| // SPDX-License-Identifier: MIT |
| /* |
| * Copyright © 2014 Intel Corporation |
| */ |
| |
| #include <linux/circ_buf.h> |
| |
| #include "gem/i915_gem_context.h" |
| #include "gem/i915_gem_lmem.h" |
| #include "gt/gen8_engine_cs.h" |
| #include "gt/intel_breadcrumbs.h" |
| #include "gt/intel_context.h" |
| #include "gt/intel_engine_heartbeat.h" |
| #include "gt/intel_engine_pm.h" |
| #include "gt/intel_engine_regs.h" |
| #include "gt/intel_gpu_commands.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_clock_utils.h" |
| #include "gt/intel_gt_irq.h" |
| #include "gt/intel_gt_pm.h" |
| #include "gt/intel_gt_regs.h" |
| #include "gt/intel_gt_requests.h" |
| #include "gt/intel_lrc.h" |
| #include "gt/intel_lrc_reg.h" |
| #include "gt/intel_mocs.h" |
| #include "gt/intel_ring.h" |
| |
| #include "intel_guc_ads.h" |
| #include "intel_guc_capture.h" |
| #include "intel_guc_print.h" |
| #include "intel_guc_submission.h" |
| |
| #include "i915_drv.h" |
| #include "i915_reg.h" |
| #include "i915_irq.h" |
| #include "i915_trace.h" |
| |
| /** |
| * DOC: GuC-based command submission |
| * |
| * The Scratch registers: |
| * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes |
| * a value to the action register (SOFT_SCRATCH_0) along with any data. It then |
| * triggers an interrupt on the GuC via another register write (0xC4C8). |
| * Firmware writes a success/fail code back to the action register after |
| * processes the request. The kernel driver polls waiting for this update and |
| * then proceeds. |
| * |
| * Command Transport buffers (CTBs): |
| * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host |
| * - G2H) are a message interface between the i915 and GuC. |
| * |
| * Context registration: |
| * Before a context can be submitted it must be registered with the GuC via a |
| * H2G. A unique guc_id is associated with each context. The context is either |
| * registered at request creation time (normal operation) or at submission time |
| * (abnormal operation, e.g. after a reset). |
| * |
| * Context submission: |
| * The i915 updates the LRC tail value in memory. The i915 must enable the |
| * scheduling of the context within the GuC for the GuC to actually consider it. |
| * Therefore, the first time a disabled context is submitted we use a schedule |
| * enable H2G, while follow up submissions are done via the context submit H2G, |
| * which informs the GuC that a previously enabled context has new work |
| * available. |
| * |
| * Context unpin: |
| * To unpin a context a H2G is used to disable scheduling. When the |
| * corresponding G2H returns indicating the scheduling disable operation has |
| * completed it is safe to unpin the context. While a disable is in flight it |
| * isn't safe to resubmit the context so a fence is used to stall all future |
| * requests of that context until the G2H is returned. Because this interaction |
| * with the GuC takes a non-zero amount of time we delay the disabling of |
| * scheduling after the pin count goes to zero by a configurable period of time |
| * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of |
| * time to resubmit something on the context before doing this costly operation. |
| * This delay is only done if the context isn't closed and the guc_id usage is |
| * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). |
| * |
| * Context deregistration: |
| * Before a context can be destroyed or if we steal its guc_id we must |
| * deregister the context with the GuC via H2G. If stealing the guc_id it isn't |
| * safe to submit anything to this guc_id until the deregister completes so a |
| * fence is used to stall all requests associated with this guc_id until the |
| * corresponding G2H returns indicating the guc_id has been deregistered. |
| * |
| * submission_state.guc_ids: |
| * Unique number associated with private GuC context data passed in during |
| * context registration / submission / deregistration. 64k available. Simple ida |
| * is used for allocation. |
| * |
| * Stealing guc_ids: |
| * If no guc_ids are available they can be stolen from another context at |
| * request creation time if that context is unpinned. If a guc_id can't be found |
| * we punt this problem to the user as we believe this is near impossible to hit |
| * during normal use cases. |
| * |
| * Locking: |
| * In the GuC submission code we have 3 basic spin locks which protect |
| * everything. Details about each below. |
| * |
| * sched_engine->lock |
| * This is the submission lock for all contexts that share an i915 schedule |
| * engine (sched_engine), thus only one of the contexts which share a |
| * sched_engine can be submitting at a time. Currently only one sched_engine is |
| * used for all of GuC submission but that could change in the future. |
| * |
| * guc->submission_state.lock |
| * Global lock for GuC submission state. Protects guc_ids and destroyed contexts |
| * list. |
| * |
| * ce->guc_state.lock |
| * Protects everything under ce->guc_state. Ensures that a context is in the |
| * correct state before issuing a H2G. e.g. We don't issue a schedule disable |
| * on a disabled context (bad idea), we don't issue a schedule enable when a |
| * schedule disable is in flight, etc... Also protects list of inflight requests |
| * on the context and the priority management state. Lock is individual to each |
| * context. |
| * |
| * Lock ordering rules: |
| * sched_engine->lock -> ce->guc_state.lock |
| * guc->submission_state.lock -> ce->guc_state.lock |
| * |
| * Reset races: |
| * When a full GT reset is triggered it is assumed that some G2H responses to |
| * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be |
| * fatal as we do certain operations upon receiving a G2H (e.g. destroy |
| * contexts, release guc_ids, etc...). When this occurs we can scrub the |
| * context state and cleanup appropriately, however this is quite racey. |
| * To avoid races, the reset code must disable submission before scrubbing for |
| * the missing G2H, while the submission code must check for submission being |
| * disabled and skip sending H2Gs and updating context states when it is. Both |
| * sides must also make sure to hold the relevant locks. |
| */ |
| |
| /* GuC Virtual Engine */ |
| struct guc_virtual_engine { |
| struct intel_engine_cs base; |
| struct intel_context context; |
| }; |
| |
| static struct intel_context * |
| guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| unsigned long flags); |
| |
| static struct intel_context * |
| guc_create_parallel(struct intel_engine_cs **engines, |
| unsigned int num_siblings, |
| unsigned int width); |
| |
| #define GUC_REQUEST_SIZE 64 /* bytes */ |
| |
| /* |
| * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous |
| * per the GuC submission interface. A different allocation algorithm is used |
| * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to |
| * partition the guc_id space. We believe the number of multi-lrc contexts in |
| * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for |
| * multi-lrc. |
| */ |
| #define NUMBER_MULTI_LRC_GUC_ID(guc) \ |
| ((guc)->submission_state.num_guc_ids / 16) |
| |
| /* |
| * Below is a set of functions which control the GuC scheduling state which |
| * require a lock. |
| */ |
| #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) |
| #define SCHED_STATE_DESTROYED BIT(1) |
| #define SCHED_STATE_PENDING_DISABLE BIT(2) |
| #define SCHED_STATE_BANNED BIT(3) |
| #define SCHED_STATE_ENABLED BIT(4) |
| #define SCHED_STATE_PENDING_ENABLE BIT(5) |
| #define SCHED_STATE_REGISTERED BIT(6) |
| #define SCHED_STATE_POLICY_REQUIRED BIT(7) |
| #define SCHED_STATE_CLOSED BIT(8) |
| #define SCHED_STATE_BLOCKED_SHIFT 9 |
| #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) |
| #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) |
| |
| static inline void init_sched_state(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; |
| } |
| |
| /* |
| * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. |
| * A context close can race with the submission path, so SCHED_STATE_CLOSED |
| * can be set immediately before we try to register. |
| */ |
| #define SCHED_STATE_VALID_INIT \ |
| (SCHED_STATE_BLOCKED_MASK | \ |
| SCHED_STATE_CLOSED | \ |
| SCHED_STATE_REGISTERED) |
| |
| __maybe_unused |
| static bool sched_state_is_init(struct intel_context *ce) |
| { |
| return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); |
| } |
| |
| static inline bool |
| context_wait_for_deregister_to_register(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & |
| SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| } |
| |
| static inline void |
| set_context_wait_for_deregister_to_register(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= |
| SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| } |
| |
| static inline void |
| clr_context_wait_for_deregister_to_register(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= |
| ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; |
| } |
| |
| static inline bool |
| context_destroyed(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; |
| } |
| |
| static inline void |
| set_context_destroyed(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; |
| } |
| |
| static inline void |
| clr_context_destroyed(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_DESTROYED; |
| } |
| |
| static inline bool context_pending_disable(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; |
| } |
| |
| static inline void set_context_pending_disable(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; |
| } |
| |
| static inline void clr_context_pending_disable(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; |
| } |
| |
| static inline bool context_banned(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_BANNED; |
| } |
| |
| static inline void set_context_banned(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_BANNED; |
| } |
| |
| static inline void clr_context_banned(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; |
| } |
| |
| static inline bool context_enabled(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_ENABLED; |
| } |
| |
| static inline void set_context_enabled(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_ENABLED; |
| } |
| |
| static inline void clr_context_enabled(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; |
| } |
| |
| static inline bool context_pending_enable(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; |
| } |
| |
| static inline void set_context_pending_enable(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; |
| } |
| |
| static inline void clr_context_pending_enable(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; |
| } |
| |
| static inline bool context_registered(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; |
| } |
| |
| static inline void set_context_registered(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; |
| } |
| |
| static inline void clr_context_registered(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; |
| } |
| |
| static inline bool context_policy_required(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; |
| } |
| |
| static inline void set_context_policy_required(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; |
| } |
| |
| static inline void clr_context_policy_required(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; |
| } |
| |
| static inline bool context_close_done(struct intel_context *ce) |
| { |
| return ce->guc_state.sched_state & SCHED_STATE_CLOSED; |
| } |
| |
| static inline void set_context_close_done(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| ce->guc_state.sched_state |= SCHED_STATE_CLOSED; |
| } |
| |
| static inline u32 context_blocked(struct intel_context *ce) |
| { |
| return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> |
| SCHED_STATE_BLOCKED_SHIFT; |
| } |
| |
| static inline void incr_context_blocked(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| ce->guc_state.sched_state += SCHED_STATE_BLOCKED; |
| |
| GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ |
| } |
| |
| static inline void decr_context_blocked(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ |
| |
| ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; |
| } |
| |
| static struct intel_context * |
| request_to_scheduling_context(struct i915_request *rq) |
| { |
| return intel_context_to_parent(rq->context); |
| } |
| |
| static inline bool context_guc_id_invalid(struct intel_context *ce) |
| { |
| return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; |
| } |
| |
| static inline void set_context_guc_id_invalid(struct intel_context *ce) |
| { |
| ce->guc_id.id = GUC_INVALID_CONTEXT_ID; |
| } |
| |
| static inline struct intel_guc *ce_to_guc(struct intel_context *ce) |
| { |
| return gt_to_guc(ce->engine->gt); |
| } |
| |
| static inline struct i915_priolist *to_priolist(struct rb_node *rb) |
| { |
| return rb_entry(rb, struct i915_priolist, node); |
| } |
| |
| /* |
| * When using multi-lrc submission a scratch memory area is reserved in the |
| * parent's context state for the process descriptor, work queue, and handshake |
| * between the parent + children contexts to insert safe preemption points |
| * between each of the BBs. Currently the scratch area is sized to a page. |
| * |
| * The layout of this scratch area is below: |
| * 0 guc_process_desc |
| * + sizeof(struct guc_process_desc) child go |
| * + CACHELINE_BYTES child join[0] |
| * ... |
| * + CACHELINE_BYTES child join[n - 1] |
| * ... unused |
| * PARENT_SCRATCH_SIZE / 2 work queue start |
| * ... work queue |
| * PARENT_SCRATCH_SIZE - 1 work queue end |
| */ |
