blob: 57b903132776725b38baf22a2662b5c6375021c8 [file] [log] [blame]
/* SPDX-License-Identifier: MIT */
/*
* Copyright © 2014-2019 Intel Corporation
*/
#ifndef _INTEL_GUC_H_
#define _INTEL_GUC_H_
#include <linux/delay.h>
#include <linux/iosys-map.h>
#include <linux/xarray.h>
#include "intel_guc_ct.h"
#include "intel_guc_fw.h"
#include "intel_guc_fwif.h"
#include "intel_guc_log.h"
#include "intel_guc_reg.h"
#include "intel_guc_slpc_types.h"
#include "intel_uc_fw.h"
#include "intel_uncore.h"
#include "i915_utils.h"
#include "i915_vma.h"
struct __guc_ads_blob;
struct intel_guc_state_capture;
/**
* struct intel_guc - Top level structure of GuC.
*
* It handles firmware loading and manages client pool. intel_guc owns an
* i915_sched_engine for submission.
*/
struct intel_guc {
/** @fw: the GuC firmware */
struct intel_uc_fw fw;
/** @log: sub-structure containing GuC log related data and objects */
struct intel_guc_log log;
/** @ct: the command transport communication channel */
struct intel_guc_ct ct;
/** @slpc: sub-structure containing SLPC related data and objects */
struct intel_guc_slpc slpc;
/** @capture: the error-state-capture module's data and objects */
struct intel_guc_state_capture *capture;
/** @dbgfs_node: debugfs node */
struct dentry *dbgfs_node;
/** @sched_engine: Global engine used to submit requests to GuC */
struct i915_sched_engine *sched_engine;
/**
* @stalled_request: if GuC can't process a request for any reason, we
* save it until GuC restarts processing. No other request can be
* submitted until the stalled request is processed.
*/
struct i915_request *stalled_request;
/**
* @submission_stall_reason: reason why submission is stalled
*/
enum {
STALL_NONE,
STALL_REGISTER_CONTEXT,
STALL_MOVE_LRC_TAIL,
STALL_ADD_REQUEST,
} submission_stall_reason;
/* intel_guc_recv interrupt related state */
/** @irq_lock: protects GuC irq state */
spinlock_t irq_lock;
/**
* @msg_enabled_mask: mask of events that are processed when receiving
* an INTEL_GUC_ACTION_DEFAULT G2H message.
*/
unsigned int msg_enabled_mask;
/**
* @outstanding_submission_g2h: number of outstanding GuC to Host
* responses related to GuC submission, used to determine if the GT is
* idle
*/
atomic_t outstanding_submission_g2h;
/** @tlb_lookup: xarray to store all pending TLB invalidation requests */
struct xarray tlb_lookup;
/**
* @serial_slot: id to the initial waiter created in tlb_lookup,
* which is used only when failed to allocate new waiter.
*/
u32 serial_slot;
/** @next_seqno: the next id (sequence number) to allocate. */
u32 next_seqno;
/** @interrupts: pointers to GuC interrupt-managing functions. */
struct {
bool enabled;
void (*reset)(struct intel_guc *guc);
void (*enable)(struct intel_guc *guc);
void (*disable)(struct intel_guc *guc);
} interrupts;
/**
* @submission_state: sub-structure for submission state protected by
* single lock
*/
struct {
/**
* @submission_state.lock: protects everything in
* submission_state, ce->guc_id.id, and ce->guc_id.ref
* when transitioning in and out of zero
*/
spinlock_t lock;
/**
* @submission_state.guc_ids: used to allocate new
* guc_ids, single-lrc
*/
struct ida guc_ids;
/**
* @submission_state.num_guc_ids: Number of guc_ids, selftest
* feature to be able to reduce this number while testing.
