blob: c0f6b59369b7c4e3a93f4fe719bdace5f5f837bf [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include <linux/firmware.h>
#include "amdgpu.h"
#include "amdgpu_dpm.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_arcturus.h"
#include "soc15_common.h"
#include "atom.h"
#include "arcturus_ppt.h"
#include "smu_v11_0_pptable.h"
#include "arcturus_ppsmc.h"
#include "nbio/nbio_7_4_offset.h"
#include "nbio/nbio_7_4_sh_mask.h"
#include "thm/thm_11_0_2_offset.h"
#include "thm/thm_11_0_2_sh_mask.h"
#include "amdgpu_xgmi.h"
#include <linux/i2c.h>
#include <linux/pci.h>
#include "amdgpu_ras.h"
#include "smu_cmn.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define ARCTURUS_FEA_MAP(smu_feature, arcturus_feature) \
[smu_feature] = {1, (arcturus_feature)}
#define SMU_FEATURES_LOW_MASK 0x00000000FFFFFFFF
#define SMU_FEATURES_LOW_SHIFT 0
#define SMU_FEATURES_HIGH_MASK 0xFFFFFFFF00000000
#define SMU_FEATURES_HIGH_SHIFT 32
#define SMC_DPM_FEATURE ( \
FEATURE_DPM_PREFETCHER_MASK | \
FEATURE_DPM_GFXCLK_MASK | \
FEATURE_DPM_UCLK_MASK | \
FEATURE_DPM_SOCCLK_MASK | \
FEATURE_DPM_MP0CLK_MASK | \
FEATURE_DPM_FCLK_MASK | \
FEATURE_DPM_XGMI_MASK)
/* possible frequency drift (1Mhz) */
#define EPSILON 1
#define smnPCIE_ESM_CTRL 0x111003D0
#define mmCG_FDO_CTRL0_ARCT 0x8B
#define mmCG_FDO_CTRL0_ARCT_BASE_IDX 0
#define mmCG_FDO_CTRL1_ARCT 0x8C
#define mmCG_FDO_CTRL1_ARCT_BASE_IDX 0
#define mmCG_FDO_CTRL2_ARCT 0x8D
#define mmCG_FDO_CTRL2_ARCT_BASE_IDX 0
#define mmCG_TACH_CTRL_ARCT 0x8E
#define mmCG_TACH_CTRL_ARCT_BASE_IDX 0
#define mmCG_TACH_STATUS_ARCT 0x8F
#define mmCG_TACH_STATUS_ARCT_BASE_IDX 0
#define mmCG_THERMAL_STATUS_ARCT 0x90
#define mmCG_THERMAL_STATUS_ARCT_BASE_IDX 0
static const struct cmn2asic_msg_mapping arcturus_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 0),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 0),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 0),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 0),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 1),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 1),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 1),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0),
MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable, 0),
MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0),
MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 0),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 0),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 0),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1),
MSG_MAP(SetDfSwitchType, PPSMC_MSG_SetDfSwitchType, 0),
MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0),
MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 1),
MSG_MAP(PowerUpVcn0, PPSMC_MSG_PowerUpVcn0, 0),
MSG_MAP(PowerDownVcn0, PPSMC_MSG_PowerDownVcn0, 0),
MSG_MAP(PowerUpVcn1, PPSMC_MSG_PowerUpVcn1, 0),
MSG_MAP(PowerDownVcn1, PPSMC_MSG_PowerDownVcn1, 0),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 0),
MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset, 0),
MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown, 0),
MSG_MAP(SoftReset, PPSMC_MSG_SoftReset, 0),
MSG_MAP(RunAfllBtc, PPSMC_MSG_RunAfllBtc, 0),
MSG_MAP(RunDcBtc, PPSMC_MSG_RunDcBtc, 0),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0),
MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0),
MSG_MAP(WaflTest, PPSMC_MSG_WaflTest, 0),
MSG_MAP(SetXgmiMode, PPSMC_MSG_SetXgmiMode, 0),
MSG_MAP(SetMemoryChannelEnable, PPSMC_MSG_SetMemoryChannelEnable, 0),
MSG_MAP(DFCstateControl, PPSMC_MSG_DFCstateControl, 0),
MSG_MAP(GmiPwrDnControl, PPSMC_MSG_GmiPwrDnControl, 0),
MSG_MAP(ReadSerialNumTop32, PPSMC_MSG_ReadSerialNumTop32, 1),
MSG_MAP(ReadSerialNumBottom32, PPSMC_MSG_ReadSerialNumBottom32, 1),
MSG_MAP(LightSBR, PPSMC_MSG_LightSBR, 0),
};
static const struct cmn2asic_mapping arcturus_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_FCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
};
static const struct cmn2asic_mapping arcturus_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_FCLK),
FEA_MAP(DPM_MP0CLK),
FEA_MAP(DPM_XGMI),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_FCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
ARCTURUS_FEA_MAP(SMU_FEATURE_VCN_DPM_BIT, FEATURE_DPM_VCN_BIT),
FEA_MAP(RSMU_SMN_CG),
FEA_MAP(WAFL_CG),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(APCC_PLUS),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(THERMAL),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(TEMP_DEPENDENT_VMIN),
};
static const struct cmn2asic_mapping arcturus_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(AVFS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(OVERDRIVE),
TAB_MAP(I2C_COMMANDS),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
};
static const struct cmn2asic_mapping arcturus_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static const struct cmn2asic_mapping arcturus_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static const uint8_t arcturus_throttler_map[] = {
[THROTTLER_TEMP_EDGE_BIT] = (SMU_THROTTLER_TEMP_EDGE_BIT),
[THROTTLER_TEMP_HOTSPOT_BIT] = (SMU_THROTTLER_TEMP_HOTSPOT_BIT),
[THROTTLER_TEMP_MEM_BIT] = (SMU_THROTTLER_TEMP_MEM_BIT),
[THROTTLER_TEMP_VR_GFX_BIT] = (SMU_THROTTLER_TEMP_VR_GFX_BIT),
[THROTTLER_TEMP_VR_MEM_BIT] = (SMU_THROTTLER_TEMP_VR_MEM0_BIT),
[THROTTLER_TEMP_VR_SOC_BIT] = (SMU_THROTTLER_TEMP_VR_SOC_BIT),
[THROTTLER_TDC_GFX_BIT] = (SMU_THROTTLER_TDC_GFX_BIT),
[THROTTLER_TDC_SOC_BIT] = (SMU_THROTTLER_TDC_SOC_BIT),
[THROTTLER_PPT0_BIT] = (SMU_THROTTLER_PPT0_BIT),
[THROTTLER_PPT1_BIT] = (SMU_THROTTLER_PPT1_BIT),
[THROTTLER_PPT2_BIT] = (SMU_THROTTLER_PPT2_BIT),
[THROTTLER_PPT3_BIT] = (SMU_THROTTLER_PPT3_BIT),
[THROTTLER_PPM_BIT] = (SMU_THROTTLER_PPM_BIT),
[THROTTLER_FIT_BIT] = (SMU_THROTTLER_FIT_BIT),
[THROTTLER_APCC_BIT] = (SMU_THROTTLER_APCC_BIT),
[THROTTLER_VRHOT0_BIT] = (SMU_THROTTLER_VRHOT0_BIT),
[THROTTLER_VRHOT1_BIT] = (SMU_THROTTLER_VRHOT1_BIT),
};
static int arcturus_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
return -ENOMEM;
smu_table->metrics_time = 0;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_3);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table) {
kfree(smu_table->metrics_table);
return -ENOMEM;
}
return 0;
}
static int arcturus_select_plpd_policy(struct smu_context *smu, int level)
{
/* PPSMC_MSG_GmiPwrDnControl is supported by 54.23.0 and onwards */
if (smu->smc_fw_version < 0x00361700) {
dev_err(smu->adev->dev,
"XGMI power down control is only supported by PMFW 54.23.0 and onwards\n");
return -EINVAL;
}
if (level == XGMI_PLPD_DEFAULT)
return smu_cmn_send_smc_msg_with_param(
smu, SMU_MSG_GmiPwrDnControl, 1, NULL);
else if (level == XGMI_PLPD_DISALLOW)
return smu_cmn_send_smc_msg_with_param(
smu, SMU_MSG_GmiPwrDnControl, 0, NULL);
else
return -EINVAL;
}
static int arcturus_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_dpm_policy *policy;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context);
smu_dpm->dpm_policies =
kzalloc(sizeof(struct smu_dpm_policy_ctxt), GFP_KERNEL);
if (!smu_dpm->dpm_policies)
return -ENOMEM;
policy = &(smu_dpm->dpm_policies->policies[0]);
policy->policy_type = PP_PM_POLICY_XGMI_PLPD;
policy->level_mask = BIT(XGMI_PLPD_DISALLOW) | BIT(XGMI_PLPD_DEFAULT);
policy->current_level = XGMI_PLPD_DEFAULT;
policy->set_policy = arcturus_select_plpd_policy;
smu_cmn_generic_plpd_policy_desc(policy);
smu_dpm->dpm_policies->policy_mask |= BIT(PP_PM_POLICY_XGMI_PLPD);
return 0;
}
static int arcturus_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = arcturus_tables_init(smu);
if (ret)
return ret;
ret = arcturus_allocate_dpm_context(smu);
if (ret)
return ret;
return smu_v11_0_init_smc_tables(smu);
}
static int
arcturus_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
if (num > 2)
return -EINVAL;