| #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) |
| #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) |
| |
| struct sync_semaphore { |
| u32 semaphore; |
| u8 unused[CACHELINE_BYTES - sizeof(u32)]; |
| }; |
| |
| struct parent_scratch { |
| union guc_descs { |
| struct guc_sched_wq_desc wq_desc; |
| struct guc_process_desc_v69 pdesc; |
| } descs; |
| |
| struct sync_semaphore go; |
| struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; |
| |
| u8 unused[WQ_OFFSET - sizeof(union guc_descs) - |
| sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; |
| |
| u32 wq[WQ_SIZE / sizeof(u32)]; |
| }; |
| |
| static u32 __get_parent_scratch_offset(struct intel_context *ce) |
| { |
| GEM_BUG_ON(!ce->parallel.guc.parent_page); |
| |
| return ce->parallel.guc.parent_page * PAGE_SIZE; |
| } |
| |
| static u32 __get_wq_offset(struct intel_context *ce) |
| { |
| BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); |
| |
| return __get_parent_scratch_offset(ce) + WQ_OFFSET; |
| } |
| |
| static struct parent_scratch * |
| __get_parent_scratch(struct intel_context *ce) |
| { |
| BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); |
| BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); |
| |
| /* |
| * Need to subtract LRC_STATE_OFFSET here as the |
| * parallel.guc.parent_page is the offset into ce->state while |
| * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. |
| */ |
| return (struct parent_scratch *) |
| (ce->lrc_reg_state + |
| ((__get_parent_scratch_offset(ce) - |
| LRC_STATE_OFFSET) / sizeof(u32))); |
| } |
| |
| static struct guc_process_desc_v69 * |
| __get_process_desc_v69(struct intel_context *ce) |
| { |
| struct parent_scratch *ps = __get_parent_scratch(ce); |
| |
| return &ps->descs.pdesc; |
| } |
| |
| static struct guc_sched_wq_desc * |
| __get_wq_desc_v70(struct intel_context *ce) |
| { |
| struct parent_scratch *ps = __get_parent_scratch(ce); |
| |
| return &ps->descs.wq_desc; |
| } |
| |
| static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) |
| { |
| /* |
| * Check for space in work queue. Caching a value of head pointer in |
| * intel_context structure in order reduce the number accesses to shared |
| * GPU memory which may be across a PCIe bus. |
| */ |
| #define AVAILABLE_SPACE \ |
| CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) |
| if (wqi_size > AVAILABLE_SPACE) { |
| ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); |
| |
| if (wqi_size > AVAILABLE_SPACE) |
| return NULL; |
| } |
| #undef AVAILABLE_SPACE |
| |
| return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; |
| } |
| |
| static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) |
| { |
| struct intel_context *ce = xa_load(&guc->context_lookup, id); |
| |
| GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); |
| |
| return ce; |
| } |
| |
| static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) |
| { |
| struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; |
| |
| if (!base) |
| return NULL; |
| |
| GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); |
| |
| return &base[index]; |
| } |
| |
| static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) |
| { |
| u32 size; |
| int ret; |
| |
| size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * |
| GUC_MAX_CONTEXT_ID); |
| ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, |
| (void **)&guc->lrc_desc_pool_vaddr_v69); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) |
| { |
| if (!guc->lrc_desc_pool_vaddr_v69) |
| return; |
| |
| guc->lrc_desc_pool_vaddr_v69 = NULL; |
| i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); |
| } |
| |
| static inline bool guc_submission_initialized(struct intel_guc *guc) |
| { |
| return guc->submission_initialized; |
| } |
| |
| static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) |
| { |
| struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); |
| |
| if (desc) |
| memset(desc, 0, sizeof(*desc)); |
| } |
| |
| static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) |
| { |
| return __get_context(guc, id); |
| } |
| |
| static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, |
| struct intel_context *ce) |
| { |
| unsigned long flags; |
| |
| /* |
| * xarray API doesn't have xa_save_irqsave wrapper, so calling the |
| * lower level functions directly. |
| */ |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) |
| { |
| unsigned long flags; |
| |
| if (unlikely(!guc_submission_initialized(guc))) |
| return; |
| |
| _reset_lrc_desc_v69(guc, id); |
| |
| /* |
| * xarray API doesn't have xa_erase_irqsave wrapper, so calling |
| * the lower level functions directly. |
| */ |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| __xa_erase(&guc->context_lookup, id); |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| static void decr_outstanding_submission_g2h(struct intel_guc *guc) |
| { |
| if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) |
| wake_up_all(&guc->ct.wq); |
| } |
| |
| static int guc_submission_send_busy_loop(struct intel_guc *guc, |
| const u32 *action, |
| u32 len, |
| u32 g2h_len_dw, |
| bool loop) |
| { |
| int ret; |
| |
| /* |
| * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), |
| * so we don't handle the case where we don't get a reply because we |
| * aborted the send due to the channel being busy. |
| */ |
| GEM_BUG_ON(g2h_len_dw && !loop); |
| |
| if (g2h_len_dw) |
| atomic_inc(&guc->outstanding_submission_g2h); |
| |
| ret = intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); |
| if (ret) |
| atomic_dec(&guc->outstanding_submission_g2h); |
| |
| return ret; |
| } |
| |
| int intel_guc_wait_for_pending_msg(struct intel_guc *guc, |
| atomic_t *wait_var, |
| bool interruptible, |
| long timeout) |
| { |
| const int state = interruptible ? |
| TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; |
| DEFINE_WAIT(wait); |
| |
| might_sleep(); |
| GEM_BUG_ON(timeout < 0); |
| |
| if (!atomic_read(wait_var)) |
| return 0; |
| |
| if (!timeout) |
| return -ETIME; |
| |
| for (;;) { |
| prepare_to_wait(&guc->ct.wq, &wait, state); |
| |
| if (!atomic_read(wait_var)) |
| break; |
| |
| if (signal_pending_state(state, current)) { |
| timeout = -EINTR; |
| break; |
| } |
| |
| if (!timeout) { |
| timeout = -ETIME; |
| break; |
| } |
| |
| timeout = io_schedule_timeout(timeout); |
| } |
| finish_wait(&guc->ct.wq, &wait); |
| |
| return (timeout < 0) ? timeout : 0; |
| } |
| |
| int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) |
| { |
| if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) |
| return 0; |
| |
| return intel_guc_wait_for_pending_msg(guc, |
| &guc->outstanding_submission_g2h, |
| true, timeout); |
| } |
| |
| static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); |
| static int try_context_registration(struct intel_context *ce, bool loop); |
| |
| static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) |
| { |
| int err = 0; |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| u32 action[3]; |
| int len = 0; |
| u32 g2h_len_dw = 0; |
| bool enabled; |
| |
| lockdep_assert_held(&rq->engine->sched_engine->lock); |
| |
| /* |
| * Corner case where requests were sitting in the priority list or a |
| * request resubmitted after the context was banned. |
| */ |
| if (unlikely(!intel_context_is_schedulable(ce))) { |
| i915_request_put(i915_request_mark_eio(rq)); |
| intel_engine_signal_breadcrumbs(ce->engine); |
| return 0; |
| } |
| |
| GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); |
| GEM_BUG_ON(context_guc_id_invalid(ce)); |
| |
| if (context_policy_required(ce)) { |
| err = guc_context_policy_init_v70(ce, false); |
| if (err) |
| return err; |
| } |
| |
| spin_lock(&ce->guc_state.lock); |
| |
| /* |
| * The request / context will be run on the hardware when scheduling |
| * gets enabled in the unblock. For multi-lrc we still submit the |
| * context to move the LRC tails. |
| */ |
| if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) |
| goto out; |
| |
| enabled = context_enabled(ce) || context_blocked(ce); |
| |
| if (!enabled) { |
| action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; |
| action[len++] = ce->guc_id.id; |
| action[len++] = GUC_CONTEXT_ENABLE; |
| set_context_pending_enable(ce); |
| intel_context_get(ce); |
| g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; |
| } else { |
| action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; |
| action[len++] = ce->guc_id.id; |
| } |
| |
| err = intel_guc_send_nb(guc, action, len, g2h_len_dw); |
| if (!enabled && !err) { |
| trace_intel_context_sched_enable(ce); |
| atomic_inc(&guc->outstanding_submission_g2h); |
| set_context_enabled(ce); |
| |
| /* |
| * Without multi-lrc KMD does the submission step (moving the |
| * lrc tail) so enabling scheduling is sufficient to submit the |
| * context. This isn't the case in multi-lrc submission as the |
| * GuC needs to move the tails, hence the need for another H2G |
| * to submit a multi-lrc context after enabling scheduling. |
| */ |
| if (intel_context_is_parent(ce)) { |
| action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; |
| err = intel_guc_send_nb(guc, action, len - 1, 0); |
| } |
| } else if (!enabled) { |
| clr_context_pending_enable(ce); |
| intel_context_put(ce); |
| } |
| if (likely(!err)) |
| trace_i915_request_guc_submit(rq); |
| |
| out: |
| spin_unlock(&ce->guc_state.lock); |
| return err; |
| } |
| |
| static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) |
| { |
| int ret = __guc_add_request(guc, rq); |
| |
| if (unlikely(ret == -EBUSY)) { |
| guc->stalled_request = rq; |
| guc->submission_stall_reason = STALL_ADD_REQUEST; |
| } |
| |
| return ret; |
| } |
| |
| static inline void guc_set_lrc_tail(struct i915_request *rq) |
| { |
| rq->context->lrc_reg_state[CTX_RING_TAIL] = |
| intel_ring_set_tail(rq->ring, rq->tail); |
| } |
| |
| static inline int rq_prio(const struct i915_request *rq) |
| { |
| return rq->sched.attr.priority; |
| } |
| |
| static bool is_multi_lrc_rq(struct i915_request *rq) |
| { |
| return intel_context_is_parallel(rq->context); |
| } |
| |
| static bool can_merge_rq(struct i915_request *rq, |
| struct i915_request *last) |
| { |
| return request_to_scheduling_context(rq) == |
| request_to_scheduling_context(last); |
| } |
| |
| static u32 wq_space_until_wrap(struct intel_context *ce) |
| { |
| return (WQ_SIZE - ce->parallel.guc.wqi_tail); |
| } |
| |
| static void write_wqi(struct intel_context *ce, u32 wqi_size) |
| { |
| BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); |
| |
| /* |
| * Ensure WQI are visible before updating tail |
| */ |
| intel_guc_write_barrier(ce_to_guc(ce)); |
| |
| ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & |
| (WQ_SIZE - 1); |
| WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); |
| } |
| |
| static int guc_wq_noop_append(struct intel_context *ce) |
| { |
| u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); |
| u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; |
| |
| if (!wqi) |
| return -EBUSY; |
| |
| GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); |
| |
| *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | |
| FIELD_PREP(WQ_LEN_MASK, len_dw); |
| ce->parallel.guc.wqi_tail = 0; |
| |
| return 0; |
| } |
| |
| static int __guc_wq_item_append(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| struct intel_context *child; |
| unsigned int wqi_size = (ce->parallel.number_children + 4) * |
| sizeof(u32); |
| u32 *wqi; |
| u32 len_dw = (wqi_size / sizeof(u32)) - 1; |
| int ret; |
| |
| /* Ensure context is in correct state updating work queue */ |
| GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); |
| GEM_BUG_ON(context_guc_id_invalid(ce)); |
| GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); |
| GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); |
| |
| /* Insert NOOP if this work queue item will wrap the tail pointer. */ |
| if (wqi_size > wq_space_until_wrap(ce)) { |
| ret = guc_wq_noop_append(ce); |
| if (ret) |
| return ret; |
| } |
| |
| wqi = get_wq_pointer(ce, wqi_size); |
| if (!wqi) |
| return -EBUSY; |
| |
| GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); |
| |
| *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | |
| FIELD_PREP(WQ_LEN_MASK, len_dw); |
| *wqi++ = ce->lrc.lrca; |
| *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | |
| FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); |
| *wqi++ = 0; /* fence_id */ |
| for_each_child(ce, child) |
| *wqi++ = child->ring->tail / sizeof(u64); |
| |
| write_wqi(ce, wqi_size); |
| |
| return 0; |
| } |
| |
| static int guc_wq_item_append(struct intel_guc *guc, |
| struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| int ret; |
| |
| if (unlikely(!intel_context_is_schedulable(ce))) |
| return 0; |
| |
| ret = __guc_wq_item_append(rq); |
| if (unlikely(ret == -EBUSY)) { |
| guc->stalled_request = rq; |
| guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; |
| } |
| |
| return ret; |
| } |
| |
| static bool multi_lrc_submit(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| |
| intel_ring_set_tail(rq->ring, rq->tail); |
| |
| /* |
| * We expect the front end (execbuf IOCTL) to set this flag on the last |
| * request generated from a multi-BB submission. This indicates to the |
| * backend (GuC interface) that we should submit this context thus |
| * submitting all the requests generated in parallel. |
| */ |
| return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || |
| !intel_context_is_schedulable(ce); |
| } |
| |
| static int guc_dequeue_one_context(struct intel_guc *guc) |
| { |
| struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| struct i915_request *last = NULL; |
| bool submit = false; |
