blob: e539a656cfc3ae8d833f22efd23aeb601fb780ca [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014-2018 Intel Corporation
*/
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_context.h"
#include "intel_engine_pm.h"
#include "intel_engine_regs.h"
#include "intel_gpu_commands.h"
#include "intel_gt.h"
#include "intel_gt_ccs_mode.h"
#include "intel_gt_mcr.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_ring.h"
#include "intel_workarounds.h"
#include "display/intel_fbc_regs.h"
/**
* DOC: Hardware workarounds
*
* Hardware workarounds are register programming documented to be executed in
* the driver that fall outside of the normal programming sequences for a
* platform. There are some basic categories of workarounds, depending on
* how/when they are applied:
*
* - Context workarounds: workarounds that touch registers that are
* saved/restored to/from the HW context image. The list is emitted (via Load
* Register Immediate commands) once when initializing the device and saved in
* the default context. That default context is then used on every context
* creation to have a "primed golden context", i.e. a context image that
* already contains the changes needed to all the registers.
*
* Context workarounds should be implemented in the \*_ctx_workarounds_init()
* variants respective to the targeted platforms.
*
* - Engine workarounds: the list of these WAs is applied whenever the specific
* engine is reset. It's also possible that a set of engine classes share a
* common power domain and they are reset together. This happens on some
* platforms with render and compute engines. In this case (at least) one of
* them need to keeep the workaround programming: the approach taken in the
* driver is to tie those workarounds to the first compute/render engine that
* is registered. When executing with GuC submission, engine resets are
* outside of kernel driver control, hence the list of registers involved in
* written once, on engine initialization, and then passed to GuC, that
* saves/restores their values before/after the reset takes place. See
* ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
*
* Workarounds for registers specific to RCS and CCS should be implemented in
* rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
* registers belonging to BCS, VCS or VECS should be implemented in
* xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
* engine's MMIO range but that are part of of the common RCS/CCS reset domain
* should be implemented in general_render_compute_wa_init(). The settings
* about the CCS load balancing should be added in ccs_engine_wa_mode().
*
* - GT workarounds: the list of these WAs is applied whenever these registers
* revert to their default values: on GPU reset, suspend/resume [1]_, etc.
*
* GT workarounds should be implemented in the \*_gt_workarounds_init()
* variants respective to the targeted platforms.
*
* - Register whitelist: some workarounds need to be implemented in userspace,
* but need to touch privileged registers. The whitelist in the kernel
* instructs the hardware to allow the access to happen. From the kernel side,
* this is just a special case of a MMIO workaround (as we write the list of
* these to/be-whitelisted registers to some special HW registers).
*
* Register whitelisting should be done in the \*_whitelist_build() variants
* respective to the targeted platforms.
*
* - Workaround batchbuffers: buffers that get executed automatically by the
* hardware on every HW context restore. These buffers are created and
* programmed in the default context so the hardware always go through those
* programming sequences when switching contexts. The support for workaround
* batchbuffers is enabled these hardware mechanisms:
*
* #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
* context, pointing the hardware to jump to that location when that offset
* is reached in the context restore. Workaround batchbuffer in the driver
* currently uses this mechanism for all platforms.
*
* #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
* pointing the hardware to a buffer to continue executing after the
* engine registers are restored in a context restore sequence. This is
* currently not used in the driver.
*
* - Other: There are WAs that, due to their nature, cannot be applied from a
* central place. Those are peppered around the rest of the code, as needed.
* Workarounds related to the display IP are the main example.
*
* .. [1] Technically, some registers are powercontext saved & restored, so they
* survive a suspend/resume. In practice, writing them again is not too
* costly and simplifies things, so it's the approach taken in the driver.
*/
static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
const char *name, const char *engine_name)
{
wal->gt = gt;
wal->name = name;
wal->engine_name = engine_name;
}
#define WA_LIST_CHUNK (1 << 4)
static void wa_init_finish(struct i915_wa_list *wal)
{
/* Trim unused entries. */
if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
struct i915_wa *list = kmemdup_array(wal->list, wal->count,
sizeof(*list), GFP_KERNEL);
if (list) {
kfree(wal->list);
wal->list = list;
}
}
if (!wal->count)
return;
gt_dbg(wal->gt, "Initialized %u %s workarounds on %s\n",
wal->wa_count, wal->name, wal->engine_name);
}
static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
{
enum forcewake_domains fw = 0;
struct i915_wa *wa;
unsigned int i;
for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
fw |= intel_uncore_forcewake_for_reg(uncore,
wa->reg,
FW_REG_READ |
FW_REG_WRITE);
return fw;
}
static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
{
unsigned int addr = i915_mmio_reg_offset(wa->reg);
struct drm_i915_private *i915 = wal->gt->i915;
unsigned int start = 0, end = wal->count;
const unsigned int grow = WA_LIST_CHUNK;
struct i915_wa *wa_;
GEM_BUG_ON(!is_power_of_2(grow));
if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
struct i915_wa *list;
list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
GFP_KERNEL);
if (!list) {
drm_err(&i915->drm, "No space for workaround init!\n");
return;
}
if (wal->list) {
memcpy(list, wal->list, sizeof(*wa) * wal->count);
kfree(wal->list);
}
wal->list = list;
}
while (start < end) {
unsigned int mid = start + (end - start) / 2;
if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
start = mid + 1;
} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
end = mid;
} else {
wa_ = &wal->list[mid];
if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
drm_err(&i915->drm,
"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
i915_mmio_reg_offset(wa_->reg),
wa_->clr, wa_->set);
wa_->set &= ~wa->clr;
}
wal->wa_count++;
wa_->set |= wa->set;
wa_->clr |= wa->clr;
wa_->read |= wa->read;
return;
}
}
wal->wa_count++;
wa_ = &wal->list[wal->count++];
*wa_ = *wa;
while (wa_-- > wal->list) {
GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
i915_mmio_reg_offset(wa_[1].reg));
if (i915_mmio_reg_offset(wa_[1].reg) >
i915_mmio_reg_offset(wa_[0].reg))
break;
swap(wa_[1], wa_[0]);
}
}
static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
u32 clear, u32 set, u32 read_mask, bool masked_reg)
{
struct i915_wa wa = {
.reg = reg,
.clr = clear,
.set = set,
.read = read_mask,
.masked_reg = masked_reg,
};
_wa_add(wal, &wa);
}
static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
u32 clear, u32 set, u32 read_mask, bool masked_reg)
{
struct i915_wa wa = {
.mcr_reg = reg,
.clr = clear,
.set = set,
.read = read_mask,
.masked_reg = masked_reg,
.is_mcr = 1,
};
_wa_add(wal, &wa);
}
static void
wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
{
wa_add(wal, reg, clear, set, clear | set, false);
}
static void
wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
{
wa_mcr_add(wal, reg, clear, set, clear | set, false);
}
static void
wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
{
wa_write_clr_set(wal, reg, ~0, set);
}
static void
wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
{
wa_write_clr_set(wal, reg, set, set);
}
static void
wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
{
wa_mcr_write_clr_set(wal, reg, set, set);
}
static void
wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
{
wa_write_clr_set(wal, reg, clr, 0);
}
static void
wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
{
wa_mcr_write_clr_set(wal, reg, clr, 0);
}
/*
* WA operations on "masked register". A masked register has the upper 16 bits
* documented as "masked" in b-spec. Its purpose is to allow writing to just a
* portion of the register without a rmw: you simply write in the upper 16 bits
* the mask of bits you are going to modify.
*
* The wa_masked_* family of functions already does the necessary operations to
* calculate the mask based on the parameters passed, so user only has to
* provide the lower 16 bits of that register.
*/
static void
wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
{
wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
}
static void
wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
{
wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
}
static void
wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
{
wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
}
static void
wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
{
wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
}
static void
wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
u32 mask, u32 val)
{
wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
}
static void
wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
u32 mask, u32 val)
{
wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
}
static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
}
static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
}
static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
/* WaDisableAsyncFlipPerfMode:bdw,chv */
wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
/* WaDisablePartialInstShootdown:bdw,chv */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* Use Force Non-Coherent whenever executing a 3D context. This is a
* workaround for a possible hang in the unlikely event a TLB
* invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:bdw,chv */
/* WaHdcDisableFetchWhenMasked:bdw,chv */
wa_masked_en(wal, HDC_CHICKEN0,
HDC_DONOT_FETCH_MEM_WHEN_MASKED |
HDC_FORCE_NON_COHERENT);
/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
* "The Hierarchical Z RAW Stall Optimization allows non-overlapping
* polygons in the same 8x4 pixel/sample area to be processed without
* stalling waiting for the earlier ones to write to Hierarchical Z
* buffer."
*
* This optimization is off by default for BDW and CHV; turn it on.
*/
wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
/* Wa4x4STCOptimizationDisable:bdw,chv */
wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
wa_masked_field_set(wal, GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
}
static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
gen8_ctx_workarounds_init(engine, wal);
/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* WaDisableDopClockGating:bdw
*
* Also see the related UCGTCL1 write in bdw_init_clock_gating()
* to disable EUTC clock gating.