/* pptable will handle the features to enable */
memset(feature_mask, 0xFF, sizeof(uint32_t) * num);
return 0;
}
static int arcturus_set_default_dpm_table(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
PPTable_t *driver_ppt = smu->smu_table.driver_pptable;
struct smu_11_0_dpm_table *dpm_table = NULL;
int ret = 0;
/* socclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.soc_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_SOCCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* gfxclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.gfx_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_GFXCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* memclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.uclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_UCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* fclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.fclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_FCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_FCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.fclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* XGMI PLPD is supported by 54.23.0 and onwards */
if (smu->smc_fw_version < 0x00361700) {
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_policies->policy_mask &=
~BIT(PP_PM_POLICY_XGMI_PLPD);
}
return 0;
}
static void arcturus_check_bxco_support(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
struct smu_baco_context *smu_baco = &smu->smu_baco;
struct amdgpu_device *adev = smu->adev;
uint32_t val;
if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO ||
powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO) {
val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
smu_baco->platform_support =
(val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true :
false;
}
}
static void arcturus_check_fan_support(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
/* No sort of fan control possible if PPTable has it disabled */
smu->adev->pm.no_fan =
!(pptable->FeaturesToRun[0] & FEATURE_FAN_CONTROL_MASK);
if (smu->adev->pm.no_fan)
dev_info_once(smu->adev->dev,
"PMFW based fan control disabled");
}
static int arcturus_check_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
arcturus_check_bxco_support(smu);
arcturus_check_fan_support(smu);
table_context->thermal_controller_type =
powerplay_table->thermal_controller_type;
return 0;
}
static int arcturus_store_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
return 0;
}
static int arcturus_append_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_6 *smc_dpm_table;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = amdgpu_atombios_get_data_table(smu->adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
dev_info(smu->adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n",
smc_dpm_table->table_header.format_revision,
smc_dpm_table->table_header.content_revision);
if ((smc_dpm_table->table_header.format_revision == 4) &&
(smc_dpm_table->table_header.content_revision == 6))
smu_memcpy_trailing(smc_pptable, MaxVoltageStepGfx, BoardReserved,
smc_dpm_table, maxvoltagestepgfx);
return 0;
}
static int arcturus_setup_pptable(struct smu_context *smu)
{
int ret = 0;
ret = smu_v11_0_setup_pptable(smu);
if (ret)
return ret;
ret = arcturus_store_powerplay_table(smu);
if (ret)
return ret;
ret = arcturus_append_powerplay_table(smu);
if (ret)
return ret;
ret = arcturus_check_powerplay_table(smu);
if (ret)
return ret;
return ret;
}
static int arcturus_run_btc(struct smu_context *smu)
{
int ret = 0;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunAfllBtc, NULL);
if (ret) {
dev_err(smu->adev->dev, "RunAfllBtc failed!\n");
return ret;
}
return smu_cmn_send_smc_msg(smu, SMU_MSG_RunDcBtc, NULL);
}
static int arcturus_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_11_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_11_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_11_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
pstate_table->gfxclk_pstate.min = gfx_table->min;
pstate_table->gfxclk_pstate.peak = gfx_table->max;
pstate_table->uclk_pstate.min = mem_table->min;
pstate_table->uclk_pstate.peak = mem_table->max;
pstate_table->socclk_pstate.min = soc_table->min;
pstate_table->socclk_pstate.peak = soc_table->max;
if (gfx_table->count > ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL &&
mem_table->count > ARCTURUS_UMD_PSTATE_MCLK_LEVEL &&
soc_table->count > ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL) {
pstate_table->gfxclk_pstate.standard =
gfx_table->dpm_levels[ARCTURUS_UMD_PSTATE_GFXCLK_LEVEL].value;
pstate_table->uclk_pstate.standard =
mem_table->dpm_levels[ARCTURUS_UMD_PSTATE_MCLK_LEVEL].value;
pstate_table->socclk_pstate.standard =
soc_table->dpm_levels[ARCTURUS_UMD_PSTATE_SOCCLK_LEVEL].value;
} else {
pstate_table->gfxclk_pstate.standard =
pstate_table->gfxclk_pstate.min;
pstate_table->uclk_pstate.standard =
pstate_table->uclk_pstate.min;
pstate_table->socclk_pstate.standard =
pstate_table->socclk_pstate.min;
}
return 0;
}
static void arcturus_get_clk_table(struct smu_context *smu,
struct pp_clock_levels_with_latency *clocks,
struct smu_11_0_dpm_table *dpm_table)
{
uint32_t i;
clocks->num_levels = min_t(uint32_t,
dpm_table->count,
(uint32_t)PP_MAX_CLOCK_LEVELS);
for (i = 0; i < clocks->num_levels; i++) {
clocks->data[i].clocks_in_khz =
dpm_table->dpm_levels[i].value * 1000;
clocks->data[i].latency_in_us = 0;
}
}
static int arcturus_freqs_in_same_level(int32_t frequency1,
int32_t frequency2)
{
return (abs(frequency1 - frequency2) <= EPSILON);
}
static int arcturus_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table = &smu->smu_table;
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
NULL,
false);
if (ret)
return ret;
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->CurrClock[PPCLK_GFXCLK];
break;
case METRICS_CURR_SOCCLK:
*value = metrics->CurrClock[PPCLK_SOCCLK];
break;
case METRICS_CURR_UCLK:
*value = metrics->CurrClock[PPCLK_UCLK];
break;
case METRICS_CURR_VCLK:
*value = metrics->CurrClock[PPCLK_VCLK];
break;
case METRICS_CURR_DCLK:
*value = metrics->CurrClock[PPCLK_DCLK];
break;
case METRICS_CURR_FCLK:
*value = metrics->CurrClock[PPCLK_FCLK];
break;
case METRICS_AVERAGE_GFXCLK:
*value = metrics->AverageGfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->AverageSocclkFrequency;
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->AverageUclkFrequency;
break;
case METRICS_AVERAGE_VCLK:
*value = metrics->AverageVclkFrequency;
break;
case METRICS_AVERAGE_DCLK:
*value = metrics->AverageDclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity;
break;
case METRICS_AVERAGE_MEMACTIVITY:
*value = metrics->AverageUclkActivity;
break;
case METRICS_AVERAGE_VCNACTIVITY:
*value = metrics->VcnActivityPercentage;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = metrics->AverageSocketPower << 8;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_MEM:
*value = metrics->TemperatureHBM *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRGFX:
*value = metrics->TemperatureVrGfx *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRSOC:
*value = metrics->TemperatureVrSoc *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRMEM:
*value = metrics->TemperatureVrMem *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_CURR_FANSPEED:
*value = metrics->CurrFanSpeed;
break;
default:
*value = UINT_MAX;
break;
}
return ret;
}
static int arcturus_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
int clk_id = 0;
if (!value)
return -EINVAL;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return -EINVAL;
switch (clk_id) {
case PPCLK_GFXCLK:
/*
* CurrClock[clk_id] can provide accurate
* output only when the dpm feature is enabled.
* We can use Average_* for dpm disabled case.
* But this is available for gfxclk/uclk/socclk/vclk/dclk.