| struct rb_node *rb; |
| int ret; |
| |
| lockdep_assert_held(&sched_engine->lock); |
| |
| if (guc->stalled_request) { |
| submit = true; |
| last = guc->stalled_request; |
| |
| switch (guc->submission_stall_reason) { |
| case STALL_REGISTER_CONTEXT: |
| goto register_context; |
| case STALL_MOVE_LRC_TAIL: |
| goto move_lrc_tail; |
| case STALL_ADD_REQUEST: |
| goto add_request; |
| default: |
| MISSING_CASE(guc->submission_stall_reason); |
| } |
| } |
| |
| while ((rb = rb_first_cached(&sched_engine->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| struct i915_request *rq, *rn; |
| |
| priolist_for_each_request_consume(rq, rn, p) { |
| if (last && !can_merge_rq(rq, last)) |
| goto register_context; |
| |
| list_del_init(&rq->sched.link); |
| |
| __i915_request_submit(rq); |
| |
| trace_i915_request_in(rq, 0); |
| last = rq; |
| |
| if (is_multi_lrc_rq(rq)) { |
| /* |
| * We need to coalesce all multi-lrc requests in |
| * a relationship into a single H2G. We are |
| * guaranteed that all of these requests will be |
| * submitted sequentially. |
| */ |
| if (multi_lrc_submit(rq)) { |
| submit = true; |
| goto register_context; |
| } |
| } else { |
| submit = true; |
| } |
| } |
| |
| rb_erase_cached(&p->node, &sched_engine->queue); |
| i915_priolist_free(p); |
| } |
| |
| register_context: |
| if (submit) { |
| struct intel_context *ce = request_to_scheduling_context(last); |
| |
| if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && |
| intel_context_is_schedulable(ce))) { |
| ret = try_context_registration(ce, false); |
| if (unlikely(ret == -EPIPE)) { |
| goto deadlk; |
| } else if (ret == -EBUSY) { |
| guc->stalled_request = last; |
| guc->submission_stall_reason = |
| STALL_REGISTER_CONTEXT; |
| goto schedule_tasklet; |
| } else if (ret != 0) { |
| GEM_WARN_ON(ret); /* Unexpected */ |
| goto deadlk; |
| } |
| } |
| |
| move_lrc_tail: |
| if (is_multi_lrc_rq(last)) { |
| ret = guc_wq_item_append(guc, last); |
| if (ret == -EBUSY) { |
| goto schedule_tasklet; |
| } else if (ret != 0) { |
| GEM_WARN_ON(ret); /* Unexpected */ |
| goto deadlk; |
| } |
| } else { |
| guc_set_lrc_tail(last); |
| } |
| |
| add_request: |
| ret = guc_add_request(guc, last); |
| if (unlikely(ret == -EPIPE)) { |
| goto deadlk; |
| } else if (ret == -EBUSY) { |
| goto schedule_tasklet; |
| } else if (ret != 0) { |
| GEM_WARN_ON(ret); /* Unexpected */ |
| goto deadlk; |
| } |
| } |
| |
| guc->stalled_request = NULL; |
| guc->submission_stall_reason = STALL_NONE; |
| return submit; |
| |
| deadlk: |
| sched_engine->tasklet.callback = NULL; |
| tasklet_disable_nosync(&sched_engine->tasklet); |
| return false; |
| |
| schedule_tasklet: |
| tasklet_schedule(&sched_engine->tasklet); |
| return false; |
| } |
| |
| static void guc_submission_tasklet(struct tasklet_struct *t) |
| { |
| struct i915_sched_engine *sched_engine = |
| from_tasklet(sched_engine, t, tasklet); |
| unsigned long flags; |
| bool loop; |
| |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| |
| do { |
| loop = guc_dequeue_one_context(sched_engine->private_data); |
| } while (loop); |
| |
| i915_sched_engine_reset_on_empty(sched_engine); |
| |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) |
| { |
| if (iir & GT_RENDER_USER_INTERRUPT) |
| intel_engine_signal_breadcrumbs(engine); |
| } |
| |
| static void __guc_context_destroy(struct intel_context *ce); |
| static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); |
| static void guc_signal_context_fence(struct intel_context *ce); |
| static void guc_cancel_context_requests(struct intel_context *ce); |
| static void guc_blocked_fence_complete(struct intel_context *ce); |
| |
| static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) |
| { |
| struct intel_context *ce; |
| unsigned long index, flags; |
| bool pending_disable, pending_enable, deregister, destroyed, banned; |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| /* |
| * Corner case where the ref count on the object is zero but and |
| * deregister G2H was lost. In this case we don't touch the ref |
| * count and finish the destroy of the context. |
| */ |
| bool do_put = kref_get_unless_zero(&ce->ref); |
| |
| xa_unlock(&guc->context_lookup); |
| |
| if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && |
| (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { |
| /* successful cancel so jump straight to close it */ |
| intel_context_sched_disable_unpin(ce); |
| } |
| |
| spin_lock(&ce->guc_state.lock); |
| |
| /* |
| * Once we are at this point submission_disabled() is guaranteed |
| * to be visible to all callers who set the below flags (see above |
| * flush and flushes in reset_prepare). If submission_disabled() |
| * is set, the caller shouldn't set these flags. |
| */ |
| |
| destroyed = context_destroyed(ce); |
| pending_enable = context_pending_enable(ce); |
| pending_disable = context_pending_disable(ce); |
| deregister = context_wait_for_deregister_to_register(ce); |
| banned = context_banned(ce); |
| init_sched_state(ce); |
| |
| spin_unlock(&ce->guc_state.lock); |
| |
| if (pending_enable || destroyed || deregister) { |
| decr_outstanding_submission_g2h(guc); |
| if (deregister) |
| guc_signal_context_fence(ce); |
| if (destroyed) { |
| intel_gt_pm_put_async_untracked(guc_to_gt(guc)); |
| release_guc_id(guc, ce); |
| __guc_context_destroy(ce); |
| } |
| if (pending_enable || deregister) |
| intel_context_put(ce); |
| } |
| |
| /* Not mutualy exclusive with above if statement. */ |
| if (pending_disable) { |
| guc_signal_context_fence(ce); |
| if (banned) { |
| guc_cancel_context_requests(ce); |
| intel_engine_signal_breadcrumbs(ce->engine); |
| } |
| intel_context_sched_disable_unpin(ce); |
| decr_outstanding_submission_g2h(guc); |
| |
| spin_lock(&ce->guc_state.lock); |
| guc_blocked_fence_complete(ce); |
| spin_unlock(&ce->guc_state.lock); |
| |
| intel_context_put(ce); |
| } |
| |
| if (do_put) |
| intel_context_put(ce); |
| xa_lock(&guc->context_lookup); |
| } |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| /* |
| * GuC stores busyness stats for each engine at context in/out boundaries. A |
| * context 'in' logs execution start time, 'out' adds in -> out delta to total. |
| * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with |
| * GuC. |
| * |
| * __i915_pmu_event_read samples engine busyness. When sampling, if context id |
| * is valid (!= ~0) and start is non-zero, the engine is considered to be |
| * active. For an active engine total busyness = total + (now - start), where |
| * 'now' is the time at which the busyness is sampled. For inactive engine, |
| * total busyness = total. |
| * |
| * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. |
| * |
| * The start and total values provided by GuC are 32 bits and wrap around in a |
| * few minutes. Since perf pmu provides busyness as 64 bit monotonically |
| * increasing ns values, there is a need for this implementation to account for |
| * overflows and extend the GuC provided values to 64 bits before returning |
| * busyness to the user. In order to do that, a worker runs periodically at |
| * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in |
| * 27 seconds for a gt clock frequency of 19.2 MHz). |
| */ |
| |
| #define WRAP_TIME_CLKS U32_MAX |
| #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) |
| |
| static void |
| __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) |
| { |
| u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); |
| u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); |
| |
| if (new_start == lower_32_bits(*prev_start)) |
| return; |
| |
| /* |
| * When gt is unparked, we update the gt timestamp and start the ping |
| * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt |
| * is unparked, all switched in contexts will have a start time that is |
| * within +/- POLL_TIME_CLKS of the most recent gt_stamp. |
| * |
| * If neither gt_stamp nor new_start has rolled over, then the |
| * gt_stamp_hi does not need to be adjusted, however if one of them has |
| * rolled over, we need to adjust gt_stamp_hi accordingly. |
| * |
| * The below conditions address the cases of new_start rollover and |
| * gt_stamp_last rollover respectively. |
| */ |
| if (new_start < gt_stamp_last && |
| (new_start - gt_stamp_last) <= POLL_TIME_CLKS) |
| gt_stamp_hi++; |
| |
| if (new_start > gt_stamp_last && |
| (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) |
| gt_stamp_hi--; |
| |
| *prev_start = ((u64)gt_stamp_hi << 32) | new_start; |
| } |
| |
| #define record_read(map_, field_) \ |
| iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) |
| |
| /* |
| * GuC updates shared memory and KMD reads it. Since this is not synchronized, |
| * we run into a race where the value read is inconsistent. Sometimes the |
| * inconsistency is in reading the upper MSB bytes of the last_in value when |
| * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper |
| * 24 bits are zero. Since these are non-zero values, it is non-trivial to |
| * determine validity of these values. Instead we read the values multiple times |
| * until they are consistent. In test runs, 3 attempts results in consistent |
| * values. The upper bound is set to 6 attempts and may need to be tuned as per |
| * any new occurences. |
| */ |
| static void __get_engine_usage_record(struct intel_engine_cs *engine, |
| u32 *last_in, u32 *id, u32 *total) |
| { |
| struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); |
| int i = 0; |
| |
| do { |
| *last_in = record_read(&rec_map, last_switch_in_stamp); |
| *id = record_read(&rec_map, current_context_index); |
| *total = record_read(&rec_map, total_runtime); |
| |
| if (record_read(&rec_map, last_switch_in_stamp) == *last_in && |
| record_read(&rec_map, current_context_index) == *id && |
| record_read(&rec_map, total_runtime) == *total) |
| break; |
| } while (++i < 6); |
| } |
| |
| static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_guc_stats *stats = &engine->stats.guc; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| u32 last_switch, ctx_id, total; |
| |
| lockdep_assert_held(&guc->timestamp.lock); |
| |
| __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); |
| |
| stats->running = ctx_id != ~0U && last_switch; |
| if (stats->running) |
| __extend_last_switch(guc, &stats->start_gt_clk, last_switch); |
| |
| /* |
| * Instead of adjusting the total for overflow, just add the |
| * difference from previous sample stats->total_gt_clks |
| */ |
| if (total && total != ~0U) { |
| stats->total_gt_clks += (u32)(total - stats->prev_total); |
| stats->prev_total = total; |
| } |
| } |
| |
| static u32 gpm_timestamp_shift(struct intel_gt *gt) |
| { |
| intel_wakeref_t wakeref; |
| u32 reg, shift; |
| |
| with_intel_runtime_pm(gt->uncore->rpm, wakeref) |
| reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); |
| |
| shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> |
| GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; |
| |
| return 3 - shift; |
| } |
| |
| static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| u32 gt_stamp_lo, gt_stamp_hi; |
| u64 gpm_ts; |
| |
| lockdep_assert_held(&guc->timestamp.lock); |
| |
| gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); |
| gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, |
| MISC_STATUS1) >> guc->timestamp.shift; |
| gt_stamp_lo = lower_32_bits(gpm_ts); |
| *now = ktime_get(); |
| |
| if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) |
| gt_stamp_hi++; |
| |
| guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; |
| } |
| |
| /* |
| * Unlike the execlist mode of submission total and active times are in terms of |
| * gt clocks. The *now parameter is retained to return the cpu time at which the |
| * busyness was sampled. |
| */ |
| static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) |
| { |
| struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; |
| struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; |
| struct intel_gt *gt = engine->gt; |
| struct intel_guc *guc = gt_to_guc(gt); |
| u64 total, gt_stamp_saved; |
| unsigned long flags; |
| u32 reset_count; |
| bool in_reset; |
| intel_wakeref_t wakeref; |
| |
| spin_lock_irqsave(&guc->timestamp.lock, flags); |
| |
| /* |
| * If a reset happened, we risk reading partially updated engine |
| * busyness from GuC, so we just use the driver stored copy of busyness. |
| * Synchronize with gt reset using reset_count and the |
| * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count |
| * after I915_RESET_BACKOFF flag, so ensure that the reset_count is |
| * usable by checking the flag afterwards. |
| */ |
| reset_count = i915_reset_count(gpu_error); |
| in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); |
| |
| *now = ktime_get(); |
| |
| /* |
| * The active busyness depends on start_gt_clk and gt_stamp. |
| * gt_stamp is updated by i915 only when gt is awake and the |
| * start_gt_clk is derived from GuC state. To get a consistent |
| * view of activity, we query the GuC state only if gt is awake. |
| */ |
| wakeref = in_reset ? 0 : intel_gt_pm_get_if_awake(gt); |
| if (wakeref) { |
| stats_saved = *stats; |
| gt_stamp_saved = guc->timestamp.gt_stamp; |
| /* |
| * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - |
| * start_gt_clk' calculation below for active engines. |
| */ |
| guc_update_engine_gt_clks(engine); |
| guc_update_pm_timestamp(guc, now); |
| intel_gt_pm_put_async(gt, wakeref); |
| if (i915_reset_count(gpu_error) != reset_count) { |
| *stats = stats_saved; |
| guc->timestamp.gt_stamp = gt_stamp_saved; |
| } |
| } |
| |
| total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); |
| if (stats->running) { |
