blob: 551b0d7974ff13fcdc03a1c809f8c5dfbe146fa4 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "gem/i915_gem_lmem.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_gpu_commands.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_print.h"
#include "gt/intel_ring.h"
#include "intel_gsc_binary_headers.h"
#include "intel_gsc_fw.h"
#include "intel_gsc_uc_heci_cmd_submit.h"
#include "i915_reg.h"
static bool gsc_is_in_reset(struct intel_uncore *uncore)
{
u32 fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1));
return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE, fw_status) ==
HECI1_FWSTS1_CURRENT_STATE_RESET;
}
static u32 gsc_uc_get_fw_status(struct intel_uncore *uncore, bool needs_wakeref)
{
intel_wakeref_t wakeref;
u32 fw_status = 0;
if (needs_wakeref)
wakeref = intel_runtime_pm_get(uncore->rpm);
fw_status = intel_uncore_read(uncore, HECI_FWSTS(MTL_GSC_HECI1_BASE, 1));
if (needs_wakeref)
intel_runtime_pm_put(uncore->rpm, wakeref);
return fw_status;
}
bool intel_gsc_uc_fw_proxy_init_done(struct intel_gsc_uc *gsc, bool needs_wakeref)
{
return REG_FIELD_GET(HECI1_FWSTS1_CURRENT_STATE,
gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore,
needs_wakeref)) ==
HECI1_FWSTS1_PROXY_STATE_NORMAL;
}
int intel_gsc_uc_fw_proxy_get_status(struct intel_gsc_uc *gsc)
{
if (!(IS_ENABLED(CONFIG_INTEL_MEI_GSC_PROXY)))
return -ENODEV;
if (!intel_uc_fw_is_loadable(&gsc->fw))
return -ENODEV;
if (__intel_uc_fw_status(&gsc->fw) == INTEL_UC_FIRMWARE_LOAD_FAIL)
return -ENOLINK;
if (!intel_gsc_uc_fw_proxy_init_done(gsc, true))
return -EAGAIN;
return 0;
}
bool intel_gsc_uc_fw_init_done(struct intel_gsc_uc *gsc)
{
return gsc_uc_get_fw_status(gsc_uc_to_gt(gsc)->uncore, false) &
HECI1_FWSTS1_INIT_COMPLETE;
}
static inline u32 cpd_entry_offset(const struct intel_gsc_cpd_entry *entry)
{
return entry->offset & INTEL_GSC_CPD_ENTRY_OFFSET_MASK;
}
int intel_gsc_fw_get_binary_info(struct intel_uc_fw *gsc_fw, const void *data, size_t size)
{
struct intel_gsc_uc *gsc = container_of(gsc_fw, struct intel_gsc_uc, fw);
struct intel_gt *gt = gsc_uc_to_gt(gsc);
const struct intel_gsc_layout_pointers *layout = data;
const struct intel_gsc_bpdt_header *bpdt_header = NULL;
const struct intel_gsc_bpdt_entry *bpdt_entry = NULL;
const struct intel_gsc_cpd_header_v2 *cpd_header = NULL;
const struct intel_gsc_cpd_entry *cpd_entry = NULL;
const struct intel_gsc_manifest_header *manifest;
size_t min_size = sizeof(*layout);
int i;
if (size < min_size) {
gt_err(gt, "GSC FW too small! %zu < %zu\n", size, min_size);
return -ENODATA;
}
/*
* The GSC binary starts with the pointer layout, which contains the
* locations of the various partitions of the binary. The one we're
* interested in to get the version is the boot1 partition, where we can
* find a BPDT header followed by entries, one of which points to the
* RBE sub-section of the partition. From here, we can parse the CPD
* header and the following entries to find the manifest location
* (entry identified by the "RBEP.man" name), from which we can finally
* extract the version.