*/
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
DOP_CLOCK_GATING_DISABLE);
wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
wa_masked_en(wal, HDC_CHICKEN0,
/* WaForceContextSaveRestoreNonCoherent:bdw */
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
/* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
(IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
}
static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen8_ctx_workarounds_init(engine, wal);
/* WaDisableThreadStallDopClockGating:chv */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
/* Improve HiZ throughput on CHV. */
wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
}
static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
if (HAS_LLC(i915)) {
/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
*
* Must match Display Engine. See
* WaCompressedResourceDisplayNewHashMode.
*/
wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
GEN9_PBE_COMPRESSED_HASH_SELECTION);
wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
}
/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
FLOW_CONTROL_ENABLE |
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
GEN9_ENABLE_YV12_BUGFIX |
GEN9_ENABLE_GPGPU_PREEMPTION);
/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
wa_masked_en(wal, CACHE_MODE_1,
GEN8_4x4_STC_OPTIMIZATION_DISABLE |
GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
GEN9_CCS_TLB_PREFETCH_ENABLE);
/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
wa_masked_en(wal, HDC_CHICKEN0,
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
* both tied to WaForceContextSaveRestoreNonCoherent
* in some hsds for skl. We keep the tie for all gen9. The
* documentation is a bit hazy and so we want to get common behaviour,
* even though there is no clear evidence we would need both on kbl/bxt.
* This area has been source of system hangs so we play it safe
* and mimic the skl regardless of what bspec says.
*
* Use Force Non-Coherent whenever executing a 3D context. This
* is a workaround for a possible hang in the unlikely event
* a TLB invalidation occurs during a PSD flush.
*/
/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
wa_masked_en(wal, HDC_CHICKEN0,
HDC_FORCE_NON_COHERENT);
/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
if (IS_SKYLAKE(i915) ||
IS_KABYLAKE(i915) ||
IS_COFFEELAKE(i915) ||
IS_COMETLAKE(i915))
wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
GEN8_SAMPLER_POWER_BYPASS_DIS);
/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
/*
* Supporting preemption with fine-granularity requires changes in the
* batch buffer programming. Since we can't break old userspace, we
* need to set our default preemption level to safe value. Userspace is
* still able to use more fine-grained preemption levels, since in
* WaEnablePreemptionGranularityControlByUMD we're whitelisting the
* per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
* not real HW workarounds, but merely a way to start using preemption
* while maintaining old contract with userspace.
*/
/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
GEN9_PREEMPT_GPGPU_LEVEL_MASK,
GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
if (IS_GEN9_LP(i915))
wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
}
static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct intel_gt *gt = engine->gt;
u8 vals[3] = { 0, 0, 0 };
unsigned int i;
for (i = 0; i < 3; i++) {
u8 ss;
/*
* Only consider slices where one, and only one, subslice has 7
* EUs
*/
if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
continue;
/*
* subslice_7eu[i] != 0 (because of the check above) and
* ss_max == 4 (maximum number of subslices possible per slice)
*
* -> 0 <= ss <= 3;
*/
ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
vals[i] = 3 - ss;
}
if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
return;
/* Tune IZ hashing. See intel_device_info_runtime_init() */
wa_masked_field_set(wal, GEN7_GT_MODE,
GEN9_IZ_HASHING_MASK(2) |
GEN9_IZ_HASHING_MASK(1) |
GEN9_IZ_HASHING_MASK(0),
GEN9_IZ_HASHING(2, vals[2]) |
GEN9_IZ_HASHING(1, vals[1]) |
GEN9_IZ_HASHING(0, vals[0]));
}
static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen9_ctx_workarounds_init(engine, wal);
skl_tune_iz_hashing(engine, wal);
}
static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen9_ctx_workarounds_init(engine, wal);
/* WaDisableThreadStallDopClockGating:bxt */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
STALL_DOP_GATING_DISABLE);
/* WaToEnableHwFixForPushConstHWBug:bxt */
wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
}
static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
gen9_ctx_workarounds_init(engine, wal);
/* WaToEnableHwFixForPushConstHWBug:kbl */
if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableSbeCacheDispatchPortSharing:kbl */
wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
}
static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen9_ctx_workarounds_init(engine, wal);
/* WaToEnableHwFixForPushConstHWBug:glk */
wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
}
static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen9_ctx_workarounds_init(engine, wal);
/* WaToEnableHwFixForPushConstHWBug:cfl */
wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
/* WaDisableSbeCacheDispatchPortSharing:cfl */
wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
}
static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
/* Wa_1406697149 (WaDisableBankHangMode:icl) */
wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
/* WaForceEnableNonCoherent:icl
* This is not the same workaround as in early Gen9 platforms, where
* lacking this could cause system hangs, but coherency performance
* overhead is high and only a few compute workloads really need it
* (the register is whitelisted in hardware now, so UMDs can opt in
* for coherency if they have a good reason).
*/
wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
/* WaEnableFloatBlendOptimization:icl */
wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
_MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
0 /* write-only, so skip validation */,
true);
/* WaDisableGPGPUMidThreadPreemption:icl */
wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
GEN9_PREEMPT_GPGPU_LEVEL_MASK,
GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
/* allow headerless messages for preemptible GPGPU context */
wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
/* Wa_1604278689:icl,ehl */
wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
0,
0xFFFFFFFF);
/* Wa_1406306137:icl,ehl */
wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
}
/*
* These settings aren't actually workarounds, but general tuning settings that
* need to be programmed on dg2 platform.
*/
static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
FF_MODE2_TDS_TIMER_128);
}
static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
/*
* Wa_1409142259:tgl,dg1,adl-p
* Wa_1409347922:tgl,dg1,adl-p
* Wa_1409252684:tgl,dg1,adl-p
* Wa_1409217633:tgl,dg1,adl-p
* Wa_1409207793:tgl,dg1,adl-p
* Wa_1409178076:tgl,dg1,adl-p
* Wa_1408979724:tgl,dg1,adl-p
* Wa_14010443199:tgl,rkl,dg1,adl-p
* Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
* Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
*/
wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
/* WaDisableGPGPUMidThreadPreemption:gen12 */
wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
GEN9_PREEMPT_GPGPU_LEVEL_MASK,
GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
/*
* Wa_16011163337 - GS_TIMER
*
* TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
* need to program it even on those that don't explicitly list that
* workaround.
*
* Note that the programming of GEN12_FF_MODE2 is further modified
* according to the FF_MODE2 guidance given by Wa_1608008084.
* Wa_1608008084 tells us the FF_MODE2 register will return the wrong
* value when read from the CPU.
*
* The default value for this register is zero for all fields.
* So instead of doing a RMW we should just write the desired values
* for TDS and GS timers. Note that since the readback can't be trusted,
* the clear mask is just set to ~0 to make sure other bits are not
* inadvertently set. For the same reason read verification is ignored.
*/
wa_add(wal,
GEN12_FF_MODE2,
~0,
FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
0, false);
if (!IS_DG1(i915)) {
/* Wa_1806527549 */
wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
/* Wa_1606376872 */
wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
}
}
static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
gen12_ctx_workarounds_init(engine, wal);
/* Wa_1409044764 */
wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
/* Wa_22010493298 */
wa_masked_en(wal, HIZ_CHICKEN,
DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
}
static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
dg2_ctx_gt_tuning_init(engine, wal);
/* Wa_16013271637:dg2 */
wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
/* Wa_14014947963:dg2 */
wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
/* Wa_18018764978:dg2 */
wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
/* Wa_18019271663:dg2 */
wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
/* Wa_14019877138:dg2 */
wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
}
static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct intel_gt *gt = engine->gt;
dg2_ctx_gt_tuning_init(engine, wal);
/*
* Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
* gen12_emit_indirect_ctx_rcs() rather than here on some early
* steppings.
*/
if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
}
static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
struct intel_gt *gt = engine->gt;
xelpg_ctx_gt_tuning_init(engine, wal);
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
/* Wa_14014947963 */
wa_masked_field_set(wal, VF_PREEMPTION,
PREEMPTION_VERTEX_COUNT, 0x4000);
/* Wa_16013271637 */
wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
/* Wa_18019627453 */
wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
/* Wa_18018764978 */
wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
}
/* Wa_18019271663 */
wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
/* Wa_14019877138 */
wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
}
static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
/*
* This is a "fake" workaround defined by software to ensure we
* maintain reliable, backward-compatible behavior for userspace with
* regards to how nested MI_BATCH_BUFFER_START commands are handled.
*
* The per-context setting of MI_MODE[12] determines whether the bits
* of a nested MI_BATCH_BUFFER_START instruction should be interpreted
* in the traditional manner or whether they should instead use a new
* tgl+ meaning that breaks backward compatibility, but allows nesting
* into 3rd-level batchbuffers. When this new capability was first
* added in TGL, it remained off by default unless a context
* intentionally opted in to the new behavior. However Xe_HPG now
* flips this on by default and requires that we explicitly opt out if
* we don't want the new behavior.