| u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; |
| |
| total += intel_gt_clock_interval_to_ns(gt, clk); |
| } |
| |
| spin_unlock_irqrestore(&guc->timestamp.lock, flags); |
| |
| return ns_to_ktime(total); |
| } |
| |
| static void guc_enable_busyness_worker(struct intel_guc *guc) |
| { |
| mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); |
| } |
| |
| static void guc_cancel_busyness_worker(struct intel_guc *guc) |
| { |
| /* |
| * There are many different call stacks that can get here. Some of them |
| * hold the reset mutex. The busyness worker also attempts to acquire the |
| * reset mutex. Synchronously flushing a worker thread requires acquiring |
| * the worker mutex. Lockdep sees this as a conflict. It thinks that the |
| * flush can deadlock because it holds the worker mutex while waiting for |
| * the reset mutex, but another thread is holding the reset mutex and might |
| * attempt to use other worker functions. |
| * |
| * In practice, this scenario does not exist because the busyness worker |
| * does not block waiting for the reset mutex. It does a try-lock on it and |
| * immediately exits if the lock is already held. Unfortunately, the mutex |
| * in question (I915_RESET_BACKOFF) is an i915 implementation which has lockdep |
| * annotation but not to the extent of explaining the 'might lock' is also a |
| * 'does not need to lock'. So one option would be to add more complex lockdep |
| * annotations to ignore the issue (if at all possible). A simpler option is to |
| * just not flush synchronously when a rest in progress. Given that the worker |
| * will just early exit and re-schedule itself anyway, there is no advantage |
| * to running it immediately. |
| * |
| * If a reset is not in progress, then the synchronous flush may be required. |
| * As noted many call stacks lead here, some during suspend and driver unload |
| * which do require a synchronous flush to make sure the worker is stopped |
| * before memory is freed. |
| * |
| * Trying to pass a 'need_sync' or 'in_reset' flag all the way down through |
| * every possible call stack is unfeasible. It would be too intrusive to many |
| * areas that really don't care about the GuC backend. However, there is the |
| * I915_RESET_BACKOFF flag and the gt->reset.mutex can be tested for is_locked. |
| * So just use those. Note that testing both is required due to the hideously |
| * complex nature of the i915 driver's reset code paths. |
| * |
| * And note that in the case of a reset occurring during driver unload |
| * (wedged_on_fini), skipping the cancel in reset_prepare/reset_fini (when the |
| * reset flag/mutex are set) is fine because there is another explicit cancel in |
| * intel_guc_submission_fini (when the reset flag/mutex are not). |
| */ |
| if (mutex_is_locked(&guc_to_gt(guc)->reset.mutex) || |
| test_bit(I915_RESET_BACKOFF, &guc_to_gt(guc)->reset.flags)) |
| cancel_delayed_work(&guc->timestamp.work); |
| else |
| cancel_delayed_work_sync(&guc->timestamp.work); |
| } |
| |
| static void __reset_guc_busyness_stats(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| unsigned long flags; |
| ktime_t unused; |
| |
| spin_lock_irqsave(&guc->timestamp.lock, flags); |
| |
| guc_update_pm_timestamp(guc, &unused); |
| for_each_engine(engine, gt, id) { |
| guc_update_engine_gt_clks(engine); |
| engine->stats.guc.prev_total = 0; |
| } |
| |
| spin_unlock_irqrestore(&guc->timestamp.lock, flags); |
| } |
| |
| static void __update_guc_busyness_stats(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| unsigned long flags; |
| ktime_t unused; |
| |
| guc->timestamp.last_stat_jiffies = jiffies; |
| |
| spin_lock_irqsave(&guc->timestamp.lock, flags); |
| |
| guc_update_pm_timestamp(guc, &unused); |
| for_each_engine(engine, gt, id) |
| guc_update_engine_gt_clks(engine); |
| |
| spin_unlock_irqrestore(&guc->timestamp.lock, flags); |
| } |
| |
| static void __guc_context_update_stats(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&guc->timestamp.lock, flags); |
| lrc_update_runtime(ce); |
| spin_unlock_irqrestore(&guc->timestamp.lock, flags); |
| } |
| |
| static void guc_context_update_stats(struct intel_context *ce) |
| { |
| if (!intel_context_pin_if_active(ce)) |
| return; |
| |
| __guc_context_update_stats(ce); |
| intel_context_unpin(ce); |
| } |
| |
| static void guc_timestamp_ping(struct work_struct *wrk) |
| { |
| struct intel_guc *guc = container_of(wrk, typeof(*guc), |
| timestamp.work.work); |
| struct intel_uc *uc = container_of(guc, typeof(*uc), guc); |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_context *ce; |
| intel_wakeref_t wakeref; |
| unsigned long index; |
| int srcu, ret; |
| |
| /* |
| * Ideally the busyness worker should take a gt pm wakeref because the |
| * worker only needs to be active while gt is awake. However, the |
| * gt_park path cancels the worker synchronously and this complicates |
| * the flow if the worker is also running at the same time. The cancel |
| * waits for the worker and when the worker releases the wakeref, that |
| * would call gt_park and would lead to a deadlock. |
| * |
| * The resolution is to take the global pm wakeref if runtime pm is |
| * already active. If not, we don't need to update the busyness stats as |
| * the stats would already be updated when the gt was parked. |
| * |
| * Note: |
| * - We do not requeue the worker if we cannot take a reference to runtime |
| * pm since intel_guc_busyness_unpark would requeue the worker in the |
| * resume path. |
| * |
| * - If the gt was parked longer than time taken for GT timestamp to roll |
| * over, we ignore those rollovers since we don't care about tracking |
| * the exact GT time. We only care about roll overs when the gt is |
| * active and running workloads. |
| * |
| * - There is a window of time between gt_park and runtime suspend, |
| * where the worker may run. This is acceptable since the worker will |
| * not find any new data to update busyness. |
| */ |
| wakeref = intel_runtime_pm_get_if_active(>->i915->runtime_pm); |
| if (!wakeref) |
| return; |
| |
| /* |
| * Synchronize with gt reset to make sure the worker does not |
| * corrupt the engine/guc stats. NB: can't actually block waiting |
| * for a reset to complete as the reset requires flushing out |
| * this worker thread if started. So waiting would deadlock. |
| */ |
| ret = intel_gt_reset_trylock(gt, &srcu); |
| if (ret) |
| goto err_trylock; |
| |
| __update_guc_busyness_stats(guc); |
| |
| /* adjust context stats for overflow */ |
| xa_for_each(&guc->context_lookup, index, ce) |
| guc_context_update_stats(ce); |
| |
| intel_gt_reset_unlock(gt, srcu); |
| |
| guc_enable_busyness_worker(guc); |
| |
| err_trylock: |
| intel_runtime_pm_put(>->i915->runtime_pm, wakeref); |
| } |
| |
| static int guc_action_enable_usage_stats(struct intel_guc *guc) |
| { |
| u32 offset = intel_guc_engine_usage_offset(guc); |
| u32 action[] = { |
| INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, |
| offset, |
| 0, |
| }; |
| |
| return intel_guc_send(guc, action, ARRAY_SIZE(action)); |
| } |
| |
| static int guc_init_engine_stats(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| intel_wakeref_t wakeref; |
| int ret; |
| |
| with_intel_runtime_pm(>->i915->runtime_pm, wakeref) |
| ret = guc_action_enable_usage_stats(guc); |
| |
| if (ret) |
| guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); |
| else |
| guc_enable_busyness_worker(guc); |
| |
| return ret; |
| } |
| |
| static void guc_fini_engine_stats(struct intel_guc *guc) |
| { |
| guc_cancel_busyness_worker(guc); |
| } |
| |
| void intel_guc_busyness_park(struct intel_gt *gt) |
| { |
| struct intel_guc *guc = gt_to_guc(gt); |
| |
| if (!guc_submission_initialized(guc)) |
| return; |
| |
| /* |
| * There is a race with suspend flow where the worker runs after suspend |
| * and causes an unclaimed register access warning. Cancel the worker |
| * synchronously here. |
| */ |
| guc_cancel_busyness_worker(guc); |
| |
| /* |
| * Before parking, we should sample engine busyness stats if we need to. |
| * We can skip it if we are less than half a ping from the last time we |
| * sampled the busyness stats. |
| */ |
| if (guc->timestamp.last_stat_jiffies && |
| !time_after(jiffies, guc->timestamp.last_stat_jiffies + |
| (guc->timestamp.ping_delay / 2))) |
| return; |
| |
| __update_guc_busyness_stats(guc); |
| } |
| |
| void intel_guc_busyness_unpark(struct intel_gt *gt) |
| { |
| struct intel_guc *guc = gt_to_guc(gt); |
| unsigned long flags; |
| ktime_t unused; |
| |
| if (!guc_submission_initialized(guc)) |
| return; |
| |
| spin_lock_irqsave(&guc->timestamp.lock, flags); |
| guc_update_pm_timestamp(guc, &unused); |
| spin_unlock_irqrestore(&guc->timestamp.lock, flags); |
| guc_enable_busyness_worker(guc); |
| } |
| |
| static inline bool |
| submission_disabled(struct intel_guc *guc) |
| { |
| struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| |
| return unlikely(!sched_engine || |
| !__tasklet_is_enabled(&sched_engine->tasklet) || |
| intel_gt_is_wedged(guc_to_gt(guc))); |
| } |
| |
| static void disable_submission(struct intel_guc *guc) |
| { |
| struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| |
| if (__tasklet_is_enabled(&sched_engine->tasklet)) { |
| GEM_BUG_ON(!guc->ct.enabled); |
| __tasklet_disable_sync_once(&sched_engine->tasklet); |
| sched_engine->tasklet.callback = NULL; |
| } |
| } |
| |
| static void enable_submission(struct intel_guc *guc) |
| { |
| struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&guc->sched_engine->lock, flags); |
| sched_engine->tasklet.callback = guc_submission_tasklet; |
| wmb(); /* Make sure callback visible */ |
| if (!__tasklet_is_enabled(&sched_engine->tasklet) && |
| __tasklet_enable(&sched_engine->tasklet)) { |
| GEM_BUG_ON(!guc->ct.enabled); |
| |
| /* And kick in case we missed a new request submission. */ |
| tasklet_hi_schedule(&sched_engine->tasklet); |
| } |
| spin_unlock_irqrestore(&guc->sched_engine->lock, flags); |
| } |
| |
| static void guc_flush_submissions(struct intel_guc *guc) |
| { |
| struct i915_sched_engine * const sched_engine = guc->sched_engine; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| void intel_guc_submission_flush_work(struct intel_guc *guc) |
| { |
| flush_work(&guc->submission_state.destroyed_worker); |
| } |
| |
| static void guc_flush_destroyed_contexts(struct intel_guc *guc); |
| |
| void intel_guc_submission_reset_prepare(struct intel_guc *guc) |
| { |
| if (unlikely(!guc_submission_initialized(guc))) { |
| /* Reset called during driver load? GuC not yet initialised! */ |
| return; |
| } |
| |
| intel_gt_park_heartbeats(guc_to_gt(guc)); |
| disable_submission(guc); |
| guc->interrupts.disable(guc); |
| __reset_guc_busyness_stats(guc); |
| |
| /* Flush IRQ handler */ |
| spin_lock_irq(guc_to_gt(guc)->irq_lock); |
| spin_unlock_irq(guc_to_gt(guc)->irq_lock); |
| |
| guc_flush_submissions(guc); |
| guc_flush_destroyed_contexts(guc); |
| flush_work(&guc->ct.requests.worker); |
| |
| scrub_guc_desc_for_outstanding_g2h(guc); |
| } |
| |
| static struct intel_engine_cs * |
| guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) |
| { |
| struct intel_engine_cs *engine; |
| intel_engine_mask_t tmp, mask = ve->mask; |
| unsigned int num_siblings = 0; |
| |
| for_each_engine_masked(engine, ve->gt, mask, tmp) |
| if (num_siblings++ == sibling) |
| return engine; |
| |
| return NULL; |
| } |
| |
| static inline struct intel_engine_cs * |
| __context_to_physical_engine(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| |
| if (intel_engine_is_virtual(engine)) |
| engine = guc_virtual_get_sibling(engine, 0); |
| |
| return engine; |
| } |
| |
| static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) |
| { |
| struct intel_engine_cs *engine = __context_to_physical_engine(ce); |
| |
| if (!intel_context_is_schedulable(ce)) |
| return; |
| |
| GEM_BUG_ON(!intel_context_is_pinned(ce)); |
| |
| /* |
| * We want a simple context + ring to execute the breadcrumb update. |
| * We cannot rely on the context being intact across the GPU hang, |
| * so clear it and rebuild just what we need for the breadcrumb. |
| * All pending requests for this context will be zapped, and any |
| * future request will be after userspace has had the opportunity |
| * to recreate its own state. |
| */ |
| if (scrub) |
| lrc_init_regs(ce, engine, true); |
| |
| /* Rerun the request; its payload has been neutered (if guilty). */ |
| lrc_update_regs(ce, engine, head); |
| } |
| |
| static void guc_engine_reset_prepare(struct intel_engine_cs *engine) |
| { |
| /* |
| * Wa_22011802037: In addition to stopping the cs, we need |
| * to wait for any pending mi force wakeups |
| */ |
| if (intel_engine_reset_needs_wa_22011802037(engine->gt)) { |
| intel_engine_stop_cs(engine); |
| intel_engine_wait_for_pending_mi_fw(engine); |
| } |
| } |
| |
| static void guc_reset_nop(struct intel_engine_cs *engine) |
| { |
| } |
| |
| static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) |
| { |
| } |
| |
| static void |
| __unwind_incomplete_requests(struct intel_context *ce) |
| { |
| struct i915_request *rq, *rn; |
| struct list_head *pl; |
| int prio = I915_PRIORITY_INVALID; |
| struct i915_sched_engine * const sched_engine = |
| ce->engine->sched_engine; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| spin_lock(&ce->guc_state.lock); |
| list_for_each_entry_safe_reverse(rq, rn, |
| &ce->guc_state.requests, |
| sched.link) { |
| if (i915_request_completed(rq)) |
| continue; |
| |
| list_del_init(&rq->sched.link); |
| __i915_request_unsubmit(rq); |
| |
| /* Push the request back into the queue for later resubmission. */ |
| GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); |
| if (rq_prio(rq) != prio) { |
| prio = rq_prio(rq); |
| pl = i915_sched_lookup_priolist(sched_engine, prio); |
| } |
| GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); |
| |
| list_add(&rq->sched.link, pl); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| } |
| spin_unlock(&ce->guc_state.lock); |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) |
| { |
| bool guilty; |
| struct i915_request *rq; |
| unsigned long flags; |
| u32 head; |
| int i, number_children = ce->parallel.number_children; |
| struct intel_context *parent = ce; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| intel_context_get(ce); |
| |
| /* |
| * GuC will implicitly mark the context as non-schedulable when it sends |
| * the reset notification. Make sure our state reflects this change. The |
| * context will be marked enabled on resubmission. |
| */ |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| clr_context_enabled(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| /* |
| * For each context in the relationship find the hanging request |
| * resetting each context / request as needed |
| */ |
| for (i = 0; i < number_children + 1; ++i) { |
| if (!intel_context_is_pinned(ce)) |
| goto next_context; |
| |
| guilty = false; |
| rq = intel_context_get_active_request(ce); |
| if (!rq) { |
| head = ce->ring->tail; |
| goto out_replay; |
| } |
| |
| if (i915_request_started(rq)) |
| guilty = stalled & ce->engine->mask; |
| |
| GEM_BUG_ON(i915_active_is_idle(&ce->active)); |
| head = intel_ring_wrap(ce->ring, rq->head); |
| |
| __i915_request_reset(rq, guilty); |
| i915_request_put(rq); |
| out_replay: |
| guc_reset_state(ce, head, guilty); |
| next_context: |
| if (i != number_children) |
| ce = list_next_entry(ce, parallel.child_link); |
| } |
| |
| __unwind_incomplete_requests(parent); |
| intel_context_put(parent); |
| } |
| |
| void wake_up_all_tlb_invalidate(struct intel_guc *guc) |
| { |
| struct intel_guc_tlb_wait *wait; |
| unsigned long i; |
| |
| if (!intel_guc_tlb_invalidation_is_available(guc)) |
| return; |
| |
| xa_lock_irq(&guc->tlb_lookup); |
| xa_for_each(&guc->tlb_lookup, i, wait) |
| wake_up(&wait->wq); |
| xa_unlock_irq(&guc->tlb_lookup); |
| } |
| |
| void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) |
| { |
| struct intel_context *ce; |
| unsigned long index; |
| unsigned long flags; |
| |
| if (unlikely(!guc_submission_initialized(guc))) { |
| /* Reset called during driver load? GuC not yet initialised! */ |
| return; |
| } |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| if (!kref_get_unless_zero(&ce->ref)) |
| continue; |
| |
| xa_unlock(&guc->context_lookup); |
| |
| if (intel_context_is_pinned(ce) && |
| !intel_context_is_child(ce)) |
| __guc_reset_context(ce, stalled); |
| |
| intel_context_put(ce); |
| |
| xa_lock(&guc->context_lookup); |
| } |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| |
| /* GuC is blown away, drop all references to contexts */ |
| xa_destroy(&guc->context_lookup); |
| } |
| |
| static void guc_cancel_context_requests(struct intel_context *ce) |
| { |
| struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; |
| struct i915_request *rq; |
| unsigned long flags; |
| |
| /* Mark all executing requests as skipped. */ |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| spin_lock(&ce->guc_state.lock); |
| list_for_each_entry(rq, &ce->guc_state.requests, sched.link) |
| i915_request_put(i915_request_mark_eio(rq)); |
| spin_unlock(&ce->guc_state.lock); |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| static void |
| guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) |
| { |
| struct i915_request *rq, *rn; |
| struct rb_node *rb; |
| unsigned long flags; |
| |
| /* Can be called during boot if GuC fails to load */ |
| if (!sched_engine) |
| return; |
| |
| /* |
| * Before we call engine->cancel_requests(), we should have exclusive |
| * access to the submission state. This is arranged for us by the |
| * caller disabling the interrupt generation, the tasklet and other |
| * threads that may then access the same state, giving us a free hand |
| * to reset state. However, we still need to let lockdep be aware that |
| * we know this state may be accessed in hardirq context, so we |
| * disable the irq around this manipulation and we want to keep |
| * the spinlock focused on its duties and not accidentally conflate |
| * coverage to the submission's irq state. (Similarly, although we |
| * shouldn't need to disable irq around the manipulation of the |
| * submission's irq state, we also wish to remind ourselves that |
| * it is irq state.) |
| */ |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| |
| /* Flush the queued requests to the timeline list (for retiring). */ |
| while ((rb = rb_first_cached(&sched_engine->queue))) { |
| struct i915_priolist *p = to_priolist(rb); |
| |
| priolist_for_each_request_consume(rq, rn, p) { |
| list_del_init(&rq->sched.link); |
| |
| __i915_request_submit(rq); |
| |
| i915_request_put(i915_request_mark_eio(rq)); |
| } |
| |
| rb_erase_cached(&p->node, &sched_engine->queue); |
| i915_priolist_free(p); |
| } |
| |
| /* Remaining _unready_ requests will be nop'ed when submitted */ |
| |
| sched_engine->queue_priority_hint = INT_MIN; |
| sched_engine->queue = RB_ROOT_CACHED; |
| |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| void intel_guc_submission_cancel_requests(struct intel_guc *guc) |
| { |
| struct intel_context *ce; |
| unsigned long index; |
| unsigned long flags; |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| if (!kref_get_unless_zero(&ce->ref)) |
| continue; |
| |
| xa_unlock(&guc->context_lookup); |
| |
| if (intel_context_is_pinned(ce) && |
| !intel_context_is_child(ce)) |
| guc_cancel_context_requests(ce); |
| |
| intel_context_put(ce); |
| |
| xa_lock(&guc->context_lookup); |
| } |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| |
| guc_cancel_sched_engine_requests(guc->sched_engine); |
| |
| /* GuC is blown away, drop all references to contexts */ |
| xa_destroy(&guc->context_lookup); |
| |
| /* |
| * Wedged GT won't respond to any TLB invalidation request. Simply |
| * release all the blocked waiters. |
| */ |
| wake_up_all_tlb_invalidate(guc); |
| } |
| |
| void intel_guc_submission_reset_finish(struct intel_guc *guc) |
| { |
| /* Reset called during driver load or during wedge? */ |
| if (unlikely(!guc_submission_initialized(guc) || |
| !intel_guc_is_fw_running(guc) || |
| intel_gt_is_wedged(guc_to_gt(guc)))) { |
| return; |
| } |
| |
| /* |
| * Technically possible for either of these values to be non-zero here, |
| * but very unlikely + harmless. Regardless let's add an error so we can |
| * see in CI if this happens frequently / a precursor to taking down the |
| * machine. |
| */ |
| if (atomic_read(&guc->outstanding_submission_g2h)) |
| guc_err(guc, "Unexpected outstanding GuC to Host in reset finish\n"); |
| atomic_set(&guc->outstanding_submission_g2h, 0); |
| |
| intel_guc_global_policies_update(guc); |
| enable_submission(guc); |
| intel_gt_unpark_heartbeats(guc_to_gt(guc)); |
| |
| /* |
| * The full GT reset will have cleared the TLB caches and flushed the |
| * G2H message queue; we can release all the blocked waiters. |
| */ |
| wake_up_all_tlb_invalidate(guc); |
| } |
| |
| static void destroyed_worker_func(struct work_struct *w); |
| static void reset_fail_worker_func(struct work_struct *w); |
| |
| bool intel_guc_tlb_invalidation_is_available(struct intel_guc *guc) |
| { |
| return HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915) && |
| intel_guc_is_ready(guc); |
| } |
| |
| static int init_tlb_lookup(struct intel_guc *guc) |
| { |
| struct intel_guc_tlb_wait *wait; |
| int err; |
| |
| if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) |
| return 0; |
| |
| xa_init_flags(&guc->tlb_lookup, XA_FLAGS_ALLOC); |
| |
| wait = kzalloc(sizeof(*wait), GFP_KERNEL); |
| if (!wait) |
| return -ENOMEM; |
| |
| init_waitqueue_head(&wait->wq); |
| |
| /* Preallocate a shared id for use under memory pressure. */ |
| err = xa_alloc_cyclic_irq(&guc->tlb_lookup, &guc->serial_slot, wait, |
| xa_limit_32b, &guc->next_seqno, GFP_KERNEL); |
| if (err < 0) { |
| kfree(wait); |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void fini_tlb_lookup(struct intel_guc *guc) |
| { |
| struct intel_guc_tlb_wait *wait; |
| |
| if (!HAS_GUC_TLB_INVALIDATION(guc_to_gt(guc)->i915)) |
| return; |
| |
| wait = xa_load(&guc->tlb_lookup, guc->serial_slot); |
| if (wait && wait->busy) |
| guc_err(guc, "Unexpected busy item in tlb_lookup on fini\n"); |
| kfree(wait); |
| |
| xa_destroy(&guc->tlb_lookup); |
| } |
| |
| /* |
| * Set up the memory resources to be shared with the GuC (via the GGTT) |
| * at firmware loading time. |
| */ |
| int intel_guc_submission_init(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| int ret; |
| |
| if (guc->submission_initialized) |
| return 0; |
| |
| if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { |
| ret = guc_lrc_desc_pool_create_v69(guc); |
| if (ret) |
| return ret; |
| } |
| |
| ret = init_tlb_lookup(guc); |
| if (ret) |
| goto destroy_pool; |
| |
| guc->submission_state.guc_ids_bitmap = |
| bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); |
| if (!guc->submission_state.guc_ids_bitmap) { |
| ret = -ENOMEM; |
| goto destroy_tlb; |
| } |
| |
| guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; |
| guc->timestamp.shift = gpm_timestamp_shift(gt); |
| guc->submission_initialized = true; |
| |
| return 0; |
| |
| destroy_tlb: |
| fini_tlb_lookup(guc); |
| destroy_pool: |
| guc_lrc_desc_pool_destroy_v69(guc); |
| return ret; |
| } |
| |
| void intel_guc_submission_fini(struct intel_guc *guc) |
| { |
| if (!guc->submission_initialized) |
| return; |
| |
| guc_fini_engine_stats(guc); |
| guc_flush_destroyed_contexts(guc); |
| guc_lrc_desc_pool_destroy_v69(guc); |
| i915_sched_engine_put(guc->sched_engine); |
| bitmap_free(guc->submission_state.guc_ids_bitmap); |
| fini_tlb_lookup(guc); |
| guc->submission_initialized = false; |
| } |
| |
| static inline void queue_request(struct i915_sched_engine *sched_engine, |
| struct i915_request *rq, |
| int prio) |
| { |
| GEM_BUG_ON(!list_empty(&rq->sched.link)); |
| list_add_tail(&rq->sched.link, |
| i915_sched_lookup_priolist(sched_engine, prio)); |
| set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| tasklet_hi_schedule(&sched_engine->tasklet); |
| } |
| |
| static int guc_bypass_tasklet_submit(struct intel_guc *guc, |
| struct i915_request *rq) |
| { |
| int ret = 0; |
| |
| __i915_request_submit(rq); |
| |
| trace_i915_request_in(rq, 0); |
| |
| if (is_multi_lrc_rq(rq)) { |
| if (multi_lrc_submit(rq)) { |
| ret = guc_wq_item_append(guc, rq); |
| if (!ret) |
| ret = guc_add_request(guc, rq); |
| } |
| } else { |
| guc_set_lrc_tail(rq); |
| ret = guc_add_request(guc, rq); |
| } |
| |
| if (unlikely(ret == -EPIPE)) |
| disable_submission(guc); |
| |
| return ret; |
| } |
| |
| static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) |
| { |
| struct i915_sched_engine *sched_engine = rq->engine->sched_engine; |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| |
| return submission_disabled(guc) || guc->stalled_request || |
| !i915_sched_engine_is_empty(sched_engine) || |
| !ctx_id_mapped(guc, ce->guc_id.id); |
| } |
| |
| static void guc_submit_request(struct i915_request *rq) |
| { |
| struct i915_sched_engine *sched_engine = rq->engine->sched_engine; |
| struct intel_guc *guc = gt_to_guc(rq->engine->gt); |
| unsigned long flags; |
| |
| /* Will be called from irq-context when using foreign fences. */ |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| |
| if (need_tasklet(guc, rq)) |
| queue_request(sched_engine, rq, rq_prio(rq)); |
| else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) |
| tasklet_hi_schedule(&sched_engine->tasklet); |
| |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| } |
| |
| static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| int ret; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| if (intel_context_is_parent(ce)) |
| ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, |
| NUMBER_MULTI_LRC_GUC_ID(guc), |
| order_base_2(ce->parallel.number_children |
| + 1)); |
| else |
| ret = ida_alloc_range(&guc->submission_state.guc_ids, |
| NUMBER_MULTI_LRC_GUC_ID(guc), |
| guc->submission_state.num_guc_ids - 1, |
| GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| if (!intel_context_is_parent(ce)) |
| ++guc->submission_state.guc_ids_in_use; |
| |
| ce->guc_id.id = ret; |
| return 0; |
| } |
| |
| static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| if (!context_guc_id_invalid(ce)) { |
| if (intel_context_is_parent(ce)) { |
| bitmap_release_region(guc->submission_state.guc_ids_bitmap, |
| ce->guc_id.id, |
| order_base_2(ce->parallel.number_children |
| + 1)); |
| } else { |
| --guc->submission_state.guc_ids_in_use; |
| ida_free(&guc->submission_state.guc_ids, |
| ce->guc_id.id); |
| } |
| clr_ctx_id_mapping(guc, ce->guc_id.id); |
| set_context_guc_id_invalid(ce); |
| } |
| if (!list_empty(&ce->guc_id.link)) |
| list_del_init(&ce->guc_id.link); |
| } |
| |
| static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| __release_guc_id(guc, ce); |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| } |
| |
| static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| struct intel_context *cn; |
| |
| lockdep_assert_held(&guc->submission_state.lock); |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| GEM_BUG_ON(intel_context_is_parent(ce)); |
| |
| if (!list_empty(&guc->submission_state.guc_id_list)) { |
