_is_hw_pwr_up(dc_dmub_srv->dmub);
return true;
}
static int count_active_streams(const struct dc *dc)
{
int i, count = 0;
for (i = 0; i < dc->current_state->stream_count; ++i) {
struct dc_stream_state *stream = dc->current_state->streams[i];
if (stream && !stream->dpms_off)
count += 1;
}
return count;
}
static void dc_dmub_srv_notify_idle(const struct dc *dc, bool allow_idle)
{
volatile const struct dmub_shared_state_ips_fw *ips_fw;
struct dc_dmub_srv *dc_dmub_srv;
union dmub_rb_cmd cmd = {0};
if (dc->debug.dmcub_emulation)
return;
if (!dc->ctx->dmub_srv || !dc->ctx->dmub_srv->dmub)
return;
dc_dmub_srv = dc->ctx->dmub_srv;
ips_fw = &dc_dmub_srv->dmub->shared_state[DMUB_SHARED_SHARE_FEATURE__IPS_FW].data.ips_fw;
memset(&cmd, 0, sizeof(cmd));
cmd.idle_opt_notify_idle.header.type = DMUB_CMD__IDLE_OPT;
cmd.idle_opt_notify_idle.header.sub_type = DMUB_CMD__IDLE_OPT_DCN_NOTIFY_IDLE;
cmd.idle_opt_notify_idle.header.payload_bytes =
sizeof(cmd.idle_opt_notify_idle) -
sizeof(cmd.idle_opt_notify_idle.header);
cmd.idle_opt_notify_idle.cntl_data.driver_idle = allow_idle;
if (dc->work_arounds.skip_psr_ips_crtc_disable)
cmd.idle_opt_notify_idle.cntl_data.skip_otg_disable = true;
if (allow_idle) {
volatile struct dmub_shared_state_ips_driver *ips_driver =
&dc_dmub_srv->dmub->shared_state[DMUB_SHARED_SHARE_FEATURE__IPS_DRIVER].data.ips_driver;
union dmub_shared_state_ips_driver_signals new_signals;
DC_LOG_IPS(
"%s wait idle (ips1_commit=%u ips2_commit=%u)",
__func__,
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
dc_dmub_srv_wait_idle(dc->ctx->dmub_srv);
memset(&new_signals, 0, sizeof(new_signals));
if (dc->config.disable_ips == DMUB_IPS_ENABLE ||
dc->config.disable_ips == DMUB_IPS_DISABLE_DYNAMIC) {
new_signals.bits.allow_pg = 1;
new_signals.bits.allow_ips1 = 1;
new_signals.bits.allow_ips2 = 1;
new_signals.bits.allow_z10 = 1;
} else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS1) {
new_signals.bits.allow_ips1 = 1;
} else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS2) {
new_signals.bits.allow_pg = 1;
new_signals.bits.allow_ips1 = 1;
} else if (dc->config.disable_ips == DMUB_IPS_DISABLE_IPS2_Z10) {
new_signals.bits.allow_pg = 1;
new_signals.bits.allow_ips1 = 1;
new_signals.bits.allow_ips2 = 1;
} else if (dc->config.disable_ips == DMUB_IPS_RCG_IN_ACTIVE_IPS2_IN_OFF) {
/* TODO: Move this logic out to hwseq */
if (count_active_streams(dc) == 0) {
/* IPS2 - Display off */
new_signals.bits.allow_pg = 1;
new_signals.bits.allow_ips1 = 1;
new_signals.bits.allow_ips2 = 1;
new_signals.bits.allow_z10 = 1;
} else {
/* RCG only */
new_signals.bits.allow_pg = 0;
new_signals.bits.allow_ips1 = 1;
new_signals.bits.allow_ips2 = 0;
new_signals.bits.allow_z10 = 0;
}
}
ips_driver->signals = new_signals;
dc_dmub_srv->driver_signals = ips_driver->signals;
}
DC_LOG_IPS(
"%s send allow_idle=%d (ips1_commit=%u ips2_commit=%u)",
__func__,
allow_idle,
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
/* NOTE: This does not use the "wake" interface since this is part of the wake path. */
/* We also do not perform a wait since DMCUB could enter idle after the notification. */