*/
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT))
member_type = METRICS_CURR_GFXCLK;
else
member_type = METRICS_AVERAGE_GFXCLK;
break;
case PPCLK_UCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
member_type = METRICS_CURR_UCLK;
else
member_type = METRICS_AVERAGE_UCLK;
break;
case PPCLK_SOCCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT))
member_type = METRICS_CURR_SOCCLK;
else
member_type = METRICS_AVERAGE_SOCCLK;
break;
case PPCLK_VCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_DPM_BIT))
member_type = METRICS_CURR_VCLK;
else
member_type = METRICS_AVERAGE_VCLK;
break;
case PPCLK_DCLK:
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_DPM_BIT))
member_type = METRICS_CURR_DCLK;
else
member_type = METRICS_AVERAGE_DCLK;
break;
case PPCLK_FCLK:
member_type = METRICS_CURR_FCLK;
break;
default:
return -EINVAL;
}
return arcturus_get_smu_metrics_data(smu,
member_type,
value);
}
static int arcturus_emit_clk_levels(struct smu_context *smu,
enum smu_clk_type type, char *buf, int *offset)
{
int ret = 0;
struct pp_clock_levels_with_latency clocks;
struct smu_11_0_dpm_table *single_dpm_table;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_11_0_dpm_context *dpm_context = NULL;
uint32_t gen_speed, lane_width;
uint32_t i, cur_value = 0;
bool freq_match;
unsigned int clock_mhz;
static const char attempt_string[] = "Attempt to get current";
if (amdgpu_ras_intr_triggered()) {
*offset += sysfs_emit_at(buf, *offset, "unavailable\n");
return -EBUSY;
}
dpm_context = smu_dpm->dpm_context;
switch (type) {
case SMU_SCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_GFXCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s gfx clk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_MCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_UCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s mclk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.uclk_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_SOCCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_SOCCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s socclk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.soc_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_FCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_FCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s fclk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.fclk_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_VCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_VCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s vclk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.vclk_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_DCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_DCLK, &cur_value);
if (ret) {
dev_err(smu->adev->dev, "%s dclk Failed!", attempt_string);
return ret;
}
single_dpm_table = &(dpm_context->dpm_tables.dclk_table);
arcturus_get_clk_table(smu, &clocks, single_dpm_table);
break;
case SMU_PCIE:
gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu);
lane_width = smu_v11_0_get_current_pcie_link_width_level(smu);
break;
default:
return -EINVAL;
}
switch (type) {
case SMU_SCLK:
case SMU_MCLK:
case SMU_SOCCLK:
case SMU_FCLK:
case SMU_VCLK:
case SMU_DCLK:
/*
* For DPM disabled case, there will be only one clock level.
* And it's safe to assume that is always the current clock.
*/
for (i = 0; i < clocks.num_levels; i++) {
clock_mhz = clocks.data[i].clocks_in_khz / 1000;
freq_match = arcturus_freqs_in_same_level(clock_mhz, cur_value);
freq_match |= (clocks.num_levels == 1);
*offset += sysfs_emit_at(buf, *offset, "%d: %uMhz %s\n",
i, clock_mhz,
freq_match ? "*" : "");
}
break;
case SMU_PCIE:
*offset += sysfs_emit_at(buf, *offset, "0: %s %s %dMhz *\n",
(gen_speed == 0) ? "2.5GT/s," :
(gen_speed == 1) ? "5.0GT/s," :
(gen_speed == 2) ? "8.0GT/s," :
(gen_speed == 3) ? "16.0GT/s," : "",
(lane_width == 1) ? "x1" :
(lane_width == 2) ? "x2" :
(lane_width == 3) ? "x4" :
(lane_width == 4) ? "x8" :
(lane_width == 5) ? "x12" :
(lane_width == 6) ? "x16" : "",
smu->smu_table.boot_values.lclk / 100);
break;
default:
return -EINVAL;
}
return 0;
}
static int arcturus_upload_dpm_level(struct smu_context *smu,
bool max,
uint32_t feature_mask,
uint32_t level)
{
struct smu_11_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
uint32_t freq;
int ret = 0;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT) &&
(feature_mask & FEATURE_DPM_GFXCLK_MASK)) {
freq = dpm_context->dpm_tables.gfx_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_GFXCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s gfxclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT) &&
(feature_mask & FEATURE_DPM_UCLK_MASK)) {
freq = dpm_context->dpm_tables.uclk_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_UCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s memclk !\n",
max ? "max" : "min");
return ret;
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT) &&
(feature_mask & FEATURE_DPM_SOCCLK_MASK)) {
freq = dpm_context->dpm_tables.soc_table.dpm_levels[level].value;
ret = smu_cmn_send_smc_msg_with_param(smu,
(max ? SMU_MSG_SetSoftMaxByFreq : SMU_MSG_SetSoftMinByFreq),
(PPCLK_SOCCLK << 16) | (freq & 0xffff),
NULL);
if (ret) {
dev_err(smu->adev->dev, "Failed to set soft %s socclk !\n",
max ? "max" : "min");
return ret;
}
}
return ret;
}
static int arcturus_force_clk_levels(struct smu_context *smu,
enum smu_clk_type type, uint32_t mask)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
struct smu_11_0_dpm_table *single_dpm_table = NULL;
uint32_t soft_min_level, soft_max_level;
int ret = 0;
if ((smu->smc_fw_version >= 0x361200) &&
(smu->smc_fw_version <= 0x361a00)) {
dev_err(smu->adev->dev, "Forcing clock level is not supported with "
"54.18 - 54.26(included) SMU firmwares\n");
return -EOPNOTSUPP;
}
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (type) {
case SMU_SCLK:
single_dpm_table = &(dpm_context->dpm_tables.gfx_table);
if (soft_max_level >= single_dpm_table->count) {
dev_err(smu->adev->dev, "Clock level specified %d is over max allowed %d\n",
soft_max_level, single_dpm_table->count - 1);
ret = -EINVAL;
break;
}
ret = arcturus_upload_dpm_level(smu,
false,
FEATURE_DPM_GFXCLK_MASK,
soft_min_level);
if (ret) {
dev_err(smu->adev->dev, "Failed to upload boot level to lowest!\n");
break;
}
ret = arcturus_upload_dpm_level(smu,
true,
FEATURE_DPM_GFXCLK_MASK,
soft_max_level);
if (ret)
dev_err(smu->adev->dev, "Failed to upload dpm max level to highest!\n");
break;
case SMU_MCLK:
case SMU_SOCCLK:
case SMU_FCLK:
/*
* Should not arrive here since Arcturus does not
* support mclk/socclk/fclk softmin/softmax settings
*/
ret = -EINVAL;
break;
default:
break;
}
return ret;
}
static int arcturus_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range)
return -EINVAL;
memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));
range->max = pptable->TedgeLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->ThotspotLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->TmemLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
return 0;
}
static int arcturus_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int ret = 0;
if (amdgpu_ras_intr_triggered())
return 0;
if (!data || !size)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_AVERAGE_MEMACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_AVG_POWER:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_MEM,
(uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data);
/* the output clock frequency in 10K unit */
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = arcturus_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int arcturus_set_fan_static_mode(struct smu_context *smu,
uint32_t mode)
{
struct amdgpu_device *adev = smu->adev;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2_ARCT,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2_ARCT),
CG_FDO_CTRL2, TMIN, 0));
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL2_ARCT,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL2_ARCT),
CG_FDO_CTRL2, FDO_PWM_MODE, mode));
return 0;
}
static int arcturus_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
struct amdgpu_device *adev = smu->adev;
uint32_t crystal_clock_freq = 2500;
uint32_t tach_status;
uint64_t tmp64;
int ret = 0;
if (!speed)
return -EINVAL;
switch (smu_v11_0_get_fan_control_mode(smu)) {
case AMD_FAN_CTRL_AUTO:
ret = arcturus_get_smu_metrics_data(smu,
METRICS_CURR_FANSPEED,
speed);
break;
default:
/*
* For pre Sienna Cichlid ASICs, the 0 RPM may be not correctly
* detected via register retrieving. To workaround this, we will
* report the fan speed as 0 RPM if user just requested such.