| cn = list_first_entry(&guc->submission_state.guc_id_list, |
| struct intel_context, |
| guc_id.link); |
| |
| GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); |
| GEM_BUG_ON(context_guc_id_invalid(cn)); |
| GEM_BUG_ON(intel_context_is_child(cn)); |
| GEM_BUG_ON(intel_context_is_parent(cn)); |
| |
| list_del_init(&cn->guc_id.link); |
| ce->guc_id.id = cn->guc_id.id; |
| |
| spin_lock(&cn->guc_state.lock); |
| clr_context_registered(cn); |
| spin_unlock(&cn->guc_state.lock); |
| |
| set_context_guc_id_invalid(cn); |
| |
| #ifdef CONFIG_DRM_I915_SELFTEST |
| guc->number_guc_id_stolen++; |
| #endif |
| |
| return 0; |
| } else { |
| return -EAGAIN; |
| } |
| } |
| |
| static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| int ret; |
| |
| lockdep_assert_held(&guc->submission_state.lock); |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| ret = new_guc_id(guc, ce); |
| if (unlikely(ret < 0)) { |
| if (intel_context_is_parent(ce)) |
| return -ENOSPC; |
| |
| ret = steal_guc_id(guc, ce); |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (intel_context_is_parent(ce)) { |
| struct intel_context *child; |
| int i = 1; |
| |
| for_each_child(ce, child) |
| child->guc_id.id = ce->guc_id.id + i++; |
| } |
| |
| return 0; |
| } |
| |
| #define PIN_GUC_ID_TRIES 4 |
| static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| int ret = 0; |
| unsigned long flags, tries = PIN_GUC_ID_TRIES; |
| |
| GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); |
| |
| try_again: |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| |
| might_lock(&ce->guc_state.lock); |
| |
| if (context_guc_id_invalid(ce)) { |
| ret = assign_guc_id(guc, ce); |
| if (ret) |
| goto out_unlock; |
| ret = 1; /* Indidcates newly assigned guc_id */ |
| } |
| if (!list_empty(&ce->guc_id.link)) |
| list_del_init(&ce->guc_id.link); |
| atomic_inc(&ce->guc_id.ref); |
| |
| out_unlock: |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| |
| /* |
| * -EAGAIN indicates no guc_id are available, let's retire any |
| * outstanding requests to see if that frees up a guc_id. If the first |
| * retire didn't help, insert a sleep with the timeslice duration before |
| * attempting to retire more requests. Double the sleep period each |
| * subsequent pass before finally giving up. The sleep period has max of |
| * 100ms and minimum of 1ms. |
| */ |
| if (ret == -EAGAIN && --tries) { |
| if (PIN_GUC_ID_TRIES - tries > 1) { |
| unsigned int timeslice_shifted = |
| ce->engine->props.timeslice_duration_ms << |
| (PIN_GUC_ID_TRIES - tries - 2); |
| unsigned int max = min_t(unsigned int, 100, |
| timeslice_shifted); |
| |
| msleep(max_t(unsigned int, max, 1)); |
| } |
| intel_gt_retire_requests(guc_to_gt(guc)); |
| goto try_again; |
| } |
| |
| return ret; |
| } |
| |
| static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) |
| { |
| unsigned long flags; |
| |
| GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| if (unlikely(context_guc_id_invalid(ce) || |
| intel_context_is_parent(ce))) |
| return; |
| |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && |
| !atomic_read(&ce->guc_id.ref)) |
| list_add_tail(&ce->guc_id.link, |
| &guc->submission_state.guc_id_list); |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| } |
| |
| static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, |
| struct intel_context *ce, |
| u32 guc_id, |
| u32 offset, |
| bool loop) |
| { |
| struct intel_context *child; |
| u32 action[4 + MAX_ENGINE_INSTANCE]; |
| int len = 0; |
| |
| GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); |
| |
| action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; |
| action[len++] = guc_id; |
| action[len++] = ce->parallel.number_children + 1; |
| action[len++] = offset; |
| for_each_child(ce, child) { |
| offset += sizeof(struct guc_lrc_desc_v69); |
| action[len++] = offset; |
| } |
| |
| return guc_submission_send_busy_loop(guc, action, len, 0, loop); |
| } |
| |
| static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, |
| struct intel_context *ce, |
| struct guc_ctxt_registration_info *info, |
| bool loop) |
| { |
| struct intel_context *child; |
| u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; |
| int len = 0; |
| u32 next_id; |
| |
| GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); |
| |
| action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; |
| action[len++] = info->flags; |
| action[len++] = info->context_idx; |
| action[len++] = info->engine_class; |
| action[len++] = info->engine_submit_mask; |
| action[len++] = info->wq_desc_lo; |
| action[len++] = info->wq_desc_hi; |
| action[len++] = info->wq_base_lo; |
| action[len++] = info->wq_base_hi; |
| action[len++] = info->wq_size; |
| action[len++] = ce->parallel.number_children + 1; |
| action[len++] = info->hwlrca_lo; |
| action[len++] = info->hwlrca_hi; |
| |
| next_id = info->context_idx + 1; |
| for_each_child(ce, child) { |
| GEM_BUG_ON(next_id++ != child->guc_id.id); |
| |
| /* |
| * NB: GuC interface supports 64 bit LRCA even though i915/HW |
| * only supports 32 bit currently. |
| */ |
| action[len++] = lower_32_bits(child->lrc.lrca); |
| action[len++] = upper_32_bits(child->lrc.lrca); |
| } |
| |
| GEM_BUG_ON(len > ARRAY_SIZE(action)); |
| |
| return guc_submission_send_busy_loop(guc, action, len, 0, loop); |
| } |
| |
| static int __guc_action_register_context_v69(struct intel_guc *guc, |
| u32 guc_id, |
| u32 offset, |
| bool loop) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_REGISTER_CONTEXT, |
| guc_id, |
| offset, |
| }; |
| |
| return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 0, loop); |
| } |
| |
| static int __guc_action_register_context_v70(struct intel_guc *guc, |
| struct guc_ctxt_registration_info *info, |
| bool loop) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_REGISTER_CONTEXT, |
| info->flags, |
| info->context_idx, |
| info->engine_class, |
| info->engine_submit_mask, |
| info->wq_desc_lo, |
| info->wq_desc_hi, |
| info->wq_base_lo, |
| info->wq_base_hi, |
| info->wq_size, |
| info->hwlrca_lo, |
| info->hwlrca_hi, |
| }; |
| |
| return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| 0, loop); |
| } |
| |
| static void prepare_context_registration_info_v69(struct intel_context *ce); |
| static void prepare_context_registration_info_v70(struct intel_context *ce, |
| struct guc_ctxt_registration_info *info); |
| |
| static int |
| register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) |
| { |
| u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + |
| ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); |
| |
| prepare_context_registration_info_v69(ce); |
| |
| if (intel_context_is_parent(ce)) |
| return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, |
| offset, loop); |
| else |
| return __guc_action_register_context_v69(guc, ce->guc_id.id, |
| offset, loop); |
| } |
| |
| static int |
| register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) |
| { |
| struct guc_ctxt_registration_info info; |
| |
| prepare_context_registration_info_v70(ce, &info); |
| |
| if (intel_context_is_parent(ce)) |
| return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); |
| else |
| return __guc_action_register_context_v70(guc, &info, loop); |
| } |
| |
| static int register_context(struct intel_context *ce, bool loop) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| int ret; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| trace_intel_context_register(ce); |
| |
| if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) |
| ret = register_context_v70(guc, ce, loop); |
| else |
| ret = register_context_v69(guc, ce, loop); |
| |
| if (likely(!ret)) { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| set_context_registered(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) |
| guc_context_policy_init_v70(ce, loop); |
| } |
| |
| return ret; |
| } |
| |
| static int __guc_action_deregister_context(struct intel_guc *guc, |
| u32 guc_id) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_DEREGISTER_CONTEXT, |
| guc_id, |
| }; |
| |
| return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| G2H_LEN_DW_DEREGISTER_CONTEXT, |
| true); |
| } |
| |
| static int deregister_context(struct intel_context *ce, u32 guc_id) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| trace_intel_context_deregister(ce); |
| |
| return __guc_action_deregister_context(guc, guc_id); |
| } |
| |
| static inline void clear_children_join_go_memory(struct intel_context *ce) |
| { |
| struct parent_scratch *ps = __get_parent_scratch(ce); |
| int i; |
| |
| ps->go.semaphore = 0; |
| for (i = 0; i < ce->parallel.number_children + 1; ++i) |
| ps->join[i].semaphore = 0; |
| } |
| |
| static inline u32 get_children_go_value(struct intel_context *ce) |
| { |
| return __get_parent_scratch(ce)->go.semaphore; |
| } |
| |
| static inline u32 get_children_join_value(struct intel_context *ce, |
| u8 child_index) |
| { |
| return __get_parent_scratch(ce)->join[child_index].semaphore; |
| } |
| |
| struct context_policy { |
| u32 count; |
| struct guc_update_context_policy h2g; |
| }; |
| |
| static u32 __guc_context_policy_action_size(struct context_policy *policy) |
| { |
| size_t bytes = sizeof(policy->h2g.header) + |
| (sizeof(policy->h2g.klv[0]) * policy->count); |
| |
| return bytes / sizeof(u32); |
| } |
| |
| static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) |
| { |
| policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; |
| policy->h2g.header.ctx_id = guc_id; |
| policy->count = 0; |
| } |
| |
| #define MAKE_CONTEXT_POLICY_ADD(func, id) \ |
| static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ |
| { \ |
| GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ |
| policy->h2g.klv[policy->count].kl = \ |
| FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ |
| FIELD_PREP(GUC_KLV_0_LEN, 1); \ |
| policy->h2g.klv[policy->count].value = data; \ |
| policy->count++; \ |
| } |
| |
| MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) |
| MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) |
| MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) |
| MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) |
| MAKE_CONTEXT_POLICY_ADD(slpc_ctx_freq_req, SLPM_GT_FREQUENCY) |
| |
| #undef MAKE_CONTEXT_POLICY_ADD |
| |
| static int __guc_context_set_context_policies(struct intel_guc *guc, |
| struct context_policy *policy, |
| bool loop) |
| { |
| return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, |
| __guc_context_policy_action_size(policy), |
| 0, loop); |
| } |
| |
| static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| struct context_policy policy; |
| u32 execution_quantum; |
| u32 preemption_timeout; |
| u32 slpc_ctx_freq_req = 0; |
| unsigned long flags; |
| int ret; |
| |
| /* NB: For both of these, zero means disabled. */ |
| GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, |
| execution_quantum)); |
| GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, |
| preemption_timeout)); |
| execution_quantum = engine->props.timeslice_duration_ms * 1000; |
| preemption_timeout = engine->props.preempt_timeout_ms * 1000; |
| |
| if (ce->flags & BIT(CONTEXT_LOW_LATENCY)) |
| slpc_ctx_freq_req |= SLPC_CTX_FREQ_REQ_IS_COMPUTE; |
| |
| __guc_context_policy_start_klv(&policy, ce->guc_id.id); |
| |
| __guc_context_policy_add_priority(&policy, ce->guc_state.prio); |
| __guc_context_policy_add_execution_quantum(&policy, execution_quantum); |
| __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); |
| __guc_context_policy_add_slpc_ctx_freq_req(&policy, slpc_ctx_freq_req); |
| |
| if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) |
| __guc_context_policy_add_preempt_to_idle(&policy, 1); |
| |
| ret = __guc_context_set_context_policies(guc, &policy, loop); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| if (ret != 0) |
| set_context_policy_required(ce); |
| else |
| clr_context_policy_required(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| return ret; |
| } |
| |
| static void guc_context_policy_init_v69(struct intel_engine_cs *engine, |
| struct guc_lrc_desc_v69 *desc) |
| { |
| desc->policy_flags = 0; |
| |
| if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) |
| desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; |
| |
| /* NB: For both of these, zero means disabled. */ |
| GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, |
| desc->execution_quantum)); |
| GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, |
| desc->preemption_timeout)); |
| desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; |
| desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; |
| } |
| |
| static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) |
| { |
| /* |
| * this matches the mapping we do in map_i915_prio_to_guc_prio() |
| * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) |
| */ |
| switch (prio) { |
| default: |
| MISSING_CASE(prio); |
| fallthrough; |
| case GUC_CLIENT_PRIORITY_KMD_NORMAL: |
| return GEN12_CTX_PRIORITY_NORMAL; |
| case GUC_CLIENT_PRIORITY_NORMAL: |
| return GEN12_CTX_PRIORITY_LOW; |
| case GUC_CLIENT_PRIORITY_HIGH: |
| case GUC_CLIENT_PRIORITY_KMD_HIGH: |
| return GEN12_CTX_PRIORITY_HIGH; |
| } |
| } |
| |
| static void prepare_context_registration_info_v69(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| u32 ctx_id = ce->guc_id.id; |
| struct guc_lrc_desc_v69 *desc; |
| struct intel_context *child; |
| |
| GEM_BUG_ON(!engine->mask); |
| |
| /* |
| * Ensure LRC + CT vmas are is same region as write barrier is done |
| * based on CT vma region. |
| */ |
| GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != |
| i915_gem_object_is_lmem(ce->ring->vma->obj)); |
| |
| desc = __get_lrc_desc_v69(guc, ctx_id); |