*
* --------------------------------------------------
* [ intel_gsc_layout_pointers ]
* [ ... ]
* [ boot1.offset >---------------------------]------o
* [ ... ] |
* -------------------------------------------------- |
* |
* -------------------------------------------------- |
* [ intel_gsc_bpdt_header ]<-----o
* --------------------------------------------------
* [ intel_gsc_bpdt_entry[] ]
* [ entry1 ]
* [ ... ]
* [ entryX ]
* [ type == GSC_RBE ]
* [ offset >-----------------------------]------o
* [ ... ] |
* -------------------------------------------------- |
* |
* -------------------------------------------------- |
* [ intel_gsc_cpd_header_v2 ]<-----o
* --------------------------------------------------
* [ intel_gsc_cpd_entry[] ]
* [ entry1 ]
* [ ... ]
* [ entryX ]
* [ "RBEP.man" ]
* [ ... ]
* [ offset >----------------------------]------o
* [ ... ] |
* -------------------------------------------------- |
* |
* -------------------------------------------------- |
* [ intel_gsc_manifest_header ]<-----o
* [ ... ]
* [ intel_gsc_version fw_version ]
* [ ... ]
* --------------------------------------------------
*/
min_size = layout->boot1.offset + layout->boot1.size;
if (size < min_size) {
gt_err(gt, "GSC FW too small for boot section! %zu < %zu\n",
size, min_size);
return -ENODATA;
}
min_size = sizeof(*bpdt_header);
if (layout->boot1.size < min_size) {
gt_err(gt, "GSC FW boot section too small for BPDT header: %u < %zu\n",
layout->boot1.size, min_size);
return -ENODATA;
}
bpdt_header = data + layout->boot1.offset;
if (bpdt_header->signature != INTEL_GSC_BPDT_HEADER_SIGNATURE) {
gt_err(gt, "invalid signature for BPDT header: 0x%08x!\n",
bpdt_header->signature);
return -EINVAL;
}
min_size += sizeof(*bpdt_entry) * bpdt_header->descriptor_count;
if (layout->boot1.size < min_size) {
gt_err(gt, "GSC FW boot section too small for BPDT entries: %u < %zu\n",
layout->boot1.size, min_size);
return -ENODATA;
}
bpdt_entry = (void *)bpdt_header + sizeof(*bpdt_header);
for (i = 0; i < bpdt_header->descriptor_count; i++, bpdt_entry++) {
if ((bpdt_entry->type & INTEL_GSC_BPDT_ENTRY_TYPE_MASK) !=
INTEL_GSC_BPDT_ENTRY_TYPE_GSC_RBE)
continue;
cpd_header = (void *)bpdt_header + bpdt_entry->sub_partition_offset;
min_size = bpdt_entry->sub_partition_offset + sizeof(*cpd_header);
break;
}
if (!cpd_header) {
gt_err(gt, "couldn't find CPD header in GSC binary!\n");
return -ENODATA;
}
if (layout->boot1.size < min_size) {
gt_err(gt, "GSC FW boot section too small for CPD header: %u < %zu\n",
layout->boot1.size, min_size);
return -ENODATA;
}
if (cpd_header->header_marker != INTEL_GSC_CPD_HEADER_MARKER) {
gt_err(gt, "invalid marker for CPD header in GSC bin: 0x%08x!\n",
cpd_header->header_marker);
return -EINVAL;
}
min_size += sizeof(*cpd_entry) * cpd_header->num_of_entries;
if (layout->boot1.size < min_size) {
gt_err(gt, "GSC FW boot section too small for CPD entries: %u < %zu\n",
layout->boot1.size, min_size);
return -ENODATA;
}
cpd_entry = (void *)cpd_header + cpd_header->header_length;
for (i = 0; i < cpd_header->num_of_entries; i++, cpd_entry++) {
if (strcmp(cpd_entry->name, "RBEP.man") == 0) {
manifest = (void *)cpd_header + cpd_entry_offset(cpd_entry);
intel_uc_fw_version_from_gsc_manifest(&gsc->release,
manifest);
gsc->security_version = manifest->security_version;
break;
}
}
if (IS_ARROWLAKE(gt->i915)) {
bool too_old = false;
/*
* ARL requires a newer firmware than MTL did (102.0.10.1878) but the
* firmware is actually common. So, need to do an explicit version check
* here rather than using a separate table entry. And if the older
* MTL-only version is found, then just don't use GSC rather than aborting
* the driver load.
