blob: ea73473b970a6ecdada77082655890e2a898fc90 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dcn20_mpc.h"
#include "reg_helper.h"
#include "dc.h"
#include "mem_input.h"
#include "dcn10/dcn10_cm_common.h"
#define REG(reg)\
mpc20->mpc_regs->reg
#define IND_REG(index) \
(index)
#define CTX \
mpc20->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mpc20->mpc_shift->field_name, mpc20->mpc_mask->field_name
#define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
void mpc2_update_blending(
struct mpc *mpc,
struct mpcc_blnd_cfg *blnd_cfg,
int mpcc_id)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
struct mpcc *mpcc = mpc1_get_mpcc(mpc, mpcc_id);
REG_UPDATE_7(MPCC_CONTROL[mpcc_id],
MPCC_ALPHA_BLND_MODE, blnd_cfg->alpha_mode,
MPCC_ALPHA_MULTIPLIED_MODE, blnd_cfg->pre_multiplied_alpha,
MPCC_BLND_ACTIVE_OVERLAP_ONLY, blnd_cfg->overlap_only,
MPCC_GLOBAL_ALPHA, blnd_cfg->global_alpha,
MPCC_GLOBAL_GAIN, blnd_cfg->global_gain,
MPCC_BG_BPC, blnd_cfg->background_color_bpc,
MPCC_BOT_GAIN_MODE, blnd_cfg->bottom_gain_mode);
REG_SET(MPCC_TOP_GAIN[mpcc_id], 0, MPCC_TOP_GAIN, blnd_cfg->top_gain);
REG_SET(MPCC_BOT_GAIN_INSIDE[mpcc_id], 0, MPCC_BOT_GAIN_INSIDE, blnd_cfg->bottom_inside_gain);
REG_SET(MPCC_BOT_GAIN_OUTSIDE[mpcc_id], 0, MPCC_BOT_GAIN_OUTSIDE, blnd_cfg->bottom_outside_gain);
mpcc->blnd_cfg = *blnd_cfg;
}
void mpc2_set_denorm(
struct mpc *mpc,
int opp_id,
enum dc_color_depth output_depth)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
int denorm_mode = 0;
switch (output_depth) {
case COLOR_DEPTH_666:
denorm_mode = 1;
break;
case COLOR_DEPTH_888:
denorm_mode = 2;
break;
case COLOR_DEPTH_999:
denorm_mode = 3;
break;
case COLOR_DEPTH_101010:
denorm_mode = 4;
break;
case COLOR_DEPTH_111111:
denorm_mode = 5;
break;
case COLOR_DEPTH_121212:
denorm_mode = 6;
break;
case COLOR_DEPTH_141414:
case COLOR_DEPTH_161616:
default:
/* not valid used case! */
break;
}
REG_UPDATE(DENORM_CONTROL[opp_id],
MPC_OUT_DENORM_MODE, denorm_mode);
}
void mpc2_set_denorm_clamp(
struct mpc *mpc,
int opp_id,
struct mpc_denorm_clamp denorm_clamp)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
REG_UPDATE_2(DENORM_CONTROL[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_R_CR, denorm_clamp.clamp_max_r_cr,
MPC_OUT_DENORM_CLAMP_MIN_R_CR, denorm_clamp.clamp_min_r_cr);
REG_UPDATE_2(DENORM_CLAMP_G_Y[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_G_Y, denorm_clamp.clamp_max_g_y,
MPC_OUT_DENORM_CLAMP_MIN_G_Y, denorm_clamp.clamp_min_g_y);
REG_UPDATE_2(DENORM_CLAMP_B_CB[opp_id],
MPC_OUT_DENORM_CLAMP_MAX_B_CB, denorm_clamp.clamp_max_b_cb,
MPC_OUT_DENORM_CLAMP_MIN_B_CB, denorm_clamp.clamp_min_b_cb);
}
void mpc2_set_output_csc(
struct mpc *mpc,
int opp_id,
const uint16_t *regval,
enum mpc_output_csc_mode ocsc_mode)
{
uint32_t cur_mode;
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
struct color_matrices_reg ocsc_regs;
if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
return;
}
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
/* determine which CSC coefficients (A or B) we are using
* currently. select the alternate set to double buffer
* the CSC update so CSC is updated on frame boundary
*/
IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
else
ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A;
ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
} else {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