*/
if ((smu->user_dpm_profile.flags & SMU_CUSTOM_FAN_SPEED_RPM)
&& !smu->user_dpm_profile.fan_speed_rpm) {
*speed = 0;
return 0;
}
tmp64 = (uint64_t)crystal_clock_freq * 60 * 10000;
tach_status = RREG32_SOC15(THM, 0, mmCG_TACH_STATUS_ARCT);
if (tach_status) {
do_div(tmp64, tach_status);
*speed = (uint32_t)tmp64;
} else {
*speed = 0;
}
break;
}
return ret;
}
static int arcturus_set_fan_speed_pwm(struct smu_context *smu,
uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
uint32_t duty100, duty;
uint64_t tmp64;
speed = min_t(uint32_t, speed, 255);
duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1_ARCT),
CG_FDO_CTRL1, FMAX_DUTY100);
if (!duty100)
return -EINVAL;
tmp64 = (uint64_t)speed * duty100;
do_div(tmp64, 255);
duty = (uint32_t)tmp64;
WREG32_SOC15(THM, 0, mmCG_FDO_CTRL0_ARCT,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL0_ARCT),
CG_FDO_CTRL0, FDO_STATIC_DUTY, duty));
return arcturus_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC);
}
static int arcturus_set_fan_speed_rpm(struct smu_context *smu,
uint32_t speed)
{
struct amdgpu_device *adev = smu->adev;
/*
* crystal_clock_freq used for fan speed rpm calculation is
* always 25Mhz. So, hardcode it as 2500(in 10K unit).
*/
uint32_t crystal_clock_freq = 2500;
uint32_t tach_period;
tach_period = 60 * crystal_clock_freq * 10000 / (8 * speed);
WREG32_SOC15(THM, 0, mmCG_TACH_CTRL_ARCT,
REG_SET_FIELD(RREG32_SOC15(THM, 0, mmCG_TACH_CTRL_ARCT),
CG_TACH_CTRL, TARGET_PERIOD,
tach_period));
return arcturus_set_fan_static_mode(smu, FDO_PWM_MODE_STATIC_RPM);
}
static int arcturus_get_fan_speed_pwm(struct smu_context *smu,
uint32_t *speed)
{
struct amdgpu_device *adev = smu->adev;
uint32_t duty100, duty;
uint64_t tmp64;
/*
* For pre Sienna Cichlid ASICs, the 0 RPM may be not correctly
* detected via register retrieving. To workaround this, we will
* report the fan speed as 0 PWM if user just requested such.
*/
if ((smu->user_dpm_profile.flags & SMU_CUSTOM_FAN_SPEED_PWM)
&& !smu->user_dpm_profile.fan_speed_pwm) {
*speed = 0;
return 0;
}
duty100 = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_FDO_CTRL1_ARCT),
CG_FDO_CTRL1, FMAX_DUTY100);
duty = REG_GET_FIELD(RREG32_SOC15(THM, 0, mmCG_THERMAL_STATUS_ARCT),
CG_THERMAL_STATUS, FDO_PWM_DUTY);
if (duty100) {
tmp64 = (uint64_t)duty * 255;
do_div(tmp64, duty100);
*speed = min_t(uint32_t, tmp64, 255);
} else {
*speed = 0;
}
return 0;
}
static int arcturus_get_fan_parameters(struct smu_context *smu)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
smu->fan_max_rpm = pptable->FanMaximumRpm;
return 0;
}
static int arcturus_get_power_limit(struct smu_context *smu,
uint32_t *current_power_limit,
uint32_t *default_power_limit,
uint32_t *max_power_limit,
uint32_t *min_power_limit)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t power_limit;
if (smu_v11_0_get_current_power_limit(smu, &power_limit)) {
/* the last hope to figure out the ppt limit */
if (!pptable) {
dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
power_limit =
pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
if (current_power_limit)
*current_power_limit = power_limit;
if (default_power_limit)
*default_power_limit = power_limit;
if (max_power_limit)
*max_power_limit = power_limit;
if (min_power_limit)
*min_power_limit = power_limit;
return 0;
}
static int arcturus_get_power_profile_mode(struct smu_context *smu,
char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"UseRlcBusy",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
uint32_t i, size = 0;
int16_t workload_type = 0;
int result = 0;
if (!buf)
return -EINVAL;
if (smu->smc_fw_version >= 0x360d00)
size += sysfs_emit_at(buf, size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
else
size += sysfs_emit_at(buf, size, "%16s\n",
title[0]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type < 0)
continue;
if (smu->smc_fw_version >= 0x360d00) {
result = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
workload_type,
(void *)(&activity_monitor),
false);
if (result) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return result;
}
}
size += sysfs_emit_at(buf, size, "%2d %14s%s\n",
i, amdgpu_pp_profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
if (smu->smc_fw_version >= 0x360d00) {
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_UseRlcBusy,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sysfs_emit_at(buf, size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"UCLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_UseRlcBusy,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
}
}
return size;
}
static int arcturus_set_power_profile_mode(struct smu_context *smu,
long *input,
uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type = 0;
uint32_t profile_mode = input[size];
int ret = 0;
if (profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", profile_mode);
return -EINVAL;
}
if ((profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) &&
(smu->smc_fw_version >= 0x360d00)) {
if (size != 10)
return -EINVAL;
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor),
false);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_UseRlcBusy = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Uclk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_UseRlcBusy = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
default:
return -EINVAL;
}
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF,
WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor),
true);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/*
* Conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT
* Not all profile modes are supported on arcturus.
*/
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
profile_mode);
if (workload_type < 0) {
dev_dbg(smu->adev->dev, "Unsupported power profile mode %d on arcturus\n", profile_mode);
return -EINVAL;
}
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetWorkloadMask,
1 << workload_type,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Fail to set workload type %d\n", workload_type);
return ret;
}
smu->power_profile_mode = profile_mode;
return 0;
}
static int arcturus_set_performance_level(struct smu_context *smu,
enum amd_dpm_forced_level level)
{
switch (level) {
case AMD_DPM_FORCED_LEVEL_HIGH:
case AMD_DPM_FORCED_LEVEL_LOW:
case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
if ((smu->smc_fw_version >= 0x361200) &&
(smu->smc_fw_version <= 0x361a00)) {
dev_err(smu->adev->dev, "Forcing clock level is not supported with "
"54.18 - 54.26(included) SMU firmwares\n");
return -EOPNOTSUPP;
}
break;
default:
break;
}
return smu_v11_0_set_performance_level(smu, level);
}
static void arcturus_dump_pptable(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
int i;
dev_info(smu->adev->dev, "Dumped PPTable:\n");
dev_info(smu->adev->dev, "Version = 0x%08x\n", pptable->Version);
dev_info(smu->adev->dev, "FeaturesToRun[0] = 0x%08x\n", pptable->FeaturesToRun[0]);
dev_info(smu->adev->dev, "FeaturesToRun[1] = 0x%08x\n", pptable->FeaturesToRun[1]);
for (i = 0; i < PPT_THROTTLER_COUNT; i++) {
dev_info(smu->adev->dev, "SocketPowerLimitAc[%d] = %d\n", i, pptable->SocketPowerLimitAc[i]);
dev_info(smu->adev->dev, "SocketPowerLimitAcTau[%d] = %d\n", i, pptable->SocketPowerLimitAcTau[i]);
}
dev_info(smu->adev->dev, "TdcLimitSoc = %d\n", pptable->TdcLimitSoc);
dev_info(smu->adev->dev, "TdcLimitSocTau = %d\n", pptable->TdcLimitSocTau);
dev_info(smu->adev->dev, "TdcLimitGfx = %d\n", pptable->TdcLimitGfx);
dev_info(smu->adev->dev, "TdcLimitGfxTau = %d\n", pptable->TdcLimitGfxTau);