*
* From a SW perspective, we want to maintain the backward-compatible
* behavior for userspace, so we'll apply a fake workaround to set it
* back to the legacy behavior on platforms where the hardware default
* is to break compatibility. At the moment there is no Linux
* userspace that utilizes third-level batchbuffers, so this will avoid
* userspace from needing to make any changes. using the legacy
* meaning is the correct thing to do. If/when we have userspace
* consumers that want to utilize third-level batch nesting, we can
* provide a context parameter to allow them to opt-in.
*/
wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
}
static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
u8 mocs;
/*
* Some blitter commands do not have a field for MOCS, those
* commands will use MOCS index pointed by BLIT_CCTL.
* BLIT_CCTL registers are needed to be programmed to un-cached.
*/
if (engine->class == COPY_ENGINE_CLASS) {
mocs = engine->gt->mocs.uc_index;
wa_write_clr_set(wal,
BLIT_CCTL(engine->mmio_base),
BLIT_CCTL_MASK,
BLIT_CCTL_MOCS(mocs, mocs));
}
}
/*
* gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
* defined by the hardware team, but it programming general context registers.
* Adding those context register programming in context workaround
* allow us to use the wa framework for proper application and validation.
*/
static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
struct i915_wa_list *wal)
{
if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
fakewa_disable_nestedbb_mode(engine, wal);
gen12_ctx_gt_mocs_init(engine, wal);
}
static void
__intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
struct i915_wa_list *wal,
const char *name)
{
struct drm_i915_private *i915 = engine->i915;
wa_init_start(wal, engine->gt, name, engine->name);
/* Applies to all engines */
/*
* Fake workarounds are not the actual workaround but
* programming of context registers using workaround framework.
*/
if (GRAPHICS_VER(i915) >= 12)
gen12_ctx_gt_fake_wa_init(engine, wal);
if (engine->class != RENDER_CLASS)
goto done;
if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
xelpg_ctx_workarounds_init(engine, wal);
else if (IS_DG2(i915))
dg2_ctx_workarounds_init(engine, wal);
else if (IS_DG1(i915))
dg1_ctx_workarounds_init(engine, wal);
else if (GRAPHICS_VER(i915) == 12)
gen12_ctx_workarounds_init(engine, wal);
else if (GRAPHICS_VER(i915) == 11)
icl_ctx_workarounds_init(engine, wal);
else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
cfl_ctx_workarounds_init(engine, wal);
else if (IS_GEMINILAKE(i915))
glk_ctx_workarounds_init(engine, wal);
else if (IS_KABYLAKE(i915))
kbl_ctx_workarounds_init(engine, wal);
else if (IS_BROXTON(i915))
bxt_ctx_workarounds_init(engine, wal);
else if (IS_SKYLAKE(i915))
skl_ctx_workarounds_init(engine, wal);
else if (IS_CHERRYVIEW(i915))
chv_ctx_workarounds_init(engine, wal);
else if (IS_BROADWELL(i915))
bdw_ctx_workarounds_init(engine, wal);
else if (GRAPHICS_VER(i915) == 7)
gen7_ctx_workarounds_init(engine, wal);
else if (GRAPHICS_VER(i915) == 6)
gen6_ctx_workarounds_init(engine, wal);
else if (GRAPHICS_VER(i915) < 8)
;
else
MISSING_CASE(GRAPHICS_VER(i915));
done:
wa_init_finish(wal);
}
void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
{
__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
}
int intel_engine_emit_ctx_wa(struct i915_request *rq)
{
struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
struct intel_uncore *uncore = rq->engine->uncore;
enum forcewake_domains fw;
unsigned long flags;
struct i915_wa *wa;
unsigned int i;
u32 *cs;
int ret;
if (wal->count == 0)
return 0;
ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
if (ret)
return ret;
if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS)
cs = intel_ring_begin(rq, (wal->count * 2 + 6));
else
cs = intel_ring_begin(rq, (wal->count * 2 + 2));
if (IS_ERR(cs))
return PTR_ERR(cs);
fw = wal_get_fw_for_rmw(uncore, wal);
intel_gt_mcr_lock(wal->gt, &flags);
spin_lock(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw);
*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
u32 val;
/* Skip reading the register if it's not really needed */
if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
val = wa->set;
} else {
val = wa->is_mcr ?
intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
intel_uncore_read_fw(uncore, wa->reg);
val &= ~wa->clr;
val |= wa->set;
}
*cs++ = i915_mmio_reg_offset(wa->reg);
*cs++ = val;
}
*cs++ = MI_NOOP;
/* Wa_14019789679 */
if ((IS_GFX_GT_IP_RANGE(rq->engine->gt, IP_VER(12, 70), IP_VER(12, 74)) ||
IS_DG2(rq->i915)) && rq->engine->class == RENDER_CLASS) {
*cs++ = CMD_3DSTATE_MESH_CONTROL;
*cs++ = 0;
*cs++ = 0;
*cs++ = MI_NOOP;
}
intel_uncore_forcewake_put__locked(uncore, fw);
spin_unlock(&uncore->lock);
intel_gt_mcr_unlock(wal->gt, flags);
intel_ring_advance(rq, cs);
ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
if (ret)
return ret;
return 0;
}
static void
gen4_gt_workarounds_init(struct intel_gt *gt,
struct i915_wa_list *wal)
{
/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
}
static void
g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen4_gt_workarounds_init(gt, wal);
/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
}
static void
ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
g4x_gt_workarounds_init(gt, wal);
wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
}
static void
snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
}
static void
ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
wa_masked_dis(wal,
GEN7_COMMON_SLICE_CHICKEN1,
GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
/* WaApplyL3ControlAndL3ChickenMode:ivb */
wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
/* WaForceL3Serialization:ivb */
wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
}
static void
vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
/* WaForceL3Serialization:vlv */
wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
/*
* WaIncreaseL3CreditsForVLVB0:vlv
* This is the hardware default actually.
*/
wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
}
static void
hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
/* L3 caching of data atomics doesn't work -- disable it. */
wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
wa_add(wal,
HSW_ROW_CHICKEN3, 0,
_MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
0 /* XXX does this reg exist? */, true);
/* WaVSRefCountFullforceMissDisable:hsw */
wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
}
static void
gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
{
const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
unsigned int slice, subslice;
u32 mcr, mcr_mask;
GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
/*
* WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
* Before any MMIO read into slice/subslice specific registers, MCR
* packet control register needs to be programmed to point to any
* enabled s/ss pair. Otherwise, incorrect values will be returned.
* This means each subsequent MMIO read will be forwarded to an
* specific s/ss combination, but this is OK since these registers
* are consistent across s/ss in almost all cases. In the rare
* occasions, such as INSTDONE, where this value is dependent
* on s/ss combo, the read should be done with read_subslice_reg.
*/
slice = ffs(sseu->slice_mask) - 1;
GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
GEM_BUG_ON(!subslice);
subslice--;
/*
* We use GEN8_MCR..() macros to calculate the |mcr| value for
* Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
*/
mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
}
static void
gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = gt->i915;
/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
gen9_wa_init_mcr(i915, wal);
/* WaDisableKillLogic:bxt,skl,kbl */
if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
wa_write_or(wal,
GAM_ECOCHK,
ECOCHK_DIS_TLB);
if (HAS_LLC(i915)) {
/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
*
* Must match Display Engine. See
* WaCompressedResourceDisplayNewHashMode.
*/
wa_write_or(wal,
MMCD_MISC_CTRL,
MMCD_PCLA | MMCD_HOTSPOT_EN);
}
/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
wa_write_or(wal,
GAM_ECOCHK,
BDW_DISABLE_HDC_INVALIDATION);
}
static void
skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen9_gt_workarounds_init(gt, wal);
/* WaDisableGafsUnitClkGating:skl */
wa_write_or(wal,
GEN7_UCGCTL4,
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
/* WaInPlaceDecompressionHang:skl */
if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
wa_write_or(wal,
GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
}
static void
kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen9_gt_workarounds_init(gt, wal);
/* WaDisableDynamicCreditSharing:kbl */
if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
wa_write_or(wal,
GAMT_CHKN_BIT_REG,
GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
/* WaDisableGafsUnitClkGating:kbl */
wa_write_or(wal,
GEN7_UCGCTL4,
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
/* WaInPlaceDecompressionHang:kbl */
wa_write_or(wal,
GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
}
static void
glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen9_gt_workarounds_init(gt, wal);
}
static void
cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen9_gt_workarounds_init(gt, wal);
/* WaDisableGafsUnitClkGating:cfl */
wa_write_or(wal,
GEN7_UCGCTL4,
GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
/* WaInPlaceDecompressionHang:cfl */
wa_write_or(wal,
GEN9_GAMT_ECO_REG_RW_IA,
GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
}
static void __set_mcr_steering(struct i915_wa_list *wal,
i915_reg_t steering_reg,
unsigned int slice, unsigned int subslice)
{
u32 mcr, mcr_mask;
mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
}
static void debug_dump_steering(struct intel_gt *gt)
{
struct drm_printer p = drm_dbg_printer(&gt->i915->drm, DRM_UT_DRIVER,
"MCR Steering:");
if (drm_debug_enabled(DRM_UT_DRIVER))
intel_gt_mcr_report_steering(&p, gt, false);
}
static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
unsigned int slice, unsigned int subslice)
{
__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
gt->default_steering.groupid = slice;
gt->default_steering.instanceid = subslice;
debug_dump_steering(gt);
}
static void
icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
{
const struct sseu_dev_info *sseu = &gt->info.sseu;
unsigned int subslice;
GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
/*
* Although a platform may have subslices, we need to always steer
* reads to the lowest instance that isn't fused off. When Render
* Power Gating is enabled, grabbing forcewake will only power up a
* single subslice (the "minconfig") if there isn't a real workload
* that needs to be run; this means that if we steer register reads to
* one of the higher subslices, we run the risk of reading back 0's or
* random garbage.