}
cm_helper_program_color_matrices(
mpc20->base.ctx,
regval,
&ocsc_regs);
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
}
void mpc2_set_ocsc_default(
struct mpc *mpc,
int opp_id,
enum dc_color_space color_space,
enum mpc_output_csc_mode ocsc_mode)
{
uint32_t cur_mode;
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
uint32_t arr_size;
struct color_matrices_reg ocsc_regs;
const uint16_t *regval = NULL;
if (ocsc_mode == MPC_OUTPUT_CSC_DISABLE) {
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
return;
}
regval = find_color_matrix(color_space, &arr_size);
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
/* determine which CSC coefficients (A or B) we are using
* currently. select the alternate set to double buffer
* the CSC update so CSC is updated on frame boundary
*/
IX_REG_GET(MPC_OCSC_TEST_DEBUG_INDEX, MPC_OCSC_TEST_DEBUG_DATA,
MPC_OCSC_TEST_DEBUG_DATA_STATUS_IDX,
MPC_OCSC_TEST_DEBUG_DATA_OCSC_MODE, &cur_mode);
if (cur_mode != MPC_OUTPUT_CSC_COEF_A)
ocsc_mode = MPC_OUTPUT_CSC_COEF_A;
else
ocsc_mode = MPC_OUTPUT_CSC_COEF_B;
ocsc_regs.shifts.csc_c11 = mpc20->mpc_shift->MPC_OCSC_C11_A;
ocsc_regs.masks.csc_c11 = mpc20->mpc_mask->MPC_OCSC_C11_A;
ocsc_regs.shifts.csc_c12 = mpc20->mpc_shift->MPC_OCSC_C12_A;
ocsc_regs.masks.csc_c12 = mpc20->mpc_mask->MPC_OCSC_C12_A;
if (ocsc_mode == MPC_OUTPUT_CSC_COEF_A) {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_A[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_A[opp_id]);
} else {
ocsc_regs.csc_c11_c12 = REG(CSC_C11_C12_B[opp_id]);
ocsc_regs.csc_c33_c34 = REG(CSC_C33_C34_B[opp_id]);
}
cm_helper_program_color_matrices(
mpc20->base.ctx,
regval,
&ocsc_regs);
REG_SET(CSC_MODE[opp_id], 0, MPC_OCSC_MODE, ocsc_mode);
}
static void mpc2_ogam_get_reg_field(
struct mpc *mpc,
struct xfer_func_reg *reg)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
reg->shifts.exp_region0_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_B;
reg->masks.field_region_end = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
reg->masks.field_region_linear_slope = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B;
reg->shifts.exp_region_start = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_B;
reg->masks.exp_region_start = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = mpc20->mpc_shift->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = mpc20->mpc_mask->MPCC_OGAM_RAMA_EXP_REGION_START_SEGMENT_B;
}
void mpc20_power_on_ogam_lut(
struct mpc *mpc, int mpcc_id,
bool power_on)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
REG_SET(MPCC_MEM_PWR_CTRL[mpcc_id], 0,
MPCC_OGAM_MEM_PWR_DIS, power_on == true ? 1:0);
}
static void mpc20_configure_ogam_lut(
struct mpc *mpc, int mpcc_id,
bool is_ram_a)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
REG_UPDATE_2(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id],
MPCC_OGAM_LUT_WRITE_EN_MASK, 7,
MPCC_OGAM_LUT_RAM_SEL, is_ram_a == true ? 0:1);
REG_SET(MPCC_OGAM_LUT_INDEX[mpcc_id], 0, MPCC_OGAM_LUT_INDEX, 0);
}
static enum dc_lut_mode mpc20_get_ogam_current(struct mpc *mpc, int mpcc_id)
{
enum dc_lut_mode mode;
uint32_t state_mode;
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_id], MPCC_OGAM_CONFIG_STATUS, &state_mode);
switch (state_mode) {
case 0:
mode = LUT_BYPASS;
break;
case 1:
mode = LUT_RAM_A;
break;
case 2:
mode = LUT_RAM_B;
break;