| GEM_BUG_ON(!desc); |
| desc->engine_class = engine_class_to_guc_class(engine->class); |
| desc->engine_submit_mask = engine->logical_mask; |
| desc->hw_context_desc = ce->lrc.lrca; |
| desc->priority = ce->guc_state.prio; |
| desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| guc_context_policy_init_v69(engine, desc); |
| |
| /* |
| * If context is a parent, we need to register a process descriptor |
| * describing a work queue and register all child contexts. |
| */ |
| if (intel_context_is_parent(ce)) { |
| struct guc_process_desc_v69 *pdesc; |
| |
| ce->parallel.guc.wqi_tail = 0; |
| ce->parallel.guc.wqi_head = 0; |
| |
| desc->process_desc = i915_ggtt_offset(ce->state) + |
| __get_parent_scratch_offset(ce); |
| desc->wq_addr = i915_ggtt_offset(ce->state) + |
| __get_wq_offset(ce); |
| desc->wq_size = WQ_SIZE; |
| |
| pdesc = __get_process_desc_v69(ce); |
| memset(pdesc, 0, sizeof(*(pdesc))); |
| pdesc->stage_id = ce->guc_id.id; |
| pdesc->wq_base_addr = desc->wq_addr; |
| pdesc->wq_size_bytes = desc->wq_size; |
| pdesc->wq_status = WQ_STATUS_ACTIVE; |
| |
| ce->parallel.guc.wq_head = &pdesc->head; |
| ce->parallel.guc.wq_tail = &pdesc->tail; |
| ce->parallel.guc.wq_status = &pdesc->wq_status; |
| |
| for_each_child(ce, child) { |
| desc = __get_lrc_desc_v69(guc, child->guc_id.id); |
| |
| desc->engine_class = |
| engine_class_to_guc_class(engine->class); |
| desc->hw_context_desc = child->lrc.lrca; |
| desc->priority = ce->guc_state.prio; |
| desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| guc_context_policy_init_v69(engine, desc); |
| } |
| |
| clear_children_join_go_memory(ce); |
| } |
| } |
| |
| static void prepare_context_registration_info_v70(struct intel_context *ce, |
| struct guc_ctxt_registration_info *info) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| u32 ctx_id = ce->guc_id.id; |
| |
| GEM_BUG_ON(!engine->mask); |
| |
| /* |
| * Ensure LRC + CT vmas are is same region as write barrier is done |
| * based on CT vma region. |
| */ |
| GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != |
| i915_gem_object_is_lmem(ce->ring->vma->obj)); |
| |
| memset(info, 0, sizeof(*info)); |
| info->context_idx = ctx_id; |
| info->engine_class = engine_class_to_guc_class(engine->class); |
| info->engine_submit_mask = engine->logical_mask; |
| /* |
| * NB: GuC interface supports 64 bit LRCA even though i915/HW |
| * only supports 32 bit currently. |
| */ |
| info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); |
| info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); |
| if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) |
| info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); |
| info->flags = CONTEXT_REGISTRATION_FLAG_KMD; |
| |
| /* |
| * If context is a parent, we need to register a process descriptor |
| * describing a work queue and register all child contexts. |
| */ |
| if (intel_context_is_parent(ce)) { |
| struct guc_sched_wq_desc *wq_desc; |
| u64 wq_desc_offset, wq_base_offset; |
| |
| ce->parallel.guc.wqi_tail = 0; |
| ce->parallel.guc.wqi_head = 0; |
| |
| wq_desc_offset = (u64)i915_ggtt_offset(ce->state) + |
| __get_parent_scratch_offset(ce); |
| wq_base_offset = (u64)i915_ggtt_offset(ce->state) + |
| __get_wq_offset(ce); |
| info->wq_desc_lo = lower_32_bits(wq_desc_offset); |
| info->wq_desc_hi = upper_32_bits(wq_desc_offset); |
| info->wq_base_lo = lower_32_bits(wq_base_offset); |
| info->wq_base_hi = upper_32_bits(wq_base_offset); |
| info->wq_size = WQ_SIZE; |
| |
| wq_desc = __get_wq_desc_v70(ce); |
| memset(wq_desc, 0, sizeof(*wq_desc)); |
| wq_desc->wq_status = WQ_STATUS_ACTIVE; |
| |
| ce->parallel.guc.wq_head = &wq_desc->head; |
| ce->parallel.guc.wq_tail = &wq_desc->tail; |
| ce->parallel.guc.wq_status = &wq_desc->wq_status; |
| |
| clear_children_join_go_memory(ce); |
| } |
| } |
| |
| static int try_context_registration(struct intel_context *ce, bool loop) |
| { |
| struct intel_engine_cs *engine = ce->engine; |
| struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| intel_wakeref_t wakeref; |
| u32 ctx_id = ce->guc_id.id; |
| bool context_registered; |
| int ret = 0; |
| |
| GEM_BUG_ON(!sched_state_is_init(ce)); |
| |
| context_registered = ctx_id_mapped(guc, ctx_id); |
| |
| clr_ctx_id_mapping(guc, ctx_id); |
| set_ctx_id_mapping(guc, ctx_id, ce); |
| |
| /* |
| * The context_lookup xarray is used to determine if the hardware |
| * context is currently registered. There are two cases in which it |
| * could be registered either the guc_id has been stolen from another |
| * context or the lrc descriptor address of this context has changed. In |
| * either case the context needs to be deregistered with the GuC before |
| * registering this context. |
| */ |
| if (context_registered) { |
| bool disabled; |
| unsigned long flags; |
| |
| trace_intel_context_steal_guc_id(ce); |
| GEM_BUG_ON(!loop); |
| |
| /* Seal race with Reset */ |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| disabled = submission_disabled(guc); |
| if (likely(!disabled)) { |
| set_context_wait_for_deregister_to_register(ce); |
| intel_context_get(ce); |
| } |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| if (unlikely(disabled)) { |
| clr_ctx_id_mapping(guc, ctx_id); |
| return 0; /* Will get registered later */ |
| } |
| |
| /* |
| * If stealing the guc_id, this ce has the same guc_id as the |
| * context whose guc_id was stolen. |
| */ |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| ret = deregister_context(ce, ce->guc_id.id); |
| if (unlikely(ret == -ENODEV)) |
| ret = 0; /* Will get registered later */ |
| } else { |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| ret = register_context(ce, loop); |
| if (unlikely(ret == -EBUSY)) { |
| clr_ctx_id_mapping(guc, ctx_id); |
| } else if (unlikely(ret == -ENODEV)) { |
| clr_ctx_id_mapping(guc, ctx_id); |
| ret = 0; /* Will get registered later */ |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int __guc_context_pre_pin(struct intel_context *ce, |
| struct intel_engine_cs *engine, |
| struct i915_gem_ww_ctx *ww, |
| void **vaddr) |
| { |
| return lrc_pre_pin(ce, engine, ww, vaddr); |
| } |
| |
| static int __guc_context_pin(struct intel_context *ce, |
| struct intel_engine_cs *engine, |
| void *vaddr) |
| { |
| if (i915_ggtt_offset(ce->state) != |
| (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) |
| set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); |
| |
| /* |
| * GuC context gets pinned in guc_request_alloc. See that function for |
| * explaination of why. |
| */ |
| |
| return lrc_pin(ce, engine, vaddr); |
| } |
| |
| static int guc_context_pre_pin(struct intel_context *ce, |
| struct i915_gem_ww_ctx *ww, |
| void **vaddr) |
| { |
| return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); |
| } |
| |
| static int guc_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| int ret = __guc_context_pin(ce, ce->engine, vaddr); |
| |
| if (likely(!ret && !intel_context_is_barrier(ce))) |
| intel_engine_pm_get(ce->engine); |
| |
| return ret; |
| } |
| |
| static void guc_context_unpin(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| |
| __guc_context_update_stats(ce); |
| unpin_guc_id(guc, ce); |
| lrc_unpin(ce); |
| |
| if (likely(!intel_context_is_barrier(ce))) |
| intel_engine_pm_put_async(ce->engine); |
| } |
| |
| static void guc_context_post_unpin(struct intel_context *ce) |
| { |
| lrc_post_unpin(ce); |
| } |
| |
| static void __guc_context_sched_enable(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, |
| ce->guc_id.id, |
| GUC_CONTEXT_ENABLE |
| }; |
| |
| trace_intel_context_sched_enable(ce); |
| |
| guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); |
| } |
| |
| static void __guc_context_sched_disable(struct intel_guc *guc, |
| struct intel_context *ce, |
| u16 guc_id) |
| { |
| u32 action[] = { |
| INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, |
| guc_id, /* ce->guc_id.id not stable */ |
| GUC_CONTEXT_DISABLE |
| }; |
| |
| GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| trace_intel_context_sched_disable(ce); |
| |
| guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), |
| G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); |
| } |
| |
| static void guc_blocked_fence_complete(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| if (!i915_sw_fence_done(&ce->guc_state.blocked)) |
| i915_sw_fence_complete(&ce->guc_state.blocked); |
| } |
| |
| static void guc_blocked_fence_reinit(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); |
| |
| /* |
| * This fence is always complete unless a pending schedule disable is |
| * outstanding. We arm the fence here and complete it when we receive |
| * the pending schedule disable complete message. |
| */ |
| i915_sw_fence_fini(&ce->guc_state.blocked); |
| i915_sw_fence_reinit(&ce->guc_state.blocked); |
| i915_sw_fence_await(&ce->guc_state.blocked); |
| i915_sw_fence_commit(&ce->guc_state.blocked); |
| } |
| |
| static u16 prep_context_pending_disable(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| set_context_pending_disable(ce); |
| clr_context_enabled(ce); |
| guc_blocked_fence_reinit(ce); |
| intel_context_get(ce); |
| |
| return ce->guc_id.id; |
| } |
| |
| static struct i915_sw_fence *guc_context_block(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; |
| intel_wakeref_t wakeref; |
| u16 guc_id; |
| bool enabled; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| |
| incr_context_blocked(ce); |
| |
| enabled = context_enabled(ce); |
| if (unlikely(!enabled || submission_disabled(guc))) { |
| if (enabled) |
| clr_context_enabled(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| return &ce->guc_state.blocked; |
| } |
| |
| /* |
| * We add +2 here as the schedule disable complete CTB handler calls |
| * intel_context_sched_disable_unpin (-2 to pin_count). |
| */ |
| atomic_add(2, &ce->pin_count); |
| |
| guc_id = prep_context_pending_disable(ce); |
| |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| __guc_context_sched_disable(guc, ce, guc_id); |
| |
| return &ce->guc_state.blocked; |
| } |
| |
| #define SCHED_STATE_MULTI_BLOCKED_MASK \ |
| (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) |
| #define SCHED_STATE_NO_UNBLOCK \ |
| (SCHED_STATE_MULTI_BLOCKED_MASK | \ |
| SCHED_STATE_PENDING_DISABLE | \ |
| SCHED_STATE_BANNED) |
| |
| static bool context_cant_unblock(struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || |
| context_guc_id_invalid(ce) || |
| !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || |
| !intel_context_is_pinned(ce); |
| } |
| |
| static void guc_context_unblock(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; |
| intel_wakeref_t wakeref; |
| bool enable; |
| |
| GEM_BUG_ON(context_enabled(ce)); |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| |
| if (unlikely(submission_disabled(guc) || |
| context_cant_unblock(ce))) { |
| enable = false; |
| } else { |
| enable = true; |
| set_context_pending_enable(ce); |
| set_context_enabled(ce); |
| intel_context_get(ce); |
| } |
| |
| decr_context_blocked(ce); |
| |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| if (enable) { |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| __guc_context_sched_enable(guc, ce); |
| } |
| } |
| |
| static void guc_context_cancel_request(struct intel_context *ce, |
| struct i915_request *rq) |
| { |
| struct intel_context *block_context = |
| request_to_scheduling_context(rq); |
| |
| if (i915_sw_fence_signaled(&rq->submit)) { |
| struct i915_sw_fence *fence; |
| |
| intel_context_get(ce); |
| fence = guc_context_block(block_context); |
| i915_sw_fence_wait(fence); |
| if (!i915_request_completed(rq)) { |
| __i915_request_skip(rq); |
| guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), |
| true); |
| } |
| |
| guc_context_unblock(block_context); |
| intel_context_put(ce); |
| } |
| } |
| |
| static void __guc_context_set_preemption_timeout(struct intel_guc *guc, |
| u16 guc_id, |
| u32 preemption_timeout) |
| { |
| if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { |
| struct context_policy policy; |
| |
| __guc_context_policy_start_klv(&policy, guc_id); |
| __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); |
| __guc_context_set_context_policies(guc, &policy, true); |
| } else { |
| u32 action[] = { |
| INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, |
| guc_id, |
| preemption_timeout |
| }; |
| |
| intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); |
| } |
| } |
| |
| static void |
| guc_context_revoke(struct intel_context *ce, struct i915_request *rq, |
| unsigned int preempt_timeout_ms) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| struct intel_runtime_pm *runtime_pm = |
| &ce->engine->gt->i915->runtime_pm; |
| intel_wakeref_t wakeref; |
| unsigned long flags; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| guc_flush_submissions(guc); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| set_context_banned(ce); |
| |
| if (submission_disabled(guc) || |
| (!context_enabled(ce) && !context_pending_disable(ce))) { |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| guc_cancel_context_requests(ce); |
| intel_engine_signal_breadcrumbs(ce->engine); |
| } else if (!context_pending_disable(ce)) { |
| u16 guc_id; |
| |
| /* |
| * We add +2 here as the schedule disable complete CTB handler |
| * calls intel_context_sched_disable_unpin (-2 to pin_count). |
| */ |
| atomic_add(2, &ce->pin_count); |
| |
| guc_id = prep_context_pending_disable(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| /* |
| * In addition to disabling scheduling, set the preemption |
| * timeout to the minimum value (1 us) so the banned context |
| * gets kicked off the HW ASAP. |