*/
if (gsc->release.major < 102) {
too_old = true;
} else if (gsc->release.major == 102) {
if (gsc->release.minor == 0) {
if (gsc->release.patch < 10) {
too_old = true;
} else if (gsc->release.patch == 10) {
if (gsc->release.build < 1878)
too_old = true;
}
}
}
if (too_old) {
gt_info(gt, "GSC firmware too old for ARL, got %d.%d.%d.%d but need at least 102.0.10.1878",
gsc->release.major, gsc->release.minor,
gsc->release.patch, gsc->release.build);
return -EINVAL;
}
}
return 0;
}
static int emit_gsc_fw_load(struct i915_request *rq, struct intel_gsc_uc *gsc)
{
u32 offset = i915_ggtt_offset(gsc->local);
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = GSC_FW_LOAD;
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = (gsc->local->size / SZ_4K) | HECI1_FW_LIMIT_VALID;
intel_ring_advance(rq, cs);
return 0;
}
static int gsc_fw_load(struct intel_gsc_uc *gsc)
{
struct intel_context *ce = gsc->ce;
struct i915_request *rq;
int err;
if (!ce)
return -ENODEV;
rq = i915_request_create(ce);
if (IS_ERR(rq))
return PTR_ERR(rq);
if (ce->engine->emit_init_breadcrumb) {
err = ce->engine->emit_init_breadcrumb(rq);
if (err)
goto out_rq;
}
err = emit_gsc_fw_load(rq, gsc);
if (err)
goto out_rq;
err = ce->engine->emit_flush(rq, 0);
out_rq:
i915_request_get(rq);
if (unlikely(err))
i915_request_set_error_once(rq, err);
i915_request_add(rq);
if (!err && i915_request_wait(rq, 0, msecs_to_jiffies(500)) < 0)
err = -ETIME;
i915_request_put(rq);
if (err)
gt_err(gsc_uc_to_gt(gsc), "Request submission for GSC load failed %pe\n",
ERR_PTR(err));
return err;
}
static int gsc_fw_load_prepare(struct intel_gsc_uc *gsc)
{
struct intel_gt *gt = gsc_uc_to_gt(gsc);
void *src;
if (!gsc->local)
return -ENODEV;
if (gsc->local->size < gsc->fw.size)
return -ENOSPC;
src = i915_gem_object_pin_map_unlocked(gsc->fw.obj,
intel_gt_coherent_map_type(gt, gsc->fw.obj, true));
if (IS_ERR(src))
return PTR_ERR(src);
memcpy_toio(gsc->local_vaddr, src, gsc->fw.size);
memset_io(gsc->local_vaddr + gsc->fw.size, 0, gsc->local->size - gsc->fw.size);
intel_guc_write_barrier(gt_to_guc(gt));
i915_gem_object_unpin_map(gsc->fw.obj);
return 0;
}
static int gsc_fw_wait(struct intel_gt *gt)
{
return intel_wait_for_register(gt->uncore,
HECI_FWSTS(MTL_GSC_HECI1_BASE, 1),
HECI1_FWSTS1_INIT_COMPLETE,
HECI1_FWSTS1_INIT_COMPLETE,
500);
}
struct intel_gsc_mkhi_header {
u8 group_id;
#define MKHI_GROUP_ID_GFX_SRV 0x30
u8 command;
#define MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION (0x42)
u8 reserved;
u8 result;
} __packed;
struct mtl_gsc_ver_msg_in {
struct intel_gsc_mtl_header header;
struct intel_gsc_mkhi_header mkhi;
} __packed;
struct mtl_gsc_ver_msg_out {
struct intel_gsc_mtl_header header;
struct intel_gsc_mkhi_header mkhi;
u16 proj_major;
u16 compat_major;
u16 compat_minor;
u16 reserved[5];
} __packed;
#define GSC_VER_PKT_SZ SZ_4K
static int gsc_fw_query_compatibility_version(struct intel_gsc_uc *gsc)
{
struct intel_gt *gt = gsc_uc_to_gt(gsc);
struct mtl_gsc_ver_msg_in *msg_in;
struct mtl_gsc_ver_msg_out *msg_out;
struct i915_vma *vma;
u64 offset;
void *vaddr;
int err;
err = intel_guc_allocate_and_map_vma(gt_to_guc(gt), GSC_VER_PKT_SZ * 2,
&vma, &vaddr);
if (err) {
gt_err(gt, "failed to allocate vma for GSC version query\n");
return err;
}
offset = i915_ggtt_offset(vma);
msg_in = vaddr;
msg_out = vaddr + GSC_VER_PKT_SZ;
intel_gsc_uc_heci_cmd_emit_mtl_header(&msg_in->header,
HECI_MEADDRESS_MKHI,
sizeof(*msg_in), 0);