*/
subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
/*
* If the subslice we picked above also steers us to a valid L3 bank,
* then we can just rely on the default steering and won't need to
* worry about explicitly re-steering L3BANK reads later.
*/
if (gt->info.l3bank_mask & BIT(subslice))
gt->steering_table[L3BANK] = NULL;
__add_mcr_wa(gt, wal, 0, subslice);
}
static void
xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
{
const struct sseu_dev_info *sseu = &gt->info.sseu;
unsigned long slice, subslice = 0, slice_mask = 0;
u32 lncf_mask = 0;
int i;
/*
* On Xe_HP the steering increases in complexity. There are now several
* more units that require steering and we're not guaranteed to be able
* to find a common setting for all of them. These are:
* - GSLICE (fusable)
* - DSS (sub-unit within gslice; fusable)
* - L3 Bank (fusable)
* - MSLICE (fusable)
* - LNCF (sub-unit within mslice; always present if mslice is present)
*
* We'll do our default/implicit steering based on GSLICE (in the
* sliceid field) and DSS (in the subsliceid field). If we can
* find overlap between the valid MSLICE and/or LNCF values with
* a suitable GSLICE, then we can just re-use the default value and
* skip and explicit steering at runtime.
*
* We only need to look for overlap between GSLICE/MSLICE/LNCF to find
* a valid sliceid value. DSS steering is the only type of steering
* that utilizes the 'subsliceid' bits.
*
* Also note that, even though the steering domain is called "GSlice"
* and it is encoded in the register using the gslice format, the spec
* says that the combined (geometry | compute) fuse should be used to
* select the steering.
*/
/* Find the potential gslice candidates */
slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
GEN_DSS_PER_GSLICE);
/*
* Find the potential LNCF candidates. Either LNCF within a valid
* mslice is fine.
*/
for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
lncf_mask |= (0x3 << (i * 2));
/*
* Are there any sliceid values that work for both GSLICE and LNCF
* steering?
*/
if (slice_mask & lncf_mask) {
slice_mask &= lncf_mask;
gt->steering_table[LNCF] = NULL;
}
/* How about sliceid values that also work for MSLICE steering? */
if (slice_mask & gt->info.mslice_mask) {
slice_mask &= gt->info.mslice_mask;
gt->steering_table[MSLICE] = NULL;
}
slice = __ffs(slice_mask);
subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
GEN_DSS_PER_GSLICE;
__add_mcr_wa(gt, wal, slice, subslice);
/*
* SQIDI ranges are special because they use different steering
* registers than everything else we work with. On XeHP SDV and
* DG2-G10, any value in the steering registers will work fine since
* all instances are present, but DG2-G11 only has SQIDI instances at
* ID's 2 and 3, so we need to steer to one of those. For simplicity
* we'll just steer to a hardcoded "2" since that value will work
* everywhere.
*/
__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
/*
* On DG2, GAM registers have a dedicated steering control register
* and must always be programmed to a hardcoded groupid of "1."
*/
if (IS_DG2(gt->i915))
__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
}
static void
icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = gt->i915;
icl_wa_init_mcr(gt, wal);
/* WaModifyGamTlbPartitioning:icl */
wa_write_clr_set(wal,
GEN11_GACB_PERF_CTRL,
GEN11_HASH_CTRL_MASK,
GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
/* Wa_1405766107:icl
* Formerly known as WaCL2SFHalfMaxAlloc
*/
wa_write_or(wal,
GEN11_LSN_UNSLCVC,
GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
/* Wa_220166154:icl
* Formerly known as WaDisCtxReload
*/
wa_write_or(wal,
GEN8_GAMW_ECO_DEV_RW_IA,
GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
/* Wa_1406463099:icl
* Formerly known as WaGamTlbPendError
*/
wa_write_or(wal,
GAMT_CHKN_BIT_REG,
GAMT_CHKN_DISABLE_L3_COH_PIPE);
/*
* Wa_1408615072:icl,ehl (vsunit)
* Wa_1407596294:icl,ehl (hsunit)
*/
wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
/* Wa_1407352427:icl,ehl */
wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
PSDUNIT_CLKGATE_DIS);
/* Wa_1406680159:icl,ehl */
wa_mcr_write_or(wal,
GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
GWUNIT_CLKGATE_DIS);
/* Wa_1607087056:icl,ehl,jsl */
if (IS_ICELAKE(i915) ||
((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
wa_write_or(wal,
GEN11_SLICE_UNIT_LEVEL_CLKGATE,
L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
/*
* This is not a documented workaround, but rather an optimization
* to reduce sampler power.
*/
wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
}
/*
* Though there are per-engine instances of these registers,
* they retain their value through engine resets and should
* only be provided on the GT workaround list rather than
* the engine-specific workaround list.
*/
static void
wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
{
struct intel_engine_cs *engine;
int id;
for_each_engine(engine, gt, id) {
if (engine->class != VIDEO_DECODE_CLASS ||
(engine->instance % 2))
continue;
wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
IECPUNIT_CLKGATE_DIS);
}
}
static void
gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
icl_wa_init_mcr(gt, wal);
/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
wa_14011060649(gt, wal);
/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
/*
* Wa_14015795083
*
* Firmware on some gen12 platforms locks the MISCCPCTL register,
* preventing i915 from modifying it for this workaround. Skip the
* readback verification for this workaround on debug builds; if the
* workaround doesn't stick due to firmware behavior, it's not an error
* that we want CI to flag.
*/
wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
0, 0, false);
}
static void
dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
gen12_gt_workarounds_init(gt, wal);
/* Wa_1409420604:dg1 */
wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
CPSSUNIT_CLKGATE_DIS);
/* Wa_1408615072:dg1 */
/* Empirical testing shows this register is unaffected by engine reset. */
wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
}
static void
dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
xehp_init_mcr(gt, wal);
/* Wa_14011060649:dg2 */
wa_14011060649(gt, wal);
if (IS_DG2_G10(gt->i915)) {
/* Wa_22010523718:dg2 */
wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
CG3DDISCFEG_CLKGATE_DIS);
/* Wa_14011006942:dg2 */
wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
DSS_ROUTER_CLKGATE_DIS);
}
/* Wa_14014830051:dg2 */
wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
/*
* Wa_14015795083
* Skip verification for possibly locked register.
*/
wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
0, 0, false);
/* Wa_18018781329 */
wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
/* Wa_1509235366:dg2 */
wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
/* Wa_14010648519:dg2 */
wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
}
static void
xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
/* Wa_14018575942 / Wa_18018781329 */
wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
/* Wa_22016670082 */
wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
/* Wa_14014830051 */
wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
/* Wa_14015795083 */
wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
}
/*
* Unlike older platforms, we no longer setup implicit steering here;
* all MCR accesses are explicitly steered.
*/
debug_dump_steering(gt);
}
static void
wa_16021867713(struct intel_gt *gt, struct i915_wa_list *wal)
{
struct intel_engine_cs *engine;
int id;
for_each_engine(engine, gt, id)
if (engine->class == VIDEO_DECODE_CLASS)
wa_write_or(wal, VDBOX_CGCTL3F1C(engine->mmio_base),
MFXPIPE_CLKGATE_DIS);
}
static void
xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
{
wa_16021867713(gt, wal);
/*
* Wa_14018778641
* Wa_18018781329
*
* Note that although these registers are MCR on the primary
* GT, the media GT's versions are regular singleton registers.
*/
wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
/*
* Wa_14018575942
*
* Issue is seen on media KPI test running on VDBOX engine
* especially VP9 encoding WLs
*/
wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
/* Wa_22016670082 */
wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
debug_dump_steering(gt);
}
/*
* The bspec performance guide has recommended MMIO tuning settings. These
* aren't truly "workarounds" but we want to program them through the
* workaround infrastructure to make sure they're (re)applied at the proper
* times.
*
* The programming in this function is for settings that persist through
* engine resets and also are not part of any engine's register state context.
* I.e., settings that only need to be re-applied in the event of a full GT
* reset.