default:
mode = LUT_BYPASS;
break;
}
return mode;
}
static void mpc2_program_lutb(struct mpc *mpc, int mpcc_id,
const struct pwl_params *params)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
struct xfer_func_reg gam_regs;
mpc2_ogam_get_reg_field(mpc, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMB_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMB_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMB_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMB_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMB_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMB_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMB_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMB_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMB_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMB_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_OGAM_RAMB_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_OGAM_RAMB_REGION_32_33[mpcc_id]);
cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
}
static void mpc2_program_luta(struct mpc *mpc, int mpcc_id,
const struct pwl_params *params)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
struct xfer_func_reg gam_regs;
mpc2_ogam_get_reg_field(mpc, &gam_regs);
gam_regs.start_cntl_b = REG(MPCC_OGAM_RAMA_START_CNTL_B[mpcc_id]);
gam_regs.start_cntl_g = REG(MPCC_OGAM_RAMA_START_CNTL_G[mpcc_id]);
gam_regs.start_cntl_r = REG(MPCC_OGAM_RAMA_START_CNTL_R[mpcc_id]);
gam_regs.start_slope_cntl_b = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_B[mpcc_id]);
gam_regs.start_slope_cntl_g = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_G[mpcc_id]);
gam_regs.start_slope_cntl_r = REG(MPCC_OGAM_RAMA_SLOPE_CNTL_R[mpcc_id]);
gam_regs.start_end_cntl1_b = REG(MPCC_OGAM_RAMA_END_CNTL1_B[mpcc_id]);
gam_regs.start_end_cntl2_b = REG(MPCC_OGAM_RAMA_END_CNTL2_B[mpcc_id]);
gam_regs.start_end_cntl1_g = REG(MPCC_OGAM_RAMA_END_CNTL1_G[mpcc_id]);
gam_regs.start_end_cntl2_g = REG(MPCC_OGAM_RAMA_END_CNTL2_G[mpcc_id]);
gam_regs.start_end_cntl1_r = REG(MPCC_OGAM_RAMA_END_CNTL1_R[mpcc_id]);
gam_regs.start_end_cntl2_r = REG(MPCC_OGAM_RAMA_END_CNTL2_R[mpcc_id]);
gam_regs.region_start = REG(MPCC_OGAM_RAMA_REGION_0_1[mpcc_id]);
gam_regs.region_end = REG(MPCC_OGAM_RAMA_REGION_32_33[mpcc_id]);
cm_helper_program_xfer_func(mpc20->base.ctx, params, &gam_regs);
}
static void mpc20_program_ogam_pwl(
struct mpc *mpc, int mpcc_id,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
PERF_TRACE();
REG_SEQ_START();
for (i = 0 ; i < num; i++) {
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0, MPCC_OGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
MPCC_OGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
MPCC_OGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(MPCC_OGAM_LUT_DATA[mpcc_id], 0,
MPCC_OGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
REG_SEQ_SUBMIT();
PERF_TRACE();
REG_SEQ_WAIT_DONE();
PERF_TRACE();
}
static void apply_DEDCN20_305_wa(struct mpc *mpc, int mpcc_id,
enum dc_lut_mode current_mode,
enum dc_lut_mode next_mode)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
if (mpc->ctx->dc->debug.cm_in_bypass) {
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
return;
}
if (mpc->ctx->dc->work_arounds.dedcn20_305_wa == false) {
/*hw fixed in new review*/
return;
}
if (current_mode == LUT_BYPASS)
/*this will only work if OTG is locked.