dm_execute_dmub_cmd(dc->ctx, &cmd, allow_idle ? DM_DMUB_WAIT_TYPE_NO_WAIT : DM_DMUB_WAIT_TYPE_WAIT);
/* Register access should stop at this point. */
if (allow_idle)
dc_dmub_srv->needs_idle_wake = true;
}
static void dc_dmub_srv_exit_low_power_state(const struct dc *dc)
{
struct dc_dmub_srv *dc_dmub_srv;
uint32_t rcg_exit_count = 0, ips1_exit_count = 0, ips2_exit_count = 0;
if (dc->debug.dmcub_emulation)
return;
if (!dc->ctx->dmub_srv || !dc->ctx->dmub_srv->dmub)
return;
dc_dmub_srv = dc->ctx->dmub_srv;
if (dc->clk_mgr->funcs->exit_low_power_state) {
volatile const struct dmub_shared_state_ips_fw *ips_fw =
&dc_dmub_srv->dmub->shared_state[DMUB_SHARED_SHARE_FEATURE__IPS_FW].data.ips_fw;
volatile struct dmub_shared_state_ips_driver *ips_driver =
&dc_dmub_srv->dmub->shared_state[DMUB_SHARED_SHARE_FEATURE__IPS_DRIVER].data.ips_driver;
union dmub_shared_state_ips_driver_signals prev_driver_signals = ips_driver->signals;
rcg_exit_count = ips_fw->rcg_exit_count;
ips1_exit_count = ips_fw->ips1_exit_count;
ips2_exit_count = ips_fw->ips2_exit_count;
ips_driver->signals.all = 0;
dc_dmub_srv->driver_signals = ips_driver->signals;
DC_LOG_IPS(
"%s (allow ips1=%u ips2=%u) (commit ips1=%u ips2=%u) (count rcg=%u ips1=%u ips2=%u)",
__func__,
ips_driver->signals.bits.allow_ips1,
ips_driver->signals.bits.allow_ips2,
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit,
ips_fw->rcg_entry_count,
ips_fw->ips1_entry_count,
ips_fw->ips2_entry_count);
/* Note: register access has technically not resumed for DCN here, but we
* need to be message PMFW through our standard register interface.
*/
dc_dmub_srv->needs_idle_wake = false;
if (prev_driver_signals.bits.allow_ips2 &&
(!dc->debug.optimize_ips_handshake ||
ips_fw->signals.bits.ips2_commit || !ips_fw->signals.bits.in_idle)) {
DC_LOG_IPS(
"wait IPS2 eval (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
if (!dc->debug.optimize_ips_handshake || !ips_fw->signals.bits.ips2_commit)
udelay(dc->debug.ips2_eval_delay_us);
if (ips_fw->signals.bits.ips2_commit) {
DC_LOG_IPS(
"exit IPS2 #1 (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
// Tell PMFW to exit low power state
dc->clk_mgr->funcs->exit_low_power_state(dc->clk_mgr);
DC_LOG_IPS(
"wait IPS2 entry delay (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
// Wait for IPS2 entry upper bound
udelay(dc->debug.ips2_entry_delay_us);
DC_LOG_IPS(
"exit IPS2 #2 (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
dc->clk_mgr->funcs->exit_low_power_state(dc->clk_mgr);
DC_LOG_IPS(
"wait IPS2 commit clear (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
while (ips_fw->signals.bits.ips2_commit)
udelay(1);
DC_LOG_IPS(
"wait hw_pwr_up (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
if (!dc_dmub_srv_is_hw_pwr_up(dc->ctx->dmub_srv, true))
ASSERT(0);
DC_LOG_IPS(
"resync inbox1 (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
dmub_srv_sync_inbox1(dc->ctx->dmub_srv->dmub);
}
}
dc_dmub_srv_notify_idle(dc, false);
if (prev_driver_signals.bits.allow_ips1) {
DC_LOG_IPS(
"wait for IPS1 commit clear (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
while (ips_fw->signals.bits.ips1_commit)
udelay(1);
DC_LOG_IPS(