dev_info(smu->adev->dev, "TedgeLimit = %d\n", pptable->TedgeLimit);
dev_info(smu->adev->dev, "ThotspotLimit = %d\n", pptable->ThotspotLimit);
dev_info(smu->adev->dev, "TmemLimit = %d\n", pptable->TmemLimit);
dev_info(smu->adev->dev, "Tvr_gfxLimit = %d\n", pptable->Tvr_gfxLimit);
dev_info(smu->adev->dev, "Tvr_memLimit = %d\n", pptable->Tvr_memLimit);
dev_info(smu->adev->dev, "Tvr_socLimit = %d\n", pptable->Tvr_socLimit);
dev_info(smu->adev->dev, "FitLimit = %d\n", pptable->FitLimit);
dev_info(smu->adev->dev, "PpmPowerLimit = %d\n", pptable->PpmPowerLimit);
dev_info(smu->adev->dev, "PpmTemperatureThreshold = %d\n", pptable->PpmTemperatureThreshold);
dev_info(smu->adev->dev, "ThrottlerControlMask = %d\n", pptable->ThrottlerControlMask);
dev_info(smu->adev->dev, "UlvVoltageOffsetGfx = %d\n", pptable->UlvVoltageOffsetGfx);
dev_info(smu->adev->dev, "UlvPadding = 0x%08x\n", pptable->UlvPadding);
dev_info(smu->adev->dev, "UlvGfxclkBypass = %d\n", pptable->UlvGfxclkBypass);
dev_info(smu->adev->dev, "Padding234[0] = 0x%02x\n", pptable->Padding234[0]);
dev_info(smu->adev->dev, "Padding234[1] = 0x%02x\n", pptable->Padding234[1]);
dev_info(smu->adev->dev, "Padding234[2] = 0x%02x\n", pptable->Padding234[2]);
dev_info(smu->adev->dev, "MinVoltageGfx = %d\n", pptable->MinVoltageGfx);
dev_info(smu->adev->dev, "MinVoltageSoc = %d\n", pptable->MinVoltageSoc);
dev_info(smu->adev->dev, "MaxVoltageGfx = %d\n", pptable->MaxVoltageGfx);
dev_info(smu->adev->dev, "MaxVoltageSoc = %d\n", pptable->MaxVoltageSoc);
dev_info(smu->adev->dev, "LoadLineResistanceGfx = %d\n", pptable->LoadLineResistanceGfx);
dev_info(smu->adev->dev, "LoadLineResistanceSoc = %d\n", pptable->LoadLineResistanceSoc);
dev_info(smu->adev->dev, "[PPCLK_GFXCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_GFXCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_GFXCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_GFXCLK].padding,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_GFXCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_GFXCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_GFXCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_VCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_VCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_VCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_VCLK].padding,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_VCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_VCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_VCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_VCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_DCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_DCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_DCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_DCLK].padding,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_DCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_DCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_DCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_DCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_SOCCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_SOCCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_SOCCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_SOCCLK].padding,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_SOCCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_SOCCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_SOCCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_UCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_UCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_UCLK].padding,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_UCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_UCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_UCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_UCLK].Padding16);
dev_info(smu->adev->dev, "[PPCLK_FCLK]\n"
" .VoltageMode = 0x%02x\n"
" .SnapToDiscrete = 0x%02x\n"
" .NumDiscreteLevels = 0x%02x\n"
" .padding = 0x%02x\n"
" .ConversionToAvfsClk{m = 0x%08x b = 0x%08x}\n"
" .SsCurve {a = 0x%08x b = 0x%08x c = 0x%08x}\n"
" .SsFmin = 0x%04x\n"
" .Padding_16 = 0x%04x\n",
pptable->DpmDescriptor[PPCLK_FCLK].VoltageMode,
pptable->DpmDescriptor[PPCLK_FCLK].SnapToDiscrete,
pptable->DpmDescriptor[PPCLK_FCLK].NumDiscreteLevels,
pptable->DpmDescriptor[PPCLK_FCLK].padding,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.m,
pptable->DpmDescriptor[PPCLK_FCLK].ConversionToAvfsClk.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.a,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.b,
pptable->DpmDescriptor[PPCLK_FCLK].SsCurve.c,
pptable->DpmDescriptor[PPCLK_FCLK].SsFmin,
pptable->DpmDescriptor[PPCLK_FCLK].Padding16);
dev_info(smu->adev->dev, "FreqTableGfx\n");
for (i = 0; i < NUM_GFXCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableGfx[i]);
dev_info(smu->adev->dev, "FreqTableVclk\n");
for (i = 0; i < NUM_VCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableVclk[i]);
dev_info(smu->adev->dev, "FreqTableDclk\n");
for (i = 0; i < NUM_DCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableDclk[i]);
dev_info(smu->adev->dev, "FreqTableSocclk\n");
for (i = 0; i < NUM_SOCCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableSocclk[i]);
dev_info(smu->adev->dev, "FreqTableUclk\n");
for (i = 0; i < NUM_UCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableUclk[i]);
dev_info(smu->adev->dev, "FreqTableFclk\n");
for (i = 0; i < NUM_FCLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%02d] = %d\n", i, pptable->FreqTableFclk[i]);
dev_info(smu->adev->dev, "Mp0clkFreq\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->Mp0clkFreq[i]);
dev_info(smu->adev->dev, "Mp0DpmVoltage\n");
for (i = 0; i < NUM_MP0CLK_DPM_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->Mp0DpmVoltage[i]);
dev_info(smu->adev->dev, "GfxclkFidle = 0x%x\n", pptable->GfxclkFidle);
dev_info(smu->adev->dev, "GfxclkSlewRate = 0x%x\n", pptable->GfxclkSlewRate);
dev_info(smu->adev->dev, "Padding567[0] = 0x%x\n", pptable->Padding567[0]);
dev_info(smu->adev->dev, "Padding567[1] = 0x%x\n", pptable->Padding567[1]);
dev_info(smu->adev->dev, "Padding567[2] = 0x%x\n", pptable->Padding567[2]);
dev_info(smu->adev->dev, "Padding567[3] = 0x%x\n", pptable->Padding567[3]);
dev_info(smu->adev->dev, "GfxclkDsMaxFreq = %d\n", pptable->GfxclkDsMaxFreq);
dev_info(smu->adev->dev, "GfxclkSource = 0x%x\n", pptable->GfxclkSource);
dev_info(smu->adev->dev, "Padding456 = 0x%x\n", pptable->Padding456);
dev_info(smu->adev->dev, "EnableTdpm = %d\n", pptable->EnableTdpm);
dev_info(smu->adev->dev, "TdpmHighHystTemperature = %d\n", pptable->TdpmHighHystTemperature);
dev_info(smu->adev->dev, "TdpmLowHystTemperature = %d\n", pptable->TdpmLowHystTemperature);
dev_info(smu->adev->dev, "GfxclkFreqHighTempLimit = %d\n", pptable->GfxclkFreqHighTempLimit);
dev_info(smu->adev->dev, "FanStopTemp = %d\n", pptable->FanStopTemp);
dev_info(smu->adev->dev, "FanStartTemp = %d\n", pptable->FanStartTemp);
dev_info(smu->adev->dev, "FanGainEdge = %d\n", pptable->FanGainEdge);
dev_info(smu->adev->dev, "FanGainHotspot = %d\n", pptable->FanGainHotspot);
dev_info(smu->adev->dev, "FanGainVrGfx = %d\n", pptable->FanGainVrGfx);
dev_info(smu->adev->dev, "FanGainVrSoc = %d\n", pptable->FanGainVrSoc);
dev_info(smu->adev->dev, "FanGainVrMem = %d\n", pptable->FanGainVrMem);
dev_info(smu->adev->dev, "FanGainHbm = %d\n", pptable->FanGainHbm);
dev_info(smu->adev->dev, "FanPwmMin = %d\n", pptable->FanPwmMin);
dev_info(smu->adev->dev, "FanAcousticLimitRpm = %d\n", pptable->FanAcousticLimitRpm);