*/
int num_guc_ids;
/**
* @submission_state.guc_ids_bitmap: used to allocate
* new guc_ids, multi-lrc
*/
unsigned long *guc_ids_bitmap;
/**
* @submission_state.guc_id_list: list of intel_context
* with valid guc_ids but no refs
*/
struct list_head guc_id_list;
/**
* @submission_state.guc_ids_in_use: Number single-lrc
* guc_ids in use
*/
unsigned int guc_ids_in_use;
/**
* @submission_state.destroyed_contexts: list of contexts
* waiting to be destroyed (deregistered with the GuC)
*/
struct list_head destroyed_contexts;
/**
* @submission_state.destroyed_worker: worker to deregister
* contexts, need as we need to take a GT PM reference and
* can't from destroy function as it might be in an atomic
* context (no sleeping)
*/
struct work_struct destroyed_worker;
/**
* @submission_state.reset_fail_worker: worker to trigger
* a GT reset after an engine reset fails
*/
struct work_struct reset_fail_worker;
/**
* @submission_state.reset_fail_mask: mask of engines that
* failed to reset
*/
intel_engine_mask_t reset_fail_mask;
/**
* @submission_state.sched_disable_delay_ms: schedule
* disable delay, in ms, for contexts
*/
unsigned int sched_disable_delay_ms;
/**
* @submission_state.sched_disable_gucid_threshold:
* threshold of min remaining available guc_ids before
* we start bypassing the schedule disable delay
*/
unsigned int sched_disable_gucid_threshold;
} submission_state;
/**
* @submission_supported: tracks whether we support GuC submission on
* the current platform
*/
bool submission_supported;
/** @submission_selected: tracks whether the user enabled GuC submission */
bool submission_selected;
/** @submission_initialized: tracks whether GuC submission has been initialised */
bool submission_initialized;
/** @submission_version: Submission API version of the currently loaded firmware */
struct intel_uc_fw_ver submission_version;
/**
* @rc_supported: tracks whether we support GuC rc on the current platform
*/
bool rc_supported;
/** @rc_selected: tracks whether the user enabled GuC rc */
bool rc_selected;
/** @ads_vma: object allocated to hold the GuC ADS */
struct i915_vma *ads_vma;
/** @ads_map: contents of the GuC ADS */
struct iosys_map ads_map;
/** @ads_regset_size: size of the save/restore regsets in the ADS */
u32 ads_regset_size;
/**
* @ads_regset_count: number of save/restore registers in the ADS for
* each engine
*/
u32 ads_regset_count[I915_NUM_ENGINES];
/** @ads_regset: save/restore regsets in the ADS */
struct guc_mmio_reg *ads_regset;
/** @ads_golden_ctxt_size: size of the golden contexts in the ADS */
u32 ads_golden_ctxt_size;
/** @ads_waklv_size: size of workaround KLVs */
u32 ads_waklv_size;
/** @ads_capture_size: size of register lists in the ADS used for error capture */
u32 ads_capture_size;
/** @lrc_desc_pool_v69: object allocated to hold the GuC LRC descriptor pool */
struct i915_vma *lrc_desc_pool_v69;
/** @lrc_desc_pool_vaddr_v69: contents of the GuC LRC descriptor pool */
void *lrc_desc_pool_vaddr_v69;
/**
* @context_lookup: used to resolve intel_context from guc_id, if a
* context is present in this structure it is registered with the GuC
*/
struct xarray context_lookup;
/** @params: Control params for fw initialization */
u32 params[GUC_CTL_MAX_DWORDS];
/** @send_regs: GuC's FW specific registers used for sending MMIO H2G */
struct {
u32 base;
unsigned int count;
enum forcewake_domains fw_domains;
} send_regs;
/** @notify_reg: register used to send interrupts to the GuC FW */
i915_reg_t notify_reg;
/**
* @mmio_msg: notification bitmask that the GuC writes in one of its
* registers when the CT channel is disabled, to be processed when the
* channel is back up.
*/
u32 mmio_msg;
/** @send_mutex: used to serialize the intel_guc_send actions */
struct mutex send_mutex;
/**
* @timestamp: GT timestamp object that stores a copy of the timestamp
* and adjusts it for overflow using a worker.
*/
struct {
/**
* @timestamp.lock: Lock protecting the below fields and
* the engine stats.
*/
spinlock_t lock;
/**
* @timestamp.gt_stamp: 64-bit extended value of the GT
* timestamp.
*/
u64 gt_stamp;
/**
* @timestamp.ping_delay: Period for polling the GT
* timestamp for overflow.
*/
unsigned long ping_delay;
/**
* @timestamp.work: Periodic work to adjust GT timestamp,
* engine and context usage for overflows.
*/
struct delayed_work work;
/**
* @timestamp.shift: Right shift value for the gpm timestamp
*/
u32 shift;
/**
* @timestamp.last_stat_jiffies: jiffies at last actual
* stats collection time. We use this timestamp to ensure
* we don't oversample the stats because runtime power
* management events can trigger stats collection at much
* higher rates than required.