*/
static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
{
if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
}
if (IS_DG2(gt->i915)) {
wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
}
}
static void
gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = gt->i915;
gt_tuning_settings(gt, wal);
if (gt->type == GT_MEDIA) {
if (MEDIA_VER_FULL(i915) == IP_VER(13, 0))
xelpmp_gt_workarounds_init(gt, wal);
else
MISSING_CASE(MEDIA_VER_FULL(i915));
return;
}
if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
xelpg_gt_workarounds_init(gt, wal);
else if (IS_DG2(i915))
dg2_gt_workarounds_init(gt, wal);
else if (IS_DG1(i915))
dg1_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) == 12)
gen12_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) == 11)
icl_gt_workarounds_init(gt, wal);
else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
cfl_gt_workarounds_init(gt, wal);
else if (IS_GEMINILAKE(i915))
glk_gt_workarounds_init(gt, wal);
else if (IS_KABYLAKE(i915))
kbl_gt_workarounds_init(gt, wal);
else if (IS_BROXTON(i915))
gen9_gt_workarounds_init(gt, wal);
else if (IS_SKYLAKE(i915))
skl_gt_workarounds_init(gt, wal);
else if (IS_HASWELL(i915))
hsw_gt_workarounds_init(gt, wal);
else if (IS_VALLEYVIEW(i915))
vlv_gt_workarounds_init(gt, wal);
else if (IS_IVYBRIDGE(i915))
ivb_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) == 6)
snb_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) == 5)
ilk_gt_workarounds_init(gt, wal);
else if (IS_G4X(i915))
g4x_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) == 4)
gen4_gt_workarounds_init(gt, wal);
else if (GRAPHICS_VER(i915) <= 8)
;
else
MISSING_CASE(GRAPHICS_VER(i915));
}
void intel_gt_init_workarounds(struct intel_gt *gt)
{
struct i915_wa_list *wal = &gt->wa_list;
wa_init_start(wal, gt, "GT", "global");
gt_init_workarounds(gt, wal);
wa_init_finish(wal);
}
static bool
wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
const char *name, const char *from)
{
if ((cur ^ wa->set) & wa->read) {
gt_err(gt,
"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
name, from, i915_mmio_reg_offset(wa->reg),
cur, cur & wa->read, wa->set & wa->read);
return false;
}
return true;
}
static void wa_list_apply(const struct i915_wa_list *wal)
{
struct intel_gt *gt = wal->gt;
struct intel_uncore *uncore = gt->uncore;
enum forcewake_domains fw;
unsigned long flags;
struct i915_wa *wa;
unsigned int i;
if (!wal->count)
return;
fw = wal_get_fw_for_rmw(uncore, wal);
intel_gt_mcr_lock(gt, &flags);
spin_lock(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw);
for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
u32 val, old = 0;
/* open-coded rmw due to steering */
if (wa->clr)
old = wa->is_mcr ?
intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
intel_uncore_read_fw(uncore, wa->reg);
val = (old & ~wa->clr) | wa->set;
if (val != old || !wa->clr) {
if (wa->is_mcr)
intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
else
intel_uncore_write_fw(uncore, wa->reg, val);
}
if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
u32 val = wa->is_mcr ?
intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
intel_uncore_read_fw(uncore, wa->reg);
wa_verify(gt, wa, val, wal->name, "application");
}
}
intel_uncore_forcewake_put__locked(uncore, fw);
spin_unlock(&uncore->lock);
intel_gt_mcr_unlock(gt, flags);
}
void intel_gt_apply_workarounds(struct intel_gt *gt)
{
wa_list_apply(&gt->wa_list);
}
static bool wa_list_verify(struct intel_gt *gt,
const struct i915_wa_list *wal,
const char *from)
{
struct intel_uncore *uncore = gt->uncore;
struct i915_wa *wa;
enum forcewake_domains fw;
unsigned long flags;
unsigned int i;
bool ok = true;
fw = wal_get_fw_for_rmw(uncore, wal);
intel_gt_mcr_lock(gt, &flags);
spin_lock(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw);
for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
intel_uncore_read_fw(uncore, wa->reg),
wal->name, from);
intel_uncore_forcewake_put__locked(uncore, fw);
spin_unlock(&uncore->lock);
intel_gt_mcr_unlock(gt, flags);
return ok;
}
bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
{
return wa_list_verify(gt, &gt->wa_list, from);
}
__maybe_unused
static bool is_nonpriv_flags_valid(u32 flags)
{
/* Check only valid flag bits are set */
if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
return false;
/* NB: Only 3 out of 4 enum values are valid for access field */
if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
return false;
return true;
}
static void
whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
{
struct i915_wa wa = {
.reg = reg
};
if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
return;
if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
return;
wa.reg.reg |= flags;
_wa_add(wal, &wa);
}
static void
whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
{
struct i915_wa wa = {
.mcr_reg = reg,
.is_mcr = 1,
};
if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
return;
if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
return;
wa.mcr_reg.reg |= flags;
_wa_add(wal, &wa);
}
static void
whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
{
whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
}
static void
whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
{
whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
}
static void gen9_whitelist_build(struct i915_wa_list *w)
{
/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
whitelist_reg(w, GEN8_CS_CHICKEN1);
/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
whitelist_reg(w, GEN8_HDC_CHICKEN1);
/* WaSendPushConstantsFromMMIO:skl,bxt */
whitelist_reg(w, COMMON_SLICE_CHICKEN2);
}
static void skl_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
if (engine->class != RENDER_CLASS)
return;
gen9_whitelist_build(w);
/* WaDisableLSQCROPERFforOCL:skl */
whitelist_mcr_reg(w, GEN8_L3SQCREG4);
}
static void bxt_whitelist_build(struct intel_engine_cs *engine)
{
if (engine->class != RENDER_CLASS)
return;
gen9_whitelist_build(&engine->whitelist);
}
static void kbl_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
if (engine->class != RENDER_CLASS)
return;
gen9_whitelist_build(w);
/* WaDisableLSQCROPERFforOCL:kbl */
whitelist_mcr_reg(w, GEN8_L3SQCREG4);
}
static void glk_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
if (engine->class != RENDER_CLASS)
return;
gen9_whitelist_build(w);
/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
}
static void cfl_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
if (engine->class != RENDER_CLASS)
return;
gen9_whitelist_build(w);
/*
* WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
*
* This covers 4 register which are next to one another :
* - PS_INVOCATION_COUNT
* - PS_INVOCATION_COUNT_UDW
* - PS_DEPTH_COUNT
* - PS_DEPTH_COUNT_UDW
*/
whitelist_reg_ext(w, PS_INVOCATION_COUNT,
RING_FORCE_TO_NONPRIV_ACCESS_RD |
RING_FORCE_TO_NONPRIV_RANGE_4);
}
static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
if (engine->class != RENDER_CLASS)
whitelist_reg_ext(w,
RING_CTX_TIMESTAMP(engine->mmio_base),
RING_FORCE_TO_NONPRIV_ACCESS_RD);
}
static void cml_whitelist_build(struct intel_engine_cs *engine)
{
allow_read_ctx_timestamp(engine);
cfl_whitelist_build(engine);
}
static void icl_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
allow_read_ctx_timestamp(engine);
switch (engine->class) {
case RENDER_CLASS:
/* WaAllowUMDToModifyHalfSliceChicken7:icl */
whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
/* WaAllowUMDToModifySamplerMode:icl */
whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
/* WaEnableStateCacheRedirectToCS:icl */
whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
/*
* WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
*
* This covers 4 register which are next to one another :
* - PS_INVOCATION_COUNT
* - PS_INVOCATION_COUNT_UDW
* - PS_DEPTH_COUNT
* - PS_DEPTH_COUNT_UDW
*/
whitelist_reg_ext(w, PS_INVOCATION_COUNT,
RING_FORCE_TO_NONPRIV_ACCESS_RD |
RING_FORCE_TO_NONPRIV_RANGE_4);
break;
case VIDEO_DECODE_CLASS:
/* hucStatusRegOffset */
whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
RING_FORCE_TO_NONPRIV_ACCESS_RD);
/* hucUKernelHdrInfoRegOffset */
whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
RING_FORCE_TO_NONPRIV_ACCESS_RD);
/* hucStatus2RegOffset */
whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
RING_FORCE_TO_NONPRIV_ACCESS_RD);
break;
default:
break;
}
}
static void tgl_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
allow_read_ctx_timestamp(engine);
switch (engine->class) {
case RENDER_CLASS:
/*
* WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
* Wa_1408556865:tgl
*
* This covers 4 registers which are next to one another :
* - PS_INVOCATION_COUNT
* - PS_INVOCATION_COUNT_UDW
* - PS_DEPTH_COUNT
* - PS_DEPTH_COUNT_UDW
*/
whitelist_reg_ext(w, PS_INVOCATION_COUNT,
RING_FORCE_TO_NONPRIV_ACCESS_RD |
RING_FORCE_TO_NONPRIV_RANGE_4);
/*
* Wa_1808121037:tgl
* Wa_14012131227:dg1
* Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
*/
whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
/* Wa_1806527549:tgl */
whitelist_reg(w, HIZ_CHICKEN);
/* Required by recommended tuning setting (not a workaround) */
whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
break;
default:
break;
}
}
static void dg2_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
switch (engine->class) {
case RENDER_CLASS:
/* Required by recommended tuning setting (not a workaround) */
whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
break;
default:
break;
}
}
static void xelpg_whitelist_build(struct intel_engine_cs *engine)
{
struct i915_wa_list *w = &engine->whitelist;
switch (engine->class) {
case RENDER_CLASS:
/* Required by recommended tuning setting (not a workaround) */
whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
break;
default:
break;
}
}
void intel_engine_init_whitelist(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct i915_wa_list *w = &engine->whitelist;
wa_init_start(w, engine->gt, "whitelist", engine->name);
if (engine->gt->type == GT_MEDIA)
; /* none yet */
else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
xelpg_whitelist_build(engine);
else if (IS_DG2(i915))
dg2_whitelist_build(engine);
else if (GRAPHICS_VER(i915) == 12)
tgl_whitelist_build(engine);
else if (GRAPHICS_VER(i915) == 11)
icl_whitelist_build(engine);
else if (IS_COMETLAKE(i915))
cml_whitelist_build(engine);
else if (IS_COFFEELAKE(i915))
cfl_whitelist_build(engine);
else if (IS_GEMINILAKE(i915))
glk_whitelist_build(engine);
else if (IS_KABYLAKE(i915))
kbl_whitelist_build(engine);
else if (IS_BROXTON(i915))
bxt_whitelist_build(engine);
else if (IS_SKYLAKE(i915))
skl_whitelist_build(engine);
else if (GRAPHICS_VER(i915) <= 8)
;
else
MISSING_CASE(GRAPHICS_VER(i915));
wa_init_finish(w);
}
void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
{
const struct i915_wa_list *wal = &engine->whitelist;
struct intel_uncore *uncore = engine->uncore;
const u32 base = engine->mmio_base;
struct i915_wa *wa;
unsigned int i;
if (!wal->count)
return;
for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
intel_uncore_write(uncore,
RING_FORCE_TO_NONPRIV(base, i),
i915_mmio_reg_offset(wa->reg));
/* And clear the rest just in case of garbage */
for (; i < RING_MAX_NONPRIV_SLOTS; i++)
intel_uncore_write(uncore,
RING_FORCE_TO_NONPRIV(base, i),
i915_mmio_reg_offset(RING_NOPID(base)));
}
/*
* engine_fake_wa_init(), a place holder to program the registers
* which are not part of an official workaround defined by the
* hardware team.