*if we were to support OTG unlock case,
*the workaround will be more complex
*/
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
next_mode == LUT_RAM_A ? 1:2);
}
void mpc2_set_output_gamma(
struct mpc *mpc,
int mpcc_id,
const struct pwl_params *params)
{
enum dc_lut_mode current_mode;
enum dc_lut_mode next_mode;
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
if (mpc->ctx->dc->debug.cm_in_bypass) {
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
return;
}
if (params == NULL) {
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE, 0);
return;
}
current_mode = mpc20_get_ogam_current(mpc, mpcc_id);
if (current_mode == LUT_BYPASS || current_mode == LUT_RAM_A)
next_mode = LUT_RAM_B;
else
next_mode = LUT_RAM_A;
mpc20_power_on_ogam_lut(mpc, mpcc_id, true);
mpc20_configure_ogam_lut(mpc, mpcc_id, next_mode == LUT_RAM_A);
if (next_mode == LUT_RAM_A)
mpc2_program_luta(mpc, mpcc_id, params);
else
mpc2_program_lutb(mpc, mpcc_id, params);
apply_DEDCN20_305_wa(mpc, mpcc_id, current_mode, next_mode);
mpc20_program_ogam_pwl(
mpc, mpcc_id, params->rgb_resulted, params->hw_points_num);
REG_SET(MPCC_OGAM_MODE[mpcc_id], 0, MPCC_OGAM_MODE,
next_mode == LUT_RAM_A ? 1:2);
}
void mpc2_assert_idle_mpcc(struct mpc *mpc, int id)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
unsigned int mpc_disabled;
ASSERT(!(mpc20->mpcc_in_use_mask & 1 << id));
REG_GET(MPCC_STATUS[id], MPCC_DISABLED, &mpc_disabled);
if (mpc_disabled)
return;
REG_WAIT(MPCC_STATUS[id],
MPCC_IDLE, 1,
1, 100000);
}
void mpc2_assert_mpcc_idle_before_connect(struct mpc *mpc, int mpcc_id)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
unsigned int top_sel, mpc_busy, mpc_idle, mpc_disabled;
REG_GET(MPCC_TOP_SEL[mpcc_id],
MPCC_TOP_SEL, &top_sel);
REG_GET_3(MPCC_STATUS[mpcc_id],
MPCC_BUSY, &mpc_busy,
MPCC_IDLE, &mpc_idle,
MPCC_DISABLED, &mpc_disabled);
if (top_sel == 0xf) {
ASSERT(!mpc_busy);
ASSERT(mpc_idle);
ASSERT(mpc_disabled);
} else {
ASSERT(!mpc_disabled);
ASSERT(!mpc_idle);
}
}
static void mpc2_init_mpcc(struct mpcc *mpcc, int mpcc_inst)
{
mpcc->mpcc_id = mpcc_inst;
mpcc->dpp_id = 0xf;
mpcc->mpcc_bot = NULL;
mpcc->blnd_cfg.overlap_only = false;
mpcc->blnd_cfg.global_alpha = 0xff;
mpcc->blnd_cfg.global_gain = 0xff;
mpcc->blnd_cfg.background_color_bpc = 4;
mpcc->blnd_cfg.bottom_gain_mode = 0;
mpcc->blnd_cfg.top_gain = 0x1f000;
mpcc->blnd_cfg.bottom_inside_gain = 0x1f000;
mpcc->blnd_cfg.bottom_outside_gain = 0x1f000;
mpcc->sm_cfg.enable = false;