*/
unsigned long last_stat_jiffies;
} timestamp;
/**
* @dead_guc_worker: Asynchronous worker thread for forcing a GuC reset.
* Specifically used when the G2H handler wants to issue a reset. Resets
* require flushing the G2H queue. So, the G2H processing itself must not
* trigger a reset directly. Instead, go via this worker.
*/
struct work_struct dead_guc_worker;
/**
* @last_dead_guc_jiffies: timestamp of previous 'dead guc' occurrance
* used to prevent a fundamentally broken system from continuously
* reloading the GuC.
*/
unsigned long last_dead_guc_jiffies;
#ifdef CONFIG_DRM_I915_SELFTEST
/**
* @number_guc_id_stolen: The number of guc_ids that have been stolen
*/
int number_guc_id_stolen;
/**
* @fast_response_selftest: Backdoor to CT handler for fast response selftest
*/
u32 fast_response_selftest;
#endif
};
struct intel_guc_tlb_wait {
struct wait_queue_head wq;
bool busy;
};
/*
* GuC version number components are only 8-bit, so converting to a 32bit 8.8.8
* integer works.
*/
#define MAKE_GUC_VER(maj, min, pat) (((maj) << 16) | ((min) << 8) | (pat))
#define MAKE_GUC_VER_STRUCT(ver) MAKE_GUC_VER((ver).major, (ver).minor, (ver).patch)
#define GUC_SUBMIT_VER(guc) MAKE_GUC_VER_STRUCT((guc)->submission_version)
#define GUC_FIRMWARE_VER(guc) MAKE_GUC_VER_STRUCT((guc)->fw.file_selected.ver)
static inline struct intel_guc *log_to_guc(struct intel_guc_log *log)
{
return container_of(log, struct intel_guc, log);
}
static
inline int intel_guc_send(struct intel_guc *guc, const u32 *action, u32 len)
{
return intel_guc_ct_send(&guc->ct, action, len, NULL, 0, 0);
}
static
inline int intel_guc_send_nb(struct intel_guc *guc, const u32 *action, u32 len,
u32 g2h_len_dw)
{
return intel_guc_ct_send(&guc->ct, action, len, NULL, 0,
MAKE_SEND_FLAGS(g2h_len_dw));
}
static inline int
intel_guc_send_and_receive(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
return intel_guc_ct_send(&guc->ct, action, len,
response_buf, response_buf_size, 0);
}
static inline int intel_guc_send_busy_loop(struct intel_guc *guc,
const u32 *action,
u32 len,
u32 g2h_len_dw,
bool loop)
{
int err;
unsigned int sleep_period_ms = 1;
bool not_atomic = !in_atomic() && !irqs_disabled();
/*
* FIXME: Have caller pass in if we are in an atomic context to avoid
* using in_atomic(). It is likely safe here as we check for irqs
* disabled which basically all the spin locks in the i915 do but
* regardless this should be cleaned up.
*/
/* No sleeping with spin locks, just busy loop */
might_sleep_if(loop && not_atomic);
retry:
err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
if (unlikely(err == -EBUSY && loop)) {
if (likely(not_atomic)) {
if (msleep_interruptible(sleep_period_ms))
return -EINTR;
sleep_period_ms = sleep_period_ms << 1;
} else {
cpu_relax();
}
goto retry;
}
return err;
}
/* Only call this from the interrupt handler code */
static inline void intel_guc_to_host_event_handler(struct intel_guc *guc)
{
if (guc->interrupts.enabled)
intel_guc_ct_event_handler(&guc->ct);
}
/* GuC addresses above GUC_GGTT_TOP also don't map through the GTT */
#define GUC_GGTT_TOP 0xFEE00000
/**
* intel_guc_ggtt_offset() - Get and validate the GGTT offset of @vma
* @guc: intel_guc structure.
* @vma: i915 graphics virtual memory area.
*
* GuC does not allow any gfx GGTT address that falls into range
* [0, ggtt.pin_bias), which is reserved for Boot ROM, SRAM and WOPCM.
* Currently, in order to exclude [0, ggtt.pin_bias) address space from
* GGTT, all gfx objects used by GuC are allocated with intel_guc_allocate_vma()
* and pinned with PIN_OFFSET_BIAS along with the value of ggtt.pin_bias.
*
* Return: GGTT offset of the @vma.