* Adding programming of those register inside workaround will
* allow utilizing wa framework to proper application and verification.
*/
static void
engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
u8 mocs_w, mocs_r;
/*
* RING_CMD_CCTL specifies the default MOCS entry that will be used
* by the command streamer when executing commands that don't have
* a way to explicitly specify a MOCS setting. The default should
* usually reference whichever MOCS entry corresponds to uncached
* behavior, although use of a WB cached entry is recommended by the
* spec in certain circumstances on specific platforms.
*/
if (GRAPHICS_VER(engine->i915) >= 12) {
mocs_r = engine->gt->mocs.uc_index;
mocs_w = engine->gt->mocs.uc_index;
if (HAS_L3_CCS_READ(engine->i915) &&
engine->class == COMPUTE_CLASS) {
mocs_r = engine->gt->mocs.wb_index;
/*
* Even on the few platforms where MOCS 0 is a
* legitimate table entry, it's never the correct
* setting to use here; we can assume the MOCS init
* just forgot to initialize wb_index.
*/
drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
}
wa_masked_field_set(wal,
RING_CMD_CCTL(engine->mmio_base),
CMD_CCTL_MOCS_MASK,
CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
}
}
static void
rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_gt *gt = engine->gt;
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
/* Wa_22014600077 */
wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
ENABLE_EU_COUNT_FOR_TDL_FLUSH);
}
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
IS_DG2(i915)) {
/* Wa_1509727124 */
wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
SC_DISABLE_POWER_OPTIMIZATION_EBB);
}
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_DG2(i915)) {
/* Wa_22012856258 */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
GEN12_DISABLE_READ_SUPPRESSION);
}
if (IS_DG2(i915)) {
/*
* Wa_22010960976:dg2
* Wa_14013347512:dg2
*/
wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
}
if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
IS_DG2(i915)) {
/* Wa_14015150844 */
wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
_MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
0, true);
}
if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
/*
* Wa_1606700617:tgl,dg1,adl-p
* Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
* Wa_14010826681:tgl,dg1,rkl,adl-p
* Wa_18019627453:dg2
*/
wa_masked_en(wal,
GEN9_CS_DEBUG_MODE1,
FF_DOP_CLOCK_GATE_DISABLE);
}
if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
/*
* Wa_1407928979:tgl A*
* Wa_18011464164:tgl[B0+],dg1[B0+]
* Wa_22010931296:tgl[B0+],dg1[B0+]
* Wa_14010919138:rkl,dg1,adl-s,adl-p
*/
wa_write_or(wal, GEN7_FF_THREAD_MODE,
GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
wa_mcr_masked_en(wal,
GEN10_SAMPLER_MODE,
ENABLE_SMALLPL);
}
if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
/* Wa_1409804808 */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
GEN12_PUSH_CONST_DEREF_HOLD_DIS);
/* Wa_14010229206 */
wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
}
if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
/*
* Wa_1607297627
*
* On TGL and RKL there are multiple entries for this WA in the
* BSpec; some indicate this is an A0-only WA, others indicate
* it applies to all steppings so we trust the "all steppings."
*/
wa_masked_en(wal,
RING_PSMI_CTL(RENDER_RING_BASE),
GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
GEN8_RC_SEMA_IDLE_MSG_DISABLE);
}
if (GRAPHICS_VER(i915) == 11) {
/* This is not an Wa. Enable for better image quality */
wa_masked_en(wal,
_3D_CHICKEN3,
_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
/*
* Wa_1405543622:icl
* Formerly known as WaGAPZPriorityScheme
*/
wa_write_or(wal,
GEN8_GARBCNTL,
GEN11_ARBITRATION_PRIO_ORDER_MASK);
/*
* Wa_1604223664:icl
* Formerly known as WaL3BankAddressHashing
*/
wa_write_clr_set(wal,
GEN8_GARBCNTL,
GEN11_HASH_CTRL_EXCL_MASK,
GEN11_HASH_CTRL_EXCL_BIT0);
wa_write_clr_set(wal,
GEN11_GLBLINVL,
GEN11_BANK_HASH_ADDR_EXCL_MASK,
GEN11_BANK_HASH_ADDR_EXCL_BIT0);
/*
* Wa_1405733216:icl
* Formerly known as WaDisableCleanEvicts
*/
wa_mcr_write_or(wal,
GEN8_L3SQCREG4,
GEN11_LQSC_CLEAN_EVICT_DISABLE);
/* Wa_1606682166:icl */
wa_write_or(wal,
GEN7_SARCHKMD,
GEN7_DISABLE_SAMPLER_PREFETCH);
/* Wa_1409178092:icl */
wa_mcr_write_clr_set(wal,
GEN11_SCRATCH2,
GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
0);
/* WaEnable32PlaneMode:icl */
wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
GEN11_ENABLE_32_PLANE_MODE);
/*
* Wa_1408767742:icl[a2..forever],ehl[all]
* Wa_1605460711:icl[a0..c0]
*/
wa_write_or(wal,
GEN7_FF_THREAD_MODE,
GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
/* Wa_22010271021 */
wa_masked_en(wal,
GEN9_CS_DEBUG_MODE1,
FF_DOP_CLOCK_GATE_DISABLE);
}
/*
* Intel platforms that support fine-grained preemption (i.e., gen9 and
* beyond) allow the kernel-mode driver to choose between two different
* options for controlling preemption granularity and behavior.
*
* Option 1 (hardware default):
* Preemption settings are controlled in a global manner via
* kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity
* and settings chosen by the kernel-mode driver will apply to all
* userspace clients.
*
* Option 2:
* Preemption settings are controlled on a per-context basis via
* register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on
* context switch and is writable by userspace (e.g., via
* MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
* which allows different userspace drivers/clients to select
* different settings, or to change those settings on the fly in
* response to runtime needs. This option was known by name
* "FtrPerCtxtPreemptionGranularityControl" at one time, although
* that name is somewhat misleading as other non-granularity
* preemption settings are also impacted by this decision.
*
* On Linux, our policy has always been to let userspace drivers
* control preemption granularity/settings (Option 2). This was
* originally mandatory on gen9 to prevent ABI breakage (old gen9
* userspace developed before object-level preemption was enabled would
* not behave well if i915 were to go with Option 1 and enable that
* preemption in a global manner). On gen9 each context would have
* object-level preemption disabled by default (see
* WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
* userspace drivers could opt-in to object-level preemption as they
* saw fit. For post-gen9 platforms, we continue to utilize Option 2;
* even though it is no longer necessary for ABI compatibility when
* enabling a new platform, it does ensure that userspace will be able
* to implement any workarounds that show up requiring temporary
* adjustments to preemption behavior at runtime.