"wait for IPS1 commit clear done (ips1_commit=%u ips2_commit=%u)",
ips_fw->signals.bits.ips1_commit,
ips_fw->signals.bits.ips2_commit);
}
}
if (!dc_dmub_srv_is_hw_pwr_up(dc->ctx->dmub_srv, true))
ASSERT(0);
DC_LOG_IPS("%s exit (count rcg=%u ips1=%u ips2=%u)",
__func__,
rcg_exit_count,
ips1_exit_count,
ips2_exit_count);
}
void dc_dmub_srv_set_power_state(struct dc_dmub_srv *dc_dmub_srv, enum dc_acpi_cm_power_state power_state)
{
struct dmub_srv *dmub;
if (!dc_dmub_srv)
return;
dmub = dc_dmub_srv->dmub;
if (power_state == DC_ACPI_CM_POWER_STATE_D0)
dmub_srv_set_power_state(dmub, DMUB_POWER_STATE_D0);
else
dmub_srv_set_power_state(dmub, DMUB_POWER_STATE_D3);
}
void dc_dmub_srv_notify_fw_dc_power_state(struct dc_dmub_srv *dc_dmub_srv,
enum dc_acpi_cm_power_state power_state)
{
union dmub_rb_cmd cmd;
if (!dc_dmub_srv)
return;
memset(&cmd, 0, sizeof(cmd));
cmd.idle_opt_set_dc_power_state.header.type = DMUB_CMD__IDLE_OPT;
cmd.idle_opt_set_dc_power_state.header.sub_type = DMUB_CMD__IDLE_OPT_SET_DC_POWER_STATE;
cmd.idle_opt_set_dc_power_state.header.payload_bytes =
sizeof(cmd.idle_opt_set_dc_power_state) - sizeof(cmd.idle_opt_set_dc_power_state.header);
if (power_state == DC_ACPI_CM_POWER_STATE_D0) {
cmd.idle_opt_set_dc_power_state.data.power_state = DMUB_IDLE_OPT_DC_POWER_STATE_D0;
} else if (power_state == DC_ACPI_CM_POWER_STATE_D3) {
cmd.idle_opt_set_dc_power_state.data.power_state = DMUB_IDLE_OPT_DC_POWER_STATE_D3;
} else {
cmd.idle_opt_set_dc_power_state.data.power_state = DMUB_IDLE_OPT_DC_POWER_STATE_UNKNOWN;
}
dc_wake_and_execute_dmub_cmd(dc_dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
bool dc_dmub_srv_should_detect(struct dc_dmub_srv *dc_dmub_srv)
{
volatile const struct dmub_shared_state_ips_fw *ips_fw;
bool reallow_idle = false, should_detect = false;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
if (dc_dmub_srv->dmub->shared_state &&
dc_dmub_srv->dmub->meta_info.feature_bits.bits.shared_state_link_detection) {
ips_fw = &dc_dmub_srv->dmub->shared_state[DMUB_SHARED_SHARE_FEATURE__IPS_FW].data.ips_fw;
return ips_fw->signals.bits.detection_required;
}
/* Detection may require reading scratch 0 - exit out of idle prior to the read. */
if (dc_dmub_srv->idle_allowed) {
dc_dmub_srv_apply_idle_power_optimizations(dc_dmub_srv->ctx->dc, false);
reallow_idle = true;
}
should_detect = dmub_srv_should_detect(dc_dmub_srv->dmub);
/* Re-enter idle if we're not about to immediately redetect links. */
if (!should_detect && reallow_idle && dc_dmub_srv->idle_exit_counter == 0 &&
!dc_dmub_srv->ctx->dc->debug.disable_dmub_reallow_idle)
dc_dmub_srv_apply_idle_power_optimizations(dc_dmub_srv->ctx->dc, true);
return should_detect;
}
void dc_dmub_srv_apply_idle_power_optimizations(const struct dc *dc, bool allow_idle)
{
struct dc_dmub_srv *dc_dmub_srv = dc->ctx->dmub_srv;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return;
allow_idle &= (!dc->debug.ips_disallow_entry);
if (dc_dmub_srv->idle_allowed == allow_idle)
return;
DC_LOG_IPS("%s state change: old=%d new=%d", __func__, dc_dmub_srv->idle_allowed, allow_idle);
/*
* Entering a low power state requires a driver notification.