dev_info(smu->adev->dev, "FanThrottlingRpm = %d\n", pptable->FanThrottlingRpm);
dev_info(smu->adev->dev, "FanMaximumRpm = %d\n", pptable->FanMaximumRpm);
dev_info(smu->adev->dev, "FanTargetTemperature = %d\n", pptable->FanTargetTemperature);
dev_info(smu->adev->dev, "FanTargetGfxclk = %d\n", pptable->FanTargetGfxclk);
dev_info(smu->adev->dev, "FanZeroRpmEnable = %d\n", pptable->FanZeroRpmEnable);
dev_info(smu->adev->dev, "FanTachEdgePerRev = %d\n", pptable->FanTachEdgePerRev);
dev_info(smu->adev->dev, "FanTempInputSelect = %d\n", pptable->FanTempInputSelect);
dev_info(smu->adev->dev, "FuzzyFan_ErrorSetDelta = %d\n", pptable->FuzzyFan_ErrorSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_ErrorRateSetDelta = %d\n", pptable->FuzzyFan_ErrorRateSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_PwmSetDelta = %d\n", pptable->FuzzyFan_PwmSetDelta);
dev_info(smu->adev->dev, "FuzzyFan_Reserved = %d\n", pptable->FuzzyFan_Reserved);
dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "OverrideAvfsGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->OverrideAvfsGb[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "Padding8_Avfs[0] = %d\n", pptable->Padding8_Avfs[0]);
dev_info(smu->adev->dev, "Padding8_Avfs[1] = %d\n", pptable->Padding8_Avfs[1]);
dev_info(smu->adev->dev, "dBtcGbGfxPll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxPll.a,
pptable->dBtcGbGfxPll.b,
pptable->dBtcGbGfxPll.c);
dev_info(smu->adev->dev, "dBtcGbGfxAfll{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbGfxAfll.a,
pptable->dBtcGbGfxAfll.b,
pptable->dBtcGbGfxAfll.c);
dev_info(smu->adev->dev, "dBtcGbSoc{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->dBtcGbSoc.a,
pptable->dBtcGbSoc.b,
pptable->dBtcGbSoc.c);
dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_GFX]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_GFX].m,
pptable->qAgingGb[AVFS_VOLTAGE_GFX].b);
dev_info(smu->adev->dev, "qAgingGb[AVFS_VOLTAGE_SOC]{m = 0x%x b = 0x%x}\n",
pptable->qAgingGb[AVFS_VOLTAGE_SOC].m,
pptable->qAgingGb[AVFS_VOLTAGE_SOC].b);
dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_GFX]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_GFX].c);
dev_info(smu->adev->dev, "qStaticVoltageOffset[AVFS_VOLTAGE_SOC]{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].a,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].b,
pptable->qStaticVoltageOffset[AVFS_VOLTAGE_SOC].c);
dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcTol[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcTol[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcEnabled[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcEnabled[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "Padding8_GfxBtc[0] = 0x%x\n", pptable->Padding8_GfxBtc[0]);
dev_info(smu->adev->dev, "Padding8_GfxBtc[1] = 0x%x\n", pptable->Padding8_GfxBtc[1]);
dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcMin[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMin[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcMax[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcMax[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_GFX] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_GFX]);
dev_info(smu->adev->dev, "DcBtcGb[AVFS_VOLTAGE_SOC] = 0x%x\n", pptable->DcBtcGb[AVFS_VOLTAGE_SOC]);
dev_info(smu->adev->dev, "XgmiDpmPstates\n");
for (i = 0; i < NUM_XGMI_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiDpmPstates[i]);
dev_info(smu->adev->dev, "XgmiDpmSpare[0] = 0x%02x\n", pptable->XgmiDpmSpare[0]);
dev_info(smu->adev->dev, "XgmiDpmSpare[1] = 0x%02x\n", pptable->XgmiDpmSpare[1]);
dev_info(smu->adev->dev, "VDDGFX_TVmin = %d\n", pptable->VDDGFX_TVmin);
dev_info(smu->adev->dev, "VDDSOC_TVmin = %d\n", pptable->VDDSOC_TVmin);
dev_info(smu->adev->dev, "VDDGFX_Vmin_HiTemp = %d\n", pptable->VDDGFX_Vmin_HiTemp);
dev_info(smu->adev->dev, "VDDGFX_Vmin_LoTemp = %d\n", pptable->VDDGFX_Vmin_LoTemp);
dev_info(smu->adev->dev, "VDDSOC_Vmin_HiTemp = %d\n", pptable->VDDSOC_Vmin_HiTemp);
dev_info(smu->adev->dev, "VDDSOC_Vmin_LoTemp = %d\n", pptable->VDDSOC_Vmin_LoTemp);
dev_info(smu->adev->dev, "VDDGFX_TVminHystersis = %d\n", pptable->VDDGFX_TVminHystersis);
dev_info(smu->adev->dev, "VDDSOC_TVminHystersis = %d\n", pptable->VDDSOC_TVminHystersis);
dev_info(smu->adev->dev, "DebugOverrides = 0x%x\n", pptable->DebugOverrides);
dev_info(smu->adev->dev, "ReservedEquation0{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation0.a,
pptable->ReservedEquation0.b,
pptable->ReservedEquation0.c);
dev_info(smu->adev->dev, "ReservedEquation1{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation1.a,
pptable->ReservedEquation1.b,
pptable->ReservedEquation1.c);
dev_info(smu->adev->dev, "ReservedEquation2{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation2.a,
pptable->ReservedEquation2.b,
pptable->ReservedEquation2.c);
dev_info(smu->adev->dev, "ReservedEquation3{a = 0x%x b = 0x%x c = 0x%x}\n",
pptable->ReservedEquation3.a,
pptable->ReservedEquation3.b,
pptable->ReservedEquation3.c);
dev_info(smu->adev->dev, "MinVoltageUlvGfx = %d\n", pptable->MinVoltageUlvGfx);
dev_info(smu->adev->dev, "PaddingUlv = %d\n", pptable->PaddingUlv);
dev_info(smu->adev->dev, "TotalPowerConfig = %d\n", pptable->TotalPowerConfig);
dev_info(smu->adev->dev, "TotalPowerSpare1 = %d\n", pptable->TotalPowerSpare1);
dev_info(smu->adev->dev, "TotalPowerSpare2 = %d\n", pptable->TotalPowerSpare2);
dev_info(smu->adev->dev, "PccThresholdLow = %d\n", pptable->PccThresholdLow);
dev_info(smu->adev->dev, "PccThresholdHigh = %d\n", pptable->PccThresholdHigh);
dev_info(smu->adev->dev, "Board Parameters:\n");
dev_info(smu->adev->dev, "MaxVoltageStepGfx = 0x%x\n", pptable->MaxVoltageStepGfx);
dev_info(smu->adev->dev, "MaxVoltageStepSoc = 0x%x\n", pptable->MaxVoltageStepSoc);
dev_info(smu->adev->dev, "VddGfxVrMapping = 0x%x\n", pptable->VddGfxVrMapping);
dev_info(smu->adev->dev, "VddSocVrMapping = 0x%x\n", pptable->VddSocVrMapping);
dev_info(smu->adev->dev, "VddMemVrMapping = 0x%x\n", pptable->VddMemVrMapping);
dev_info(smu->adev->dev, "BoardVrMapping = 0x%x\n", pptable->BoardVrMapping);
dev_info(smu->adev->dev, "GfxUlvPhaseSheddingMask = 0x%x\n", pptable->GfxUlvPhaseSheddingMask);
dev_info(smu->adev->dev, "ExternalSensorPresent = 0x%x\n", pptable->ExternalSensorPresent);
dev_info(smu->adev->dev, "GfxMaxCurrent = 0x%x\n", pptable->GfxMaxCurrent);
dev_info(smu->adev->dev, "GfxOffset = 0x%x\n", pptable->GfxOffset);
dev_info(smu->adev->dev, "Padding_TelemetryGfx = 0x%x\n", pptable->Padding_TelemetryGfx);
dev_info(smu->adev->dev, "SocMaxCurrent = 0x%x\n", pptable->SocMaxCurrent);
dev_info(smu->adev->dev, "SocOffset = 0x%x\n", pptable->SocOffset);
dev_info(smu->adev->dev, "Padding_TelemetrySoc = 0x%x\n", pptable->Padding_TelemetrySoc);
dev_info(smu->adev->dev, "MemMaxCurrent = 0x%x\n", pptable->MemMaxCurrent);
dev_info(smu->adev->dev, "MemOffset = 0x%x\n", pptable->MemOffset);
dev_info(smu->adev->dev, "Padding_TelemetryMem = 0x%x\n", pptable->Padding_TelemetryMem);
dev_info(smu->adev->dev, "BoardMaxCurrent = 0x%x\n", pptable->BoardMaxCurrent);
dev_info(smu->adev->dev, "BoardOffset = 0x%x\n", pptable->BoardOffset);
dev_info(smu->adev->dev, "Padding_TelemetryBoardInput = 0x%x\n", pptable->Padding_TelemetryBoardInput);
dev_info(smu->adev->dev, "VR0HotGpio = %d\n", pptable->VR0HotGpio);
dev_info(smu->adev->dev, "VR0HotPolarity = %d\n", pptable->VR0HotPolarity);
dev_info(smu->adev->dev, "VR1HotGpio = %d\n", pptable->VR1HotGpio);
dev_info(smu->adev->dev, "VR1HotPolarity = %d\n", pptable->VR1HotPolarity);