*
* Notes/Workarounds:
* - Wa_14015141709: On DG2 and early steppings of MTL,
* CS_CHICKEN1[0] does not disable object-level preemption as
* it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
* using Option 1). Effectively this means userspace is unable
* to disable object-level preemption on these platforms/steppings
* despite the setting here.
*
* - Wa_16013994831: May require that userspace program
* CS_CHICKEN1[10] when certain runtime conditions are true.
* Userspace requires Option 2 to be in effect for their update of
* CS_CHICKEN1[10] to be effective.
*
* Other workarounds may appear in the future that will also require
* Option 2 behavior to allow proper userspace implementation.
*/
if (GRAPHICS_VER(i915) >= 9)
wa_masked_en(wal,
GEN7_FF_SLICE_CS_CHICKEN1,
GEN9_FFSC_PERCTX_PREEMPT_CTRL);
if (IS_SKYLAKE(i915) ||
IS_KABYLAKE(i915) ||
IS_COFFEELAKE(i915) ||
IS_COMETLAKE(i915)) {
/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
wa_write_or(wal,
GEN8_GARBCNTL,
GEN9_GAPS_TSV_CREDIT_DISABLE);
}
if (IS_BROXTON(i915)) {
/* WaDisablePooledEuLoadBalancingFix:bxt */
wa_masked_en(wal,
FF_SLICE_CS_CHICKEN2,
GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
}
if (GRAPHICS_VER(i915) == 9) {
/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
wa_masked_en(wal,
GEN9_CSFE_CHICKEN1_RCS,
GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
wa_mcr_write_or(wal,
BDW_SCRATCH1,
GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
if (IS_GEN9_LP(i915))
wa_mcr_write_clr_set(wal,
GEN8_L3SQCREG1,
L3_PRIO_CREDITS_MASK,
L3_GENERAL_PRIO_CREDITS(62) |
L3_HIGH_PRIO_CREDITS(2));
/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
wa_mcr_write_or(wal,
GEN8_L3SQCREG4,
GEN8_LQSC_FLUSH_COHERENT_LINES);
/* Disable atomics in L3 to prevent unrecoverable hangs */
wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
EVICTION_PERF_FIX_ENABLE, 0);
}
if (IS_HASWELL(i915)) {
/* WaSampleCChickenBitEnable:hsw */
wa_masked_en(wal,
HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
wa_masked_dis(wal,
CACHE_MODE_0_GEN7,
/* enable HiZ Raw Stall Optimization */
HIZ_RAW_STALL_OPT_DISABLE);
}
if (IS_VALLEYVIEW(i915)) {
/* WaDisableEarlyCull:vlv */
wa_masked_en(wal,
_3D_CHICKEN3,
_3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
/*
* WaVSThreadDispatchOverride:ivb,vlv
*
* This actually overrides the dispatch
* mode for all thread types.
*/
wa_write_clr_set(wal,
GEN7_FF_THREAD_MODE,
GEN7_FF_SCHED_MASK,
GEN7_FF_TS_SCHED_HW |
GEN7_FF_VS_SCHED_HW |
GEN7_FF_DS_SCHED_HW);
/* WaPsdDispatchEnable:vlv */
/* WaDisablePSDDualDispatchEnable:vlv */
wa_masked_en(wal,
GEN7_HALF_SLICE_CHICKEN1,
GEN7_MAX_PS_THREAD_DEP |
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
}
if (IS_IVYBRIDGE(i915)) {
/* WaDisableEarlyCull:ivb */
wa_masked_en(wal,
_3D_CHICKEN3,
_3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
if (0) { /* causes HiZ corruption on ivb:gt1 */
/* enable HiZ Raw Stall Optimization */
wa_masked_dis(wal,
CACHE_MODE_0_GEN7,
HIZ_RAW_STALL_OPT_DISABLE);
}
/*
* WaVSThreadDispatchOverride:ivb,vlv
*
* This actually overrides the dispatch
* mode for all thread types.
*/
wa_write_clr_set(wal,
GEN7_FF_THREAD_MODE,
GEN7_FF_SCHED_MASK,
GEN7_FF_TS_SCHED_HW |
GEN7_FF_VS_SCHED_HW |
GEN7_FF_DS_SCHED_HW);
/* WaDisablePSDDualDispatchEnable:ivb */
if (IS_IVB_GT1(i915))
wa_masked_en(wal,
GEN7_HALF_SLICE_CHICKEN1,
GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
}
if (GRAPHICS_VER(i915) == 7) {
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
wa_masked_en(wal,
RING_MODE_GEN7(RENDER_RING_BASE),
GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
/*
* BSpec says this must be set, even though
* WaDisable4x2SubspanOptimization:ivb,hsw
* WaDisable4x2SubspanOptimization isn't listed for VLV.
*/
wa_masked_en(wal,
CACHE_MODE_1,
PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
wa_masked_field_set(wal,
GEN7_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
}
if (IS_GRAPHICS_VER(i915, 6, 7))
/*
* We need to disable the AsyncFlip performance optimisations in
* order to use MI_WAIT_FOR_EVENT within the CS. It should
* already be programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
*/
wa_masked_en(wal,
RING_MI_MODE(RENDER_RING_BASE),
ASYNC_FLIP_PERF_DISABLE);
if (GRAPHICS_VER(i915) == 6) {
/*
* Required for the hardware to program scanline values for
* waiting
* WaEnableFlushTlbInvalidationMode:snb
*/
wa_masked_en(wal,
GFX_MODE,
GFX_TLB_INVALIDATE_EXPLICIT);
/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
wa_masked_en(wal,
_3D_CHICKEN,
_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
wa_masked_en(wal,
_3D_CHICKEN3,
/* WaStripsFansDisableFastClipPerformanceFix:snb */
_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
/*
* Bspec says:
* "This bit must be set if 3DSTATE_CLIP clip mode is set
* to normal and 3DSTATE_SF number of SF output attributes
* is more than 16."
*/
_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
/*
* BSpec recommends 8x4 when MSAA is used,
* however in practice 16x4 seems fastest.
*
* Note that PS/WM thread counts depend on the WIZ hashing
* disable bit, which we don't touch here, but it's good
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
*/
wa_masked_field_set(wal,
GEN6_GT_MODE,
GEN6_WIZ_HASHING_MASK,
GEN6_WIZ_HASHING_16x4);
/* WaDisable_RenderCache_OperationalFlush:snb */
wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
/*
* From the Sandybridge PRM, volume 1 part 3, page 24:
* "If this bit is set, STCunit will have LRA as replacement
* policy. [...] This bit must be reset. LRA replacement
* policy is not supported."
*/
wa_masked_dis(wal,
CACHE_MODE_0,
CM0_STC_EVICT_DISABLE_LRA_SNB);
}
if (IS_GRAPHICS_VER(i915, 4, 6))
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
/* XXX bit doesn't stick on Broadwater */
IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
if (GRAPHICS_VER(i915) == 4)
/*
* Disable CONSTANT_BUFFER before it is loaded from the context
* image. For as it is loaded, it is executed and the stored
* address may no longer be valid, leading to a GPU hang.
*
* This imposes the requirement that userspace reload their
* CONSTANT_BUFFER on every batch, fortunately a requirement
* they are already accustomed to from before contexts were
* enabled.
*/
wa_add(wal, ECOSKPD(RENDER_RING_BASE),
0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
0 /* XXX bit doesn't stick on Broadwater */,
true);
}
static void
xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
/* WaKBLVECSSemaphoreWaitPoll:kbl */
if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
wa_write(wal,
RING_SEMA_WAIT_POLL(engine->mmio_base),
1);
}
/* Wa_16018031267, Wa_16018063123 */
if (NEEDS_FASTCOLOR_BLT_WABB(engine))
wa_masked_field_set(wal, ECOSKPD(engine->mmio_base),
XEHP_BLITTER_SCHEDULING_MODE_MASK,
XEHP_BLITTER_ROUND_ROBIN_MODE);
}
static void
ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
/* boilerplate for any CCS engine workaround */
}
/*
* The bspec performance guide has recommended MMIO tuning settings. These
* aren't truly "workarounds" but we want to program them with the same
* workaround infrastructure to ensure that they're automatically added to
* the GuC save/restore lists, re-applied at the right times, and checked for
* any conflicting programming requested by real workarounds.
*
* Programming settings should be added here only if their registers are not
* part of an engine's register state context. If a register is part of a
* context, then any tuning settings should be programmed in an appropriate
* function invoked by __intel_engine_init_ctx_wa().
*/
static void
add_render_compute_tuning_settings(struct intel_gt *gt,
struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = gt->i915;
if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
/*
* This tuning setting proves beneficial only on ATS-M designs; the
* default "age based" setting is optimal on regular DG2 and other
* platforms.