* Powering up the hardware requires notifying PMFW and DMCUB.
* Clearing the driver idle allow requires a DMCUB command.
* DMCUB commands requires the DMCUB to be powered up and restored.
*/
if (!allow_idle) {
dc_dmub_srv->idle_exit_counter += 1;
dc_dmub_srv_exit_low_power_state(dc);
/*
* Idle is considered fully exited only after the sequence above
* fully completes. If we have a race of two threads exiting
* at the same time then it's safe to perform the sequence
* twice as long as we're not re-entering.
*
* Infinite command submission is avoided by using the
* dm_execute_dmub_cmd submission instead of the "wake" helpers.
*/
dc_dmub_srv->idle_allowed = false;
dc_dmub_srv->idle_exit_counter -= 1;
if (dc_dmub_srv->idle_exit_counter < 0) {
ASSERT(0);
dc_dmub_srv->idle_exit_counter = 0;
}
} else {
/* Consider idle as notified prior to the actual submission to
* prevent multiple entries. */
dc_dmub_srv->idle_allowed = true;
dc_dmub_srv_notify_idle(dc, allow_idle);
}
}
bool dc_wake_and_execute_dmub_cmd(const struct dc_context *ctx, union dmub_rb_cmd *cmd,
enum dm_dmub_wait_type wait_type)
{
return dc_wake_and_execute_dmub_cmd_list(ctx, 1, cmd, wait_type);
}
bool dc_wake_and_execute_dmub_cmd_list(const struct dc_context *ctx, unsigned int count,
union dmub_rb_cmd *cmd, enum dm_dmub_wait_type wait_type)
{
struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv;
bool result = false, reallow_idle = false;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
if (count == 0)
return true;
if (dc_dmub_srv->idle_allowed) {
dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, false);
reallow_idle = true;
}
/*
* These may have different implementations in DM, so ensure
* that we guide it to the expected helper.
*/
if (count > 1)
result = dm_execute_dmub_cmd_list(ctx, count, cmd, wait_type);
else
result = dm_execute_dmub_cmd(ctx, cmd, wait_type);
if (result && reallow_idle && dc_dmub_srv->idle_exit_counter == 0 &&
!ctx->dc->debug.disable_dmub_reallow_idle)
dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, true);
return result;
}
static bool dc_dmub_execute_gpint(const struct dc_context *ctx, enum dmub_gpint_command command_code,
uint16_t param, uint32_t *response, enum dm_dmub_wait_type wait_type)
{
struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv;
const uint32_t wait_us = wait_type == DM_DMUB_WAIT_TYPE_NO_WAIT ? 0 : 30;
enum dmub_status status;
if (response)
*response = 0;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
status = dmub_srv_send_gpint_command(dc_dmub_srv->dmub, command_code, param, wait_us);
if (status != DMUB_STATUS_OK) {
if (status == DMUB_STATUS_TIMEOUT && wait_type == DM_DMUB_WAIT_TYPE_NO_WAIT)
return true;
return false;
}
if (response && wait_type == DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)
dmub_srv_get_gpint_response(dc_dmub_srv->dmub, response);
return true;
}
bool dc_wake_and_execute_gpint(const struct dc_context *ctx, enum dmub_gpint_command command_code,
uint16_t param, uint32_t *response, enum dm_dmub_wait_type wait_type)
{
struct dc_dmub_srv *dc_dmub_srv = ctx->dmub_srv;
bool result = false, reallow_idle = false;
if (!dc_dmub_srv || !dc_dmub_srv->dmub)
return false;
if (dc_dmub_srv->idle_allowed) {
dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, false);
reallow_idle = true;
}
result = dc_dmub_execute_gpint(ctx, command_code, param, response, wait_type);
if (result && reallow_idle && dc_dmub_srv->idle_exit_counter == 0 &&