}
static struct mpcc *mpc2_get_mpcc_for_dpp(struct mpc_tree *tree, int dpp_id)
{
struct mpcc *tmp_mpcc = tree->opp_list;
while (tmp_mpcc != NULL) {
if (tmp_mpcc->dpp_id == 0xf || tmp_mpcc->dpp_id == dpp_id)
return tmp_mpcc;
/* avoid circular linked list */
ASSERT(tmp_mpcc != tmp_mpcc->mpcc_bot);
if (tmp_mpcc == tmp_mpcc->mpcc_bot)
break;
tmp_mpcc = tmp_mpcc->mpcc_bot;
}
return NULL;
}
static void mpc2_read_mpcc_state(
struct mpc *mpc,
int mpcc_inst,
struct mpcc_state *s)
{
struct dcn20_mpc *mpc20 = TO_DCN20_MPC(mpc);
REG_GET(MPCC_OPP_ID[mpcc_inst], MPCC_OPP_ID, &s->opp_id);
REG_GET(MPCC_TOP_SEL[mpcc_inst], MPCC_TOP_SEL, &s->dpp_id);
REG_GET(MPCC_BOT_SEL[mpcc_inst], MPCC_BOT_SEL, &s->bot_mpcc_id);
REG_GET_4(MPCC_CONTROL[mpcc_inst], MPCC_MODE, &s->mode,
MPCC_ALPHA_BLND_MODE, &s->alpha_mode,
MPCC_ALPHA_MULTIPLIED_MODE, &s->pre_multiplied_alpha,
MPCC_BLND_ACTIVE_OVERLAP_ONLY, &s->overlap_only);
REG_GET_2(MPCC_STATUS[mpcc_inst], MPCC_IDLE, &s->idle,
MPCC_BUSY, &s->busy);
/* Gamma block state */
REG_GET(MPCC_OGAM_LUT_RAM_CONTROL[mpcc_inst],
MPCC_OGAM_CONFIG_STATUS, &s->rgam_mode);
}
static const struct mpc_funcs dcn20_mpc_funcs = {
.read_mpcc_state = mpc2_read_mpcc_state,
.insert_plane = mpc1_insert_plane,
.remove_mpcc = mpc1_remove_mpcc,
.mpc_init = mpc1_mpc_init,
.mpc_init_single_inst = mpc1_mpc_init_single_inst,
.update_blending = mpc2_update_blending,
.cursor_lock = mpc1_cursor_lock,
.get_mpcc_for_dpp = mpc2_get_mpcc_for_dpp,
.wait_for_idle = mpc2_assert_idle_mpcc,
.assert_mpcc_idle_before_connect = mpc2_assert_mpcc_idle_before_connect,
.init_mpcc_list_from_hw = mpc1_init_mpcc_list_from_hw,
.set_denorm = mpc2_set_denorm,
.set_denorm_clamp = mpc2_set_denorm_clamp,
.set_output_csc = mpc2_set_output_csc,
.set_ocsc_default = mpc2_set_ocsc_default,
.set_output_gamma = mpc2_set_output_gamma,
.power_on_mpc_mem_pwr = mpc20_power_on_ogam_lut,
.get_mpc_out_mux = mpc1_get_mpc_out_mux,
.set_bg_color = mpc1_set_bg_color,
};
void dcn20_mpc_construct(struct dcn20_mpc *mpc20,
struct dc_context *ctx,
const struct dcn20_mpc_registers *mpc_regs,
const struct dcn20_mpc_shift *mpc_shift,
const struct dcn20_mpc_mask *mpc_mask,
int num_mpcc)
{
int i;
mpc20->base.ctx = ctx;
mpc20->base.funcs = &dcn20_mpc_funcs;
mpc20->mpc_regs = mpc_regs;
mpc20->mpc_shift = mpc_shift;
mpc20->mpc_mask = mpc_mask;
mpc20->mpcc_in_use_mask = 0;
mpc20->num_mpcc = num_mpcc;
for (i = 0; i < MAX_MPCC; i++)
mpc2_init_mpcc(&mpc20->base.mpcc_array[i], i);
}