dev_info(smu->adev->dev, "PllGfxclkSpreadEnabled = %d\n", pptable->PllGfxclkSpreadEnabled);
dev_info(smu->adev->dev, "PllGfxclkSpreadPercent = %d\n", pptable->PllGfxclkSpreadPercent);
dev_info(smu->adev->dev, "PllGfxclkSpreadFreq = %d\n", pptable->PllGfxclkSpreadFreq);
dev_info(smu->adev->dev, "UclkSpreadEnabled = %d\n", pptable->UclkSpreadEnabled);
dev_info(smu->adev->dev, "UclkSpreadPercent = %d\n", pptable->UclkSpreadPercent);
dev_info(smu->adev->dev, "UclkSpreadFreq = %d\n", pptable->UclkSpreadFreq);
dev_info(smu->adev->dev, "FclkSpreadEnabled = %d\n", pptable->FclkSpreadEnabled);
dev_info(smu->adev->dev, "FclkSpreadPercent = %d\n", pptable->FclkSpreadPercent);
dev_info(smu->adev->dev, "FclkSpreadFreq = %d\n", pptable->FclkSpreadFreq);
dev_info(smu->adev->dev, "FllGfxclkSpreadEnabled = %d\n", pptable->FllGfxclkSpreadEnabled);
dev_info(smu->adev->dev, "FllGfxclkSpreadPercent = %d\n", pptable->FllGfxclkSpreadPercent);
dev_info(smu->adev->dev, "FllGfxclkSpreadFreq = %d\n", pptable->FllGfxclkSpreadFreq);
for (i = 0; i < NUM_I2C_CONTROLLERS; i++) {
dev_info(smu->adev->dev, "I2cControllers[%d]:\n", i);
dev_info(smu->adev->dev, " .Enabled = %d\n",
pptable->I2cControllers[i].Enabled);
dev_info(smu->adev->dev, " .SlaveAddress = 0x%x\n",
pptable->I2cControllers[i].SlaveAddress);
dev_info(smu->adev->dev, " .ControllerPort = %d\n",
pptable->I2cControllers[i].ControllerPort);
dev_info(smu->adev->dev, " .ControllerName = %d\n",
pptable->I2cControllers[i].ControllerName);
dev_info(smu->adev->dev, " .ThermalThrottler = %d\n",
pptable->I2cControllers[i].ThermalThrotter);
dev_info(smu->adev->dev, " .I2cProtocol = %d\n",
pptable->I2cControllers[i].I2cProtocol);
dev_info(smu->adev->dev, " .Speed = %d\n",
pptable->I2cControllers[i].Speed);
}
dev_info(smu->adev->dev, "MemoryChannelEnabled = %d\n", pptable->MemoryChannelEnabled);
dev_info(smu->adev->dev, "DramBitWidth = %d\n", pptable->DramBitWidth);
dev_info(smu->adev->dev, "TotalBoardPower = %d\n", pptable->TotalBoardPower);
dev_info(smu->adev->dev, "XgmiLinkSpeed\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiLinkSpeed[i]);
dev_info(smu->adev->dev, "XgmiLinkWidth\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiLinkWidth[i]);
dev_info(smu->adev->dev, "XgmiFclkFreq\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiFclkFreq[i]);
dev_info(smu->adev->dev, "XgmiSocVoltage\n");
for (i = 0; i < NUM_XGMI_PSTATE_LEVELS; i++)
dev_info(smu->adev->dev, " .[%d] = %d\n", i, pptable->XgmiSocVoltage[i]);
}
static bool arcturus_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint64_t feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, &feature_enabled);
if (ret)
return false;
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int arcturus_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_DPM_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_VCN_DPM_BIT, 1);
if (ret) {
dev_err(smu->adev->dev, "[EnableVCNDPM] failed!\n");
return ret;
}
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_DPM_BIT)) {
ret = smu_cmn_feature_set_enabled(smu, SMU_FEATURE_VCN_DPM_BIT, 0);
if (ret) {
dev_err(smu->adev->dev, "[DisableVCNDPM] failed!\n");
return ret;
}
}
}
return ret;
}
static int arcturus_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msg, int num_msgs)
{
struct amdgpu_smu_i2c_bus *smu_i2c = i2c_get_adapdata(i2c_adap);
struct amdgpu_device *adev = smu_i2c->adev;
struct smu_context *smu = adev->powerplay.pp_handle;
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *table = &smu_table->driver_table;
SwI2cRequest_t *req, *res = (SwI2cRequest_t *)table->cpu_addr;
int i, j, r, c;
u16 dir;
if (!adev->pm.dpm_enabled)
return -EBUSY;
req = kzalloc(sizeof(*req), GFP_KERNEL);
if (!req)
return -ENOMEM;
req->I2CcontrollerPort = smu_i2c->port;
req->I2CSpeed = I2C_SPEED_FAST_400K;
req->SlaveAddress = msg[0].addr << 1; /* wants an 8-bit address */
dir = msg[0].flags & I2C_M_RD;
for (c = i = 0; i < num_msgs; i++) {
for (j = 0; j < msg[i].len; j++, c++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[c];
if (!(msg[i].flags & I2C_M_RD)) {
/* write */
cmd->Cmd = I2C_CMD_WRITE;
cmd->RegisterAddr = msg[i].buf[j];
}
if ((dir ^ msg[i].flags) & I2C_M_RD) {
/* The direction changes.
*/
dir = msg[i].flags & I2C_M_RD;
cmd->CmdConfig |= CMDCONFIG_RESTART_MASK;
}
req->NumCmds++;
/*
* Insert STOP if we are at the last byte of either last
* message for the transaction or the client explicitly
* requires a STOP at this particular message.
*/
if ((j == msg[i].len - 1) &&
((i == num_msgs - 1) || (msg[i].flags & I2C_M_STOP))) {
cmd->CmdConfig &= ~CMDCONFIG_RESTART_MASK;
cmd->CmdConfig |= CMDCONFIG_STOP_MASK;
}
}
}
mutex_lock(&adev->pm.mutex);
r = smu_cmn_update_table(smu, SMU_TABLE_I2C_COMMANDS, 0, req, true);
if (r)
goto fail;
for (c = i = 0; i < num_msgs; i++) {
if (!(msg[i].flags & I2C_M_RD)) {
c += msg[i].len;
continue;
}
for (j = 0; j < msg[i].len; j++, c++) {
SwI2cCmd_t *cmd = &res->SwI2cCmds[c];
msg[i].buf[j] = cmd->Data;
}
}
r = num_msgs;
fail:
mutex_unlock(&adev->pm.mutex);
kfree(req);
return r;
}
static u32 arcturus_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm arcturus_i2c_algo = {
.master_xfer = arcturus_i2c_xfer,
.functionality = arcturus_i2c_func,
};
static const struct i2c_adapter_quirks arcturus_i2c_control_quirks = {
.flags = I2C_AQ_COMB | I2C_AQ_COMB_SAME_ADDR | I2C_AQ_NO_ZERO_LEN,
.max_read_len = MAX_SW_I2C_COMMANDS,
.max_write_len = MAX_SW_I2C_COMMANDS,
.max_comb_1st_msg_len = 2,
.max_comb_2nd_msg_len = MAX_SW_I2C_COMMANDS - 2,
};
static int arcturus_i2c_control_init(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int res, i;
for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
smu_i2c->adev = adev;
smu_i2c->port = i;
mutex_init(&smu_i2c->mutex);
control->owner = THIS_MODULE;
control->class = I2C_CLASS_HWMON;
control->dev.parent = &adev->pdev->dev;
control->algo = &arcturus_i2c_algo;
control->quirks = &arcturus_i2c_control_quirks;
snprintf(control->name, sizeof(control->name), "AMDGPU SMU %d", i);
i2c_set_adapdata(control, smu_i2c);
res = i2c_add_adapter(control);
if (res) {
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
goto Out_err;
}
}
adev->pm.ras_eeprom_i2c_bus = &adev->pm.smu_i2c[0].adapter;
adev->pm.fru_eeprom_i2c_bus = &adev->pm.smu_i2c[1].adapter;
return 0;
Out_err:
for ( ; i >= 0; i--) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
i2c_del_adapter(control);
}
return res;
}
static void arcturus_i2c_control_fini(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int i;
for (i = 0; i < MAX_SMU_I2C_BUSES; i++) {
struct amdgpu_smu_i2c_bus *smu_i2c = &adev->pm.smu_i2c[i];
struct i2c_adapter *control = &smu_i2c->adapter;
i2c_del_adapter(control);
}
adev->pm.ras_eeprom_i2c_bus = NULL;
adev->pm.fru_eeprom_i2c_bus = NULL;
}
static void arcturus_get_unique_id(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t top32 = 0, bottom32 = 0;
uint64_t id;
/* PPSMC_MSG_ReadSerial* is supported by 54.23.0 and onwards */
if (smu->smc_fw_version < 0x361700) {
dev_warn(adev->dev, "ReadSerial is only supported by PMFW 54.23.0 and onwards\n");
return;
}
/* Get the SN to turn into a Unique ID */
smu_cmn_send_smc_msg(smu, SMU_MSG_ReadSerialNumTop32, &top32);
smu_cmn_send_smc_msg(smu, SMU_MSG_ReadSerialNumBottom32, &bottom32);
id = ((uint64_t)bottom32 << 32) | top32;
adev->unique_id = id;
}
static int arcturus_set_df_cstate(struct smu_context *smu,
enum pp_df_cstate state)
{
struct amdgpu_device *adev = smu->adev;
/*
* Arcturus does not need the cstate disablement
* prerequisite for gpu reset.