!ctx->dc->debug.disable_dmub_reallow_idle)
dc_dmub_srv_apply_idle_power_optimizations(ctx->dc, true);
return result;
}
void dc_dmub_srv_fams2_update_config(struct dc *dc,
struct dc_state *context,
bool enable)
{
uint8_t num_cmds = 1;
uint32_t i;
union dmub_rb_cmd cmd[MAX_STREAMS + 1];
struct dmub_rb_cmd_fams2 *global_cmd = &cmd[0].fams2_config;
memset(cmd, 0, sizeof(union dmub_rb_cmd) * (MAX_STREAMS + 1));
/* fill in generic command header */
global_cmd->header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
global_cmd->header.sub_type = DMUB_CMD__FAMS2_CONFIG;
global_cmd->header.payload_bytes = sizeof(struct dmub_rb_cmd_fams2) - sizeof(struct dmub_cmd_header);
if (enable) {
/* send global configuration parameters */
memcpy(&global_cmd->config.global, &context->bw_ctx.bw.dcn.fams2_global_config, sizeof(struct dmub_cmd_fams2_global_config));
/* copy static feature configuration overrides */
global_cmd->config.global.features.bits.enable_stall_recovery = dc->debug.fams2_config.bits.enable_stall_recovery;
global_cmd->config.global.features.bits.enable_debug = dc->debug.fams2_config.bits.enable_debug;
global_cmd->config.global.features.bits.enable_offload_flip = dc->debug.fams2_config.bits.enable_offload_flip;
/* construct per-stream configs */
for (i = 0; i < context->bw_ctx.bw.dcn.fams2_global_config.num_streams; i++) {
struct dmub_rb_cmd_fams2 *stream_cmd = &cmd[i+1].fams2_config;
/* configure command header */
stream_cmd->header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
stream_cmd->header.sub_type = DMUB_CMD__FAMS2_CONFIG;
stream_cmd->header.payload_bytes = sizeof(struct dmub_rb_cmd_fams2) - sizeof(struct dmub_cmd_header);
stream_cmd->header.multi_cmd_pending = 1;
/* copy stream static state */
memcpy(&stream_cmd->config.stream,
&context->bw_ctx.bw.dcn.fams2_stream_params[i],
sizeof(struct dmub_fams2_stream_static_state));
}
}
/* apply feature configuration based on current driver state */
global_cmd->config.global.features.bits.enable_visual_confirm = dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2;
global_cmd->config.global.features.bits.enable = enable;
if (enable && context->bw_ctx.bw.dcn.fams2_global_config.features.bits.enable) {
/* set multi pending for global, and unset for last stream cmd */
global_cmd->header.multi_cmd_pending = 1;
cmd[context->bw_ctx.bw.dcn.fams2_global_config.num_streams].fams2_config.header.multi_cmd_pending = 0;
num_cmds += context->bw_ctx.bw.dcn.fams2_global_config.num_streams;
}
dm_execute_dmub_cmd_list(dc->ctx, num_cmds, cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
void dc_dmub_srv_fams2_drr_update(struct dc *dc,
uint32_t tg_inst,
uint32_t vtotal_min,
uint32_t vtotal_max,
uint32_t vtotal_mid,
uint32_t vtotal_mid_frame_num,
bool program_manual_trigger)
{
union dmub_rb_cmd cmd = { 0 };
cmd.fams2_drr_update.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmd.fams2_drr_update.header.sub_type = DMUB_CMD__FAMS2_DRR_UPDATE;
cmd.fams2_drr_update.dmub_optc_state_req.tg_inst = tg_inst;
cmd.fams2_drr_update.dmub_optc_state_req.v_total_max = vtotal_max;
cmd.fams2_drr_update.dmub_optc_state_req.v_total_min = vtotal_min;
cmd.fams2_drr_update.dmub_optc_state_req.v_total_mid = vtotal_mid;
cmd.fams2_drr_update.dmub_optc_state_req.v_total_mid_frame_num = vtotal_mid_frame_num;
cmd.fams2_drr_update.dmub_optc_state_req.program_manual_trigger = program_manual_trigger;
cmd.fams2_drr_update.header.payload_bytes = sizeof(cmd.fams2_drr_update) - sizeof(cmd.fams2_drr_update.header);
dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
}
void dc_dmub_srv_fams2_passthrough_flip(
struct dc *dc,
struct dc_state *state,
struct dc_stream_state *stream,
struct dc_surface_update *srf_updates,
int surface_count)
{
int plane_index;
union dmub_rb_cmd cmds[MAX_PLANES];
struct dc_plane_address *address;
struct dc_plane_state *plane_state;
int num_cmds = 0;
struct dc_stream_status *stream_status = dc_stream_get_status(stream);
if (surface_count <= 0 || stream_status == NULL)
return;
memset(cmds, 0, sizeof(union dmub_rb_cmd) * MAX_PLANES);
/* build command for each surface update */
for (plane_index = 0; plane_index < surface_count; plane_index++) {
plane_state = srf_updates[plane_index].surface;
address = &plane_state->address;
/* skip if there is no address update for plane */
if (!srf_updates[plane_index].flip_addr)
continue;
/* build command header */
cmds[num_cmds].fams2_flip.header.type = DMUB_CMD__FW_ASSISTED_MCLK_SWITCH;
cmds[num_cmds].fams2_flip.header.sub_type = DMUB_CMD__FAMS2_FLIP;
cmds[num_cmds].fams2_flip.header.payload_bytes = sizeof(struct dmub_rb_cmd_fams2_flip);
/* for chaining multiple commands, all but last command should set to 1 */
cmds[num_cmds].fams2_flip.header.multi_cmd_pending = 1;
/* set topology info */
cmds[num_cmds].fams2_flip.flip_info.pipe_mask = dc_plane_get_pipe_mask(state, plane_state);
if (stream_status)
cmds[num_cmds].fams2_flip.flip_info.otg_inst = stream_status->primary_otg_inst;
cmds[num_cmds].fams2_flip.flip_info.config.bits.is_immediate = plane_state->flip_immediate;
/* build address info for command */
switch (address->type) {
case PLN_ADDR_TYPE_GRAPHICS:
if (address->grph.addr.quad_part == 0) {
BREAK_TO_DEBUGGER();
break;
}
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_lo =
address->grph.meta_addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_hi =
(uint16_t)address->grph.meta_addr.high_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_lo =
address->grph.addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_hi =
(uint16_t)address->grph.addr.high_part;
break;
case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
if (address->video_progressive.luma_addr.quad_part == 0 ||
address->video_progressive.chroma_addr.quad_part == 0) {
BREAK_TO_DEBUGGER();
break;
}
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_lo =
address->video_progressive.luma_meta_addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_hi =
(uint16_t)address->video_progressive.luma_meta_addr.high_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_c_lo =
address->video_progressive.chroma_meta_addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.meta_addr_c_hi =
(uint16_t)address->video_progressive.chroma_meta_addr.high_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_lo =
address->video_progressive.luma_addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_hi =
(uint16_t)address->video_progressive.luma_addr.high_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_c_lo =
address->video_progressive.chroma_addr.low_part;
cmds[num_cmds].fams2_flip.flip_info.addr_info.surf_addr_c_hi =
(uint16_t)address->video_progressive.chroma_addr.high_part;
break;
default:
// Should never be hit
BREAK_TO_DEBUGGER();
break;
}
num_cmds++;
}
if (num_cmds > 0) {
cmds[num_cmds - 1].fams2_flip.header.multi_cmd_pending = 0;
dm_execute_dmub_cmd_list(dc->ctx, num_cmds, cmds, DM_DMUB_WAIT_TYPE_WAIT);
}
}