msg_in->mkhi.group_id = MKHI_GROUP_ID_GFX_SRV;
msg_in->mkhi.command = MKHI_GFX_SRV_GET_HOST_COMPATIBILITY_VERSION;
err = intel_gsc_uc_heci_cmd_submit_packet(&gt->uc.gsc,
offset,
sizeof(*msg_in),
offset + GSC_VER_PKT_SZ,
GSC_VER_PKT_SZ);
if (err) {
gt_err(gt,
"failed to submit GSC request for compatibility version: %d\n",
err);
goto out_vma;
}
if (msg_out->header.message_size != sizeof(*msg_out)) {
gt_err(gt, "invalid GSC reply length %u [expected %zu], s=0x%x, f=0x%x, r=0x%x\n",
msg_out->header.message_size, sizeof(*msg_out),
msg_out->header.status, msg_out->header.flags, msg_out->mkhi.result);
err = -EPROTO;
goto out_vma;
}
gsc->fw.file_selected.ver.major = msg_out->compat_major;
gsc->fw.file_selected.ver.minor = msg_out->compat_minor;
out_vma:
i915_vma_unpin_and_release(&vma, I915_VMA_RELEASE_MAP);
return err;
}
int intel_gsc_uc_fw_upload(struct intel_gsc_uc *gsc)
{
struct intel_gt *gt = gsc_uc_to_gt(gsc);
struct intel_uc_fw *gsc_fw = &gsc->fw;
int err;
/* check current fw status */
if (intel_gsc_uc_fw_init_done(gsc)) {
if (GEM_WARN_ON(!intel_uc_fw_is_loaded(gsc_fw)))
intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED);
return -EEXIST;
}
if (!intel_uc_fw_is_loadable(gsc_fw))
return -ENOEXEC;
/* FW blob is ok, so clean the status */
intel_uc_fw_sanitize(&gsc->fw);
if (!gsc_is_in_reset(gt->uncore))
return -EIO;
err = gsc_fw_load_prepare(gsc);
if (err)
goto fail;
/*
* GSC is only killed by an FLR, so we need to trigger one on unload to
* make sure we stop it. This is because we assign a chunk of memory to
* the GSC as part of the FW load , so we need to make sure it stops
* using it when we release it to the system on driver unload. Note that
* this is not a problem of the unload per-se, because the GSC will not
* touch that memory unless there are requests for it coming from the
* driver; therefore, no accesses will happen while i915 is not loaded,
* but if we re-load the driver then the GSC might wake up and try to
* access that old memory location again.
* Given that an FLR is a very disruptive action (see the FLR function
* for details), we want to do it as the last action before releasing
* the access to the MMIO bar, which means we need to do it as part of
* the primary uncore cleanup.
* An alternative approach to the FLR would be to use a memory location
* that survives driver unload, like e.g. stolen memory, and keep the
* GSC loaded across reloads. However, this requires us to make sure we
* preserve that memory location on unload and then determine and
* reserve its offset on each subsequent load, which is not trivial, so
* it is easier to just kill everything and start fresh.
*/
intel_uncore_set_flr_on_fini(&gt->i915->uncore);
err = gsc_fw_load(gsc);
if (err)
goto fail;
err = gsc_fw_wait(gt);
if (err)
goto fail;
err = gsc_fw_query_compatibility_version(gsc);
if (err)
goto fail;
/* we only support compatibility version 1.0 at the moment */
err = intel_uc_check_file_version(gsc_fw, NULL);
if (err)
goto fail;
/* FW is not fully operational until we enable SW proxy */
intel_uc_fw_change_status(gsc_fw, INTEL_UC_FIRMWARE_TRANSFERRED);
gt_info(gt, "Loaded GSC firmware %s (cv%u.%u, r%u.%u.%u.%u, svn %u)\n",
gsc_fw->file_selected.path,
gsc_fw->file_selected.ver.major, gsc_fw->file_selected.ver.minor,
gsc->release.major, gsc->release.minor,
gsc->release.patch, gsc->release.build,
gsc->security_version);
return 0;
fail:
return intel_uc_fw_mark_load_failed(gsc_fw, err);
}