*/
if (amdgpu_in_reset(adev) || adev->in_suspend)
return 0;
/* PPSMC_MSG_DFCstateControl is supported by 54.15.0 and onwards */
if (smu->smc_fw_version < 0x360F00) {
dev_err(smu->adev->dev, "DFCstateControl is only supported by PMFW 54.15.0 and onwards\n");
return -EINVAL;
}
return smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_DFCstateControl, state, NULL);
}
static const struct throttling_logging_label {
uint32_t feature_mask;
const char *label;
} logging_label[] = {
{(1U << THROTTLER_TEMP_HOTSPOT_BIT), "GPU"},
{(1U << THROTTLER_TEMP_MEM_BIT), "HBM"},
{(1U << THROTTLER_TEMP_VR_GFX_BIT), "VR of GFX rail"},
{(1U << THROTTLER_TEMP_VR_MEM_BIT), "VR of HBM rail"},
{(1U << THROTTLER_TEMP_VR_SOC_BIT), "VR of SOC rail"},
{(1U << THROTTLER_VRHOT0_BIT), "VR0 HOT"},
{(1U << THROTTLER_VRHOT1_BIT), "VR1 HOT"},
};
static void arcturus_log_thermal_throttling_event(struct smu_context *smu)
{
int ret;
int throttler_idx, throttling_events = 0, buf_idx = 0;
struct amdgpu_device *adev = smu->adev;
uint32_t throttler_status;
char log_buf[256];
ret = arcturus_get_smu_metrics_data(smu,
METRICS_THROTTLER_STATUS,
&throttler_status);
if (ret)
return;
memset(log_buf, 0, sizeof(log_buf));
for (throttler_idx = 0; throttler_idx < ARRAY_SIZE(logging_label);
throttler_idx++) {
if (throttler_status & logging_label[throttler_idx].feature_mask) {
throttling_events++;
buf_idx += snprintf(log_buf + buf_idx,
sizeof(log_buf) - buf_idx,
"%s%s",
throttling_events > 1 ? " and " : "",
logging_label[throttler_idx].label);
if (buf_idx >= sizeof(log_buf)) {
dev_err(adev->dev, "buffer overflow!\n");
log_buf[sizeof(log_buf) - 1] = '\0';
break;
}
}
}
dev_warn(adev->dev, "WARN: GPU thermal throttling temperature reached, expect performance decrease. %s.\n",
log_buf);
kgd2kfd_smi_event_throttle(smu->adev->kfd.dev,
smu_cmn_get_indep_throttler_status(throttler_status,
arcturus_throttler_map));
}
static uint16_t arcturus_get_current_pcie_link_speed(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t esm_ctrl;
/* TODO: confirm this on real target */
esm_ctrl = RREG32_PCIE(smnPCIE_ESM_CTRL);
if ((esm_ctrl >> 15) & 0x1)
return (uint16_t)(((esm_ctrl >> 8) & 0x7F) + 128);
return smu_v11_0_get_current_pcie_link_speed(smu);
}
static ssize_t arcturus_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v1_3 *gpu_metrics =
(struct gpu_metrics_v1_3 *)smu_table->gpu_metrics_table;
SmuMetrics_t metrics;
int ret = 0;
ret = smu_cmn_get_metrics_table(smu,
&metrics,
true);
if (ret)
return ret;
smu_cmn_init_soft_gpu_metrics(gpu_metrics, 1, 3);
gpu_metrics->temperature_edge = metrics.TemperatureEdge;
gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
gpu_metrics->temperature_mem = metrics.TemperatureHBM;
gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem;
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
gpu_metrics->average_mm_activity = metrics.VcnActivityPercentage;
gpu_metrics->average_socket_power = metrics.AverageSocketPower;
gpu_metrics->energy_accumulator = metrics.EnergyAccumulator;
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency;
gpu_metrics->average_vclk0_frequency = metrics.AverageVclkFrequency;
gpu_metrics->average_dclk0_frequency = metrics.AverageDclkFrequency;
gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK];
gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->indep_throttle_status =
smu_cmn_get_indep_throttler_status(metrics.ThrottlerStatus,
arcturus_throttler_map);
gpu_metrics->current_fan_speed = metrics.CurrFanSpeed;
gpu_metrics->pcie_link_width =
smu_v11_0_get_current_pcie_link_width(smu);
gpu_metrics->pcie_link_speed =
arcturus_get_current_pcie_link_speed(smu);
gpu_metrics->system_clock_counter = ktime_get_boottime_ns();
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_3);
}
static const struct pptable_funcs arcturus_ppt_funcs = {
/* init dpm */
.get_allowed_feature_mask = arcturus_get_allowed_feature_mask,
/* btc */
.run_btc = arcturus_run_btc,
/* dpm/clk tables */
.set_default_dpm_table = arcturus_set_default_dpm_table,
.populate_umd_state_clk = arcturus_populate_umd_state_clk,
.get_thermal_temperature_range = arcturus_get_thermal_temperature_range,
.emit_clk_levels = arcturus_emit_clk_levels,
.force_clk_levels = arcturus_force_clk_levels,
.read_sensor = arcturus_read_sensor,
.get_fan_speed_pwm = arcturus_get_fan_speed_pwm,
.get_fan_speed_rpm = arcturus_get_fan_speed_rpm,
.get_power_profile_mode = arcturus_get_power_profile_mode,
.set_power_profile_mode = arcturus_set_power_profile_mode,
.set_performance_level = arcturus_set_performance_level,
/* debug (internal used) */
.dump_pptable = arcturus_dump_pptable,
.get_power_limit = arcturus_get_power_limit,
.is_dpm_running = arcturus_is_dpm_running,
.dpm_set_vcn_enable = arcturus_dpm_set_vcn_enable,
.i2c_init = arcturus_i2c_control_init,
.i2c_fini = arcturus_i2c_control_fini,
.get_unique_id = arcturus_get_unique_id,
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.fini_microcode = smu_v11_0_fini_microcode,
.init_smc_tables = arcturus_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.check_fw_status = smu_v11_0_check_fw_status,
/* pptable related */
.setup_pptable = arcturus_setup_pptable,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.check_fw_version = smu_v11_0_check_fw_version,
.write_pptable = smu_cmn_write_pptable,
.set_driver_table_location = smu_v11_0_set_driver_table_location,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.system_features_control = smu_v11_0_system_features_control,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.init_display_count = NULL,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
.notify_display_change = NULL,
.set_power_limit = smu_v11_0_set_power_limit,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.enable_thermal_alert = smu_v11_0_enable_thermal_alert,
.disable_thermal_alert = smu_v11_0_disable_thermal_alert,
.set_min_dcef_deep_sleep = NULL,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.set_fan_speed_pwm = arcturus_set_fan_speed_pwm,
.set_fan_speed_rpm = arcturus_set_fan_speed_rpm,
.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
.gfx_off_control = smu_v11_0_gfx_off_control,
.register_irq_handler = smu_v11_0_register_irq_handler,
.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
.get_bamaco_support = smu_v11_0_get_bamaco_support,
.baco_enter = smu_v11_0_baco_enter,
.baco_exit = smu_v11_0_baco_exit,
.get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
.set_df_cstate = arcturus_set_df_cstate,
.log_thermal_throttling_event = arcturus_log_thermal_throttling_event,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.get_gpu_metrics = arcturus_get_gpu_metrics,
.gfx_ulv_control = smu_v11_0_gfx_ulv_control,
.deep_sleep_control = smu_v11_0_deep_sleep_control,
.get_fan_parameters = arcturus_get_fan_parameters,
.interrupt_work = smu_v11_0_interrupt_work,
.smu_handle_passthrough_sbr = smu_v11_0_handle_passthrough_sbr,
.set_mp1_state = smu_cmn_set_mp1_state,
};
void arcturus_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &arcturus_ppt_funcs;
smu->message_map = arcturus_message_map;
smu->clock_map = arcturus_clk_map;
smu->feature_map = arcturus_feature_mask_map;
smu->table_map = arcturus_table_map;
smu->pwr_src_map = arcturus_pwr_src_map;
smu->workload_map = arcturus_workload_map;
smu_v11_0_set_smu_mailbox_registers(smu);
}