*/
static inline u32 intel_guc_ggtt_offset(struct intel_guc *guc,
struct i915_vma *vma)
{
u32 offset = i915_ggtt_offset(vma);
GEM_BUG_ON(offset < i915_ggtt_pin_bias(vma));
GEM_BUG_ON(range_overflows_t(u64, offset, vma->size, GUC_GGTT_TOP));
return offset;
}
void intel_guc_init_early(struct intel_guc *guc);
void intel_guc_init_late(struct intel_guc *guc);
void intel_guc_init_send_regs(struct intel_guc *guc);
void intel_guc_write_params(struct intel_guc *guc);
int intel_guc_init(struct intel_guc *guc);
void intel_guc_fini(struct intel_guc *guc);
void intel_guc_notify(struct intel_guc *guc);
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size);
int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
const u32 *payload, u32 len);
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset);
int intel_guc_suspend(struct intel_guc *guc);
int intel_guc_resume(struct intel_guc *guc);
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size);
int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
struct i915_vma **out_vma, void **out_vaddr);
int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value);
int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value);
static inline bool intel_guc_is_supported(struct intel_guc *guc)
{
return intel_uc_fw_is_supported(&guc->fw);
}
static inline bool intel_guc_is_wanted(struct intel_guc *guc)
{
return intel_uc_fw_is_enabled(&guc->fw);
}
static inline bool intel_guc_is_used(struct intel_guc *guc)
{
GEM_BUG_ON(__intel_uc_fw_status(&guc->fw) == INTEL_UC_FIRMWARE_SELECTED);
return intel_uc_fw_is_available(&guc->fw);
}
static inline bool intel_guc_is_fw_running(struct intel_guc *guc)
{
return intel_uc_fw_is_running(&guc->fw);
}
static inline bool intel_guc_is_ready(struct intel_guc *guc)
{
return intel_guc_is_fw_running(guc) && intel_guc_ct_enabled(&guc->ct);
}
static inline void intel_guc_reset_interrupts(struct intel_guc *guc)
{
guc->interrupts.reset(guc);
}
static inline void intel_guc_enable_interrupts(struct intel_guc *guc)
{
guc->interrupts.enable(guc);
}
static inline void intel_guc_disable_interrupts(struct intel_guc *guc)
{
guc->interrupts.disable(guc);
}
static inline int intel_guc_sanitize(struct intel_guc *guc)
{
intel_uc_fw_sanitize(&guc->fw);
intel_guc_disable_interrupts(guc);
intel_guc_ct_sanitize(&guc->ct);
guc->mmio_msg = 0;
return 0;
}
static inline void intel_guc_enable_msg(struct intel_guc *guc, u32 mask)
{
spin_lock_irq(&guc->irq_lock);
guc->msg_enabled_mask |= mask;
spin_unlock_irq(&guc->irq_lock);
}
static inline void intel_guc_disable_msg(struct intel_guc *guc, u32 mask)
{
spin_lock_irq(&guc->irq_lock);
guc->msg_enabled_mask &= ~mask;
spin_unlock_irq(&guc->irq_lock);
}
int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout);
int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len);
int intel_guc_sched_done_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len);
int intel_guc_context_reset_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len);
int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len);
int intel_guc_error_capture_process_msg(struct intel_guc *guc,
const u32 *msg, u32 len);
int intel_guc_crash_process_msg(struct intel_guc *guc, u32 action);
struct intel_engine_cs *
intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance);
void intel_guc_find_hung_context(struct intel_engine_cs *engine);
int intel_guc_global_policies_update(struct intel_guc *guc);
void intel_guc_context_ban(struct intel_context *ce, struct i915_request *rq);
void intel_guc_submission_reset_prepare(struct intel_guc *guc);
void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled);
void intel_guc_submission_reset_finish(struct intel_guc *guc);
void intel_guc_submission_cancel_requests(struct intel_guc *guc);
void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p);
void intel_guc_write_barrier(struct intel_guc *guc);
void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p);
int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc);
bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc);
int intel_guc_invalidate_tlb_engines(struct intel_guc *guc);
int intel_guc_invalidate_tlb_guc(struct intel_guc *guc);
int intel_guc_tlb_invalidation_done(struct intel_guc *guc,
const u32 *payload, u32 len);
void wake_up_all_tlb_invalidate(struct intel_guc *guc);
#endif