*/
if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
THREAD_EX_ARB_MODE_RR_AFTER_DEP);
if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 55))
wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
}
static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
struct intel_gt *gt = engine->gt;
u32 mode;
if (!IS_DG2(gt->i915))
return;
/*
* Wa_14019159160: This workaround, along with others, leads to
* significant challenges in utilizing load balancing among the
* CCS slices. Consequently, an architectural decision has been
* made to completely disable automatic CCS load balancing.
*/
wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
/*
* After having disabled automatic load balancing we need to
* assign all slices to a single CCS. We will call it CCS mode 1
*/
mode = intel_gt_apply_ccs_mode(gt);
wa_masked_en(wal, XEHP_CCS_MODE, mode);
}
/*
* The workarounds in this function apply to shared registers in
* the general render reset domain that aren't tied to a
* specific engine. Since all render+compute engines get reset
* together, and the contents of these registers are lost during
* the shared render domain reset, we'll define such workarounds
* here and then add them to just a single RCS or CCS engine's
* workaround list (whichever engine has the XXXX flag).
*/
static void
general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_gt *gt = engine->gt;
add_render_compute_tuning_settings(gt, wal);
if (GRAPHICS_VER(i915) >= 11) {
/* This is not a Wa (although referred to as
* WaSetInidrectStateOverride in places), this allows
* applications that reference sampler states through
* the BindlessSamplerStateBaseAddress to have their
* border color relative to DynamicStateBaseAddress
* rather than BindlessSamplerStateBaseAddress.
*
* Otherwise SAMPLER_STATE border colors have to be
* copied in multiple heaps (DynamicStateBaseAddress &
* BindlessSamplerStateBaseAddress)
*
* BSpec: 46052
*/
wa_mcr_masked_en(wal,
GEN10_SAMPLER_MODE,
GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
}
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
/* Wa_14017856879 */
wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
/* Wa_14020495402 */
wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
}
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
/*
* Wa_14017066071
* Wa_14017654203
*/
wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
MTL_DISABLE_SAMPLER_SC_OOO);
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
/* Wa_22015279794 */
wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
DISABLE_PREFETCH_INTO_IC);
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
IS_DG2(i915)) {
/* Wa_22013037850 */
wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
DISABLE_128B_EVICTION_COMMAND_UDW);
/* Wa_18017747507 */
wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
}
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
IS_DG2(i915)) {
/* Wa_22014226127 */
wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
}
if (IS_DG2(i915)) {
/* Wa_14015227452:dg2,pvc */
wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
/*
* Wa_16011620976:dg2_g11
* Wa_22015475538:dg2
*/
wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
/* Wa_18028616096 */
wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, UGM_FRAGMENT_THRESHOLD_TO_3);
}
if (IS_DG2_G11(i915)) {
/*
* Wa_22012826095:dg2
* Wa_22013059131:dg2
*/
wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
MAXREQS_PER_BANK,
REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
/* Wa_22013059131:dg2 */
wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
/*
* Wa_22012654132
*
* Note that register 0xE420 is write-only and cannot be read
* back for verification on DG2 (due to Wa_14012342262), so
* we need to explicitly skip the readback.
*/
wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
_MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
0 /* write-only, so skip validation */,
true);
}
}
static void
engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
{
if (GRAPHICS_VER(engine->i915) < 4)
return;
engine_fake_wa_init(engine, wal);
/*
* These are common workarounds that just need to applied
* to a single RCS/CCS engine's workaround list since
* they're reset as part of the general render domain reset.
*/
if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
general_render_compute_wa_init(engine, wal);
ccs_engine_wa_mode(engine, wal);
}
if (engine->class == COMPUTE_CLASS)
ccs_engine_wa_init(engine, wal);
else if (engine->class == RENDER_CLASS)
rcs_engine_wa_init(engine, wal);
else
xcs_engine_wa_init(engine, wal);
}
void intel_engine_init_workarounds(struct intel_engine_cs *engine)
{
struct i915_wa_list *wal = &engine->wa_list;
wa_init_start(wal, engine->gt, "engine", engine->name);
engine_init_workarounds(engine, wal);
wa_init_finish(wal);
}
void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
{
wa_list_apply(&engine->wa_list);
}
static const struct i915_range mcr_ranges_gen8[] = {
{ .start = 0x5500, .end = 0x55ff },
{ .start = 0x7000, .end = 0x7fff },
{ .start = 0x9400, .end = 0x97ff },
{ .start = 0xb000, .end = 0xb3ff },
{ .start = 0xe000, .end = 0xe7ff },
{},
};
static const struct i915_range mcr_ranges_gen12[] = {
{ .start = 0x8150, .end = 0x815f },
{ .start = 0x9520, .end = 0x955f },
{ .start = 0xb100, .end = 0xb3ff },
{ .start = 0xde80, .end = 0xe8ff },
{ .start = 0x24a00, .end = 0x24a7f },
{},
};
static const struct i915_range mcr_ranges_xehp[] = {
{ .start = 0x4000, .end = 0x4aff },
{ .start = 0x5200, .end = 0x52ff },
{ .start = 0x5400, .end = 0x7fff },
{ .start = 0x8140, .end = 0x815f },
{ .start = 0x8c80, .end = 0x8dff },
{ .start = 0x94d0, .end = 0x955f },
{ .start = 0x9680, .end = 0x96ff },
{ .start = 0xb000, .end = 0xb3ff },
{ .start = 0xc800, .end = 0xcfff },
{ .start = 0xd800, .end = 0xd8ff },
{ .start = 0xdc00, .end = 0xffff },
{ .start = 0x17000, .end = 0x17fff },
{ .start = 0x24a00, .end = 0x24a7f },
{},
};
static bool mcr_range(struct drm_i915_private *i915, u32 offset)
{
const struct i915_range *mcr_ranges;
int i;
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
mcr_ranges = mcr_ranges_xehp;
else if (GRAPHICS_VER(i915) >= 12)
mcr_ranges = mcr_ranges_gen12;
else if (GRAPHICS_VER(i915) >= 8)
mcr_ranges = mcr_ranges_gen8;
else
return false;
/*
* Registers in these ranges are affected by the MCR selector
* which only controls CPU initiated MMIO. Routing does not
* work for CS access so we cannot verify them on this path.
*/
for (i = 0; mcr_ranges[i].start; i++)
if (offset >= mcr_ranges[i].start &&
offset <= mcr_ranges[i].end)
return true;
return false;
}
static int
wa_list_srm(struct i915_request *rq,
const struct i915_wa_list *wal,
struct i915_vma *vma)
{
struct drm_i915_private *i915 = rq->i915;
unsigned int i, count = 0;
const struct i915_wa *wa;
u32 srm, *cs;
srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
if (GRAPHICS_VER(i915) >= 8)
srm++;
for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
count++;
}
cs = intel_ring_begin(rq, 4 * count);
if (IS_ERR(cs))
return PTR_ERR(cs);
for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
u32 offset = i915_mmio_reg_offset(wa->reg);
if (mcr_range(i915, offset))
continue;
*cs++ = srm;
*cs++ = offset;
*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
*cs++ = 0;
}
intel_ring_advance(rq, cs);
return 0;
}
static int engine_wa_list_verify(struct intel_context *ce,
const struct i915_wa_list * const wal,
const char *from)
{
const struct i915_wa *wa;
struct i915_request *rq;
struct i915_vma *vma;
struct i915_gem_ww_ctx ww;
unsigned int i;
u32 *results;
int err;
if (!wal->count)
return 0;
vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
wal->count * sizeof(u32));
if (IS_ERR(vma))
return PTR_ERR(vma);
intel_engine_pm_get(ce->engine);
i915_gem_ww_ctx_init(&ww, false);
retry:
err = i915_gem_object_lock(vma->obj, &ww);
if (err == 0)
err = intel_context_pin_ww(ce, &ww);
if (err)
goto err_pm;
err = i915_vma_pin_ww(vma, &ww, 0, 0,
i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
if (err)
goto err_unpin;
rq = i915_request_create(ce);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_vma;
}
err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
if (err == 0)
err = wa_list_srm(rq, wal, vma);
i915_request_get(rq);
if (err)
i915_request_set_error_once(rq, err);
i915_request_add(rq);
if (err)
goto err_rq;
if (i915_request_wait(rq, 0, HZ / 5) < 0) {
err = -ETIME;
goto err_rq;
}
results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(results)) {
err = PTR_ERR(results);
goto err_rq;
}
err = 0;
for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
continue;
if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
err = -ENXIO;
}
i915_gem_object_unpin_map(vma->obj);
err_rq:
i915_request_put(rq);
err_vma:
i915_vma_unpin(vma);
err_unpin:
intel_context_unpin(ce);
err_pm:
if (err == -EDEADLK) {
err = i915_gem_ww_ctx_backoff(&ww);
if (!err)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
intel_engine_pm_put(ce->engine);
i915_vma_put(vma);
return err;
}
int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
const char *from)
{
return engine_wa_list_verify(engine->kernel_context,
&engine->wa_list,
from);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftest_workarounds.c"
#endif