| */ |
| with_intel_runtime_pm(runtime_pm, wakeref) { |
| __guc_context_set_preemption_timeout(guc, guc_id, |
| preempt_timeout_ms); |
| __guc_context_sched_disable(guc, ce, guc_id); |
| } |
| } else { |
| if (!context_guc_id_invalid(ce)) |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| __guc_context_set_preemption_timeout(guc, |
| ce->guc_id.id, |
| preempt_timeout_ms); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| } |
| } |
| |
| static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, |
| unsigned long flags) |
| __releases(ce->guc_state.lock) |
| { |
| struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; |
| intel_wakeref_t wakeref; |
| u16 guc_id; |
| |
| lockdep_assert_held(&ce->guc_state.lock); |
| guc_id = prep_context_pending_disable(ce); |
| |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| __guc_context_sched_disable(guc, ce, guc_id); |
| } |
| |
| static bool bypass_sched_disable(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| if (submission_disabled(guc) || context_guc_id_invalid(ce) || |
| !ctx_id_mapped(guc, ce->guc_id.id)) { |
| clr_context_enabled(ce); |
| return true; |
| } |
| |
| return !context_enabled(ce); |
| } |
| |
| static void __delay_sched_disable(struct work_struct *wrk) |
| { |
| struct intel_context *ce = |
| container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| |
| if (bypass_sched_disable(guc, ce)) { |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| intel_context_sched_disable_unpin(ce); |
| } else { |
| do_sched_disable(guc, ce, flags); |
| } |
| } |
| |
| static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) |
| { |
| /* |
| * parent contexts are perma-pinned, if we are unpinning do schedule |
| * disable immediately. |
| */ |
| if (intel_context_is_parent(ce)) |
| return true; |
| |
| /* |
| * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. |
| */ |
| return guc->submission_state.guc_ids_in_use > |
| guc->submission_state.sched_disable_gucid_threshold; |
| } |
| |
| static void guc_context_sched_disable(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| u64 delay = guc->submission_state.sched_disable_delay_ms; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| |
| if (bypass_sched_disable(guc, ce)) { |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| intel_context_sched_disable_unpin(ce); |
| } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && |
| delay) { |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| mod_delayed_work(system_unbound_wq, |
| &ce->guc_state.sched_disable_delay_work, |
| msecs_to_jiffies(delay)); |
| } else { |
| do_sched_disable(guc, ce, flags); |
| } |
| } |
| |
| static void guc_context_close(struct intel_context *ce) |
| { |
| unsigned long flags; |
| |
| if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && |
| cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) |
| __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| set_context_close_done(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| } |
| |
| static inline int guc_lrc_desc_unpin(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| struct intel_gt *gt = guc_to_gt(guc); |
| unsigned long flags; |
| bool disabled; |
| int ret; |
| |
| GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); |
| GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); |
| GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); |
| GEM_BUG_ON(context_enabled(ce)); |
| |
| /* Seal race with Reset */ |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| disabled = submission_disabled(guc); |
| if (likely(!disabled)) { |
| /* |
| * Take a gt-pm ref and change context state to be destroyed. |
| * NOTE: a G2H IRQ that comes after will put this gt-pm ref back |
| */ |
| __intel_gt_pm_get(gt); |
| set_context_destroyed(ce); |
| clr_context_registered(ce); |
| } |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| if (unlikely(disabled)) { |
| release_guc_id(guc, ce); |
| __guc_context_destroy(ce); |
| return 0; |
| } |
| |
| /* |
| * GuC is active, lets destroy this context, but at this point we can still be racing |
| * with suspend, so we undo everything if the H2G fails in deregister_context so |
| * that GuC reset will find this context during clean up. |
| */ |
| ret = deregister_context(ce, ce->guc_id.id); |
| if (ret) { |
| spin_lock(&ce->guc_state.lock); |
| set_context_registered(ce); |
| clr_context_destroyed(ce); |
| spin_unlock(&ce->guc_state.lock); |
| /* |
| * As gt-pm is awake at function entry, intel_wakeref_put_async merely decrements |
| * the wakeref immediately but per function spec usage call this after unlock. |
| */ |
| intel_wakeref_put_async(>->wakeref); |
| } |
| |
| return ret; |
| } |
| |
| static void __guc_context_destroy(struct intel_context *ce) |
| { |
| GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || |
| ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || |
| ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || |
| ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); |
| |
| lrc_fini(ce); |
| intel_context_fini(ce); |
| |
| if (intel_engine_is_virtual(ce->engine)) { |
| struct guc_virtual_engine *ve = |
| container_of(ce, typeof(*ve), context); |
| |
| if (ve->base.breadcrumbs) |
| intel_breadcrumbs_put(ve->base.breadcrumbs); |
| |
| kfree(ve); |
| } else { |
| intel_context_free(ce); |
| } |
| } |
| |
| static void guc_flush_destroyed_contexts(struct intel_guc *guc) |
| { |
| struct intel_context *ce; |
| unsigned long flags; |
| |
| GEM_BUG_ON(!submission_disabled(guc) && |
| guc_submission_initialized(guc)); |
| |
| while (!list_empty(&guc->submission_state.destroyed_contexts)) { |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, |
| struct intel_context, |
| destroyed_link); |
| if (ce) |
| list_del_init(&ce->destroyed_link); |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| |
| if (!ce) |
| break; |
| |
| release_guc_id(guc, ce); |
| __guc_context_destroy(ce); |
| } |
| } |
| |
| static void deregister_destroyed_contexts(struct intel_guc *guc) |
| { |
| struct intel_context *ce; |
| unsigned long flags; |
| |
| while (!list_empty(&guc->submission_state.destroyed_contexts)) { |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, |
| struct intel_context, |
| destroyed_link); |
| if (ce) |
| list_del_init(&ce->destroyed_link); |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| |
| if (!ce) |
| break; |
| |
| if (guc_lrc_desc_unpin(ce)) { |
| /* |
| * This means GuC's CT link severed mid-way which could happen |
| * in suspend-resume corner cases. In this case, put the |
| * context back into the destroyed_contexts list which will |
| * get picked up on the next context deregistration event or |
| * purged in a GuC sanitization event (reset/unload/wedged/...). |
| */ |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| list_add_tail(&ce->destroyed_link, |
| &guc->submission_state.destroyed_contexts); |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| /* Bail now since the list might never be emptied if h2gs fail */ |
| break; |
| } |
| |
| } |
| } |
| |
| static void destroyed_worker_func(struct work_struct *w) |
| { |
| struct intel_guc *guc = container_of(w, struct intel_guc, |
| submission_state.destroyed_worker); |
| struct intel_gt *gt = guc_to_gt(guc); |
| intel_wakeref_t wakeref; |
| |
| /* |
| * In rare cases we can get here via async context-free fence-signals that |
| * come very late in suspend flow or very early in resume flows. In these |
| * cases, GuC won't be ready but just skipping it here is fine as these |
| * pending-destroy-contexts get destroyed totally at GuC reset time at the |
| * end of suspend.. OR.. this worker can be picked up later on the next |
| * context destruction trigger after resume-completes |
| */ |
| if (!intel_guc_is_ready(guc)) |
| return; |
| |
| with_intel_gt_pm(gt, wakeref) |
| deregister_destroyed_contexts(guc); |
| } |
| |
| static void guc_context_destroy(struct kref *kref) |
| { |
| struct intel_context *ce = container_of(kref, typeof(*ce), ref); |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| bool destroy; |
| |
| /* |
| * If the guc_id is invalid this context has been stolen and we can free |
| * it immediately. Also can be freed immediately if the context is not |
| * registered with the GuC or the GuC is in the middle of a reset. |
| */ |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || |
| !ctx_id_mapped(guc, ce->guc_id.id); |
| if (likely(!destroy)) { |
| if (!list_empty(&ce->guc_id.link)) |
| list_del_init(&ce->guc_id.link); |
| list_add_tail(&ce->destroyed_link, |
| &guc->submission_state.destroyed_contexts); |
| } else { |
| __release_guc_id(guc, ce); |
| } |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| if (unlikely(destroy)) { |
| __guc_context_destroy(ce); |
| return; |
| } |
| |
| /* |
| * We use a worker to issue the H2G to deregister the context as we can |
| * take the GT PM for the first time which isn't allowed from an atomic |
| * context. |
| */ |
| queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); |
| } |
| |
| static int guc_context_alloc(struct intel_context *ce) |
| { |
| return lrc_alloc(ce, ce->engine); |
| } |
| |
| static void __guc_context_set_prio(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { |
| struct context_policy policy; |
| |
| __guc_context_policy_start_klv(&policy, ce->guc_id.id); |
| __guc_context_policy_add_priority(&policy, ce->guc_state.prio); |
| __guc_context_set_context_policies(guc, &policy, true); |
| } else { |
| u32 action[] = { |
| INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, |
| ce->guc_id.id, |
| ce->guc_state.prio, |
| }; |
| |
| guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); |
| } |
| } |
| |
| static void guc_context_set_prio(struct intel_guc *guc, |
| struct intel_context *ce, |
| u8 prio) |
| { |
| GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || |
| prio > GUC_CLIENT_PRIORITY_NORMAL); |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| if (ce->guc_state.prio == prio || submission_disabled(guc) || |
| !context_registered(ce)) { |
| ce->guc_state.prio = prio; |
| return; |
| } |
| |
| ce->guc_state.prio = prio; |
| __guc_context_set_prio(guc, ce); |
| |
| trace_intel_context_set_prio(ce); |
| } |
| |
| static inline u8 map_i915_prio_to_guc_prio(int prio) |
| { |
| if (prio == I915_PRIORITY_NORMAL) |
| return GUC_CLIENT_PRIORITY_KMD_NORMAL; |
| else if (prio < I915_PRIORITY_NORMAL) |
| return GUC_CLIENT_PRIORITY_NORMAL; |
| else if (prio < I915_PRIORITY_DISPLAY) |
| return GUC_CLIENT_PRIORITY_HIGH; |
| else |
| return GUC_CLIENT_PRIORITY_KMD_HIGH; |
| } |
| |
| static inline void add_context_inflight_prio(struct intel_context *ce, |
| u8 guc_prio) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); |
| |
| ++ce->guc_state.prio_count[guc_prio]; |
| |
| /* Overflow protection */ |
| GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); |
| } |
| |
| static inline void sub_context_inflight_prio(struct intel_context *ce, |
| u8 guc_prio) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); |
| |
| /* Underflow protection */ |
| GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); |
| |
| --ce->guc_state.prio_count[guc_prio]; |
| } |
| |
| static inline void update_context_prio(struct intel_context *ce) |
| { |
| struct intel_guc *guc = &ce->engine->gt->uc.guc; |
| int i; |
| |
| BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); |
| BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); |
| |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { |
| if (ce->guc_state.prio_count[i]) { |
| guc_context_set_prio(guc, ce, i); |
| break; |
| } |
| } |
| } |
| |
| static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) |
| { |
| /* Lower value is higher priority */ |
| return new_guc_prio < old_guc_prio; |
| } |
| |
| static void add_to_context(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); |
| |
| spin_lock(&ce->guc_state.lock); |
| list_move_tail(&rq->sched.link, &ce->guc_state.requests); |
| |
| if (rq->guc_prio == GUC_PRIO_INIT) { |
| rq->guc_prio = new_guc_prio; |
| add_context_inflight_prio(ce, rq->guc_prio); |
| } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { |
| sub_context_inflight_prio(ce, rq->guc_prio); |
| rq->guc_prio = new_guc_prio; |
| add_context_inflight_prio(ce, rq->guc_prio); |
| } |
| update_context_prio(ce); |
| |
| spin_unlock(&ce->guc_state.lock); |
| } |
| |
| static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) |
| { |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| if (rq->guc_prio != GUC_PRIO_INIT && |
| rq->guc_prio != GUC_PRIO_FINI) { |
| sub_context_inflight_prio(ce, rq->guc_prio); |
| update_context_prio(ce); |
| } |
| rq->guc_prio = GUC_PRIO_FINI; |
| } |
| |
| static void remove_from_context(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| spin_lock_irq(&ce->guc_state.lock); |
| |
| list_del_init(&rq->sched.link); |
| clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); |
| |
| /* Prevent further __await_execution() registering a cb, then flush */ |
| set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); |
| |
| guc_prio_fini(rq, ce); |
| |
| spin_unlock_irq(&ce->guc_state.lock); |
| |
| atomic_dec(&ce->guc_id.ref); |
| i915_request_notify_execute_cb_imm(rq); |
| } |
| |
| static const struct intel_context_ops guc_context_ops = { |
| .flags = COPS_RUNTIME_CYCLES, |
| .alloc = guc_context_alloc, |
| |
| .close = guc_context_close, |
| |
| .pre_pin = guc_context_pre_pin, |
| .pin = guc_context_pin, |
| .unpin = guc_context_unpin, |
| .post_unpin = guc_context_post_unpin, |
| |
| .revoke = guc_context_revoke, |
| |
| .cancel_request = guc_context_cancel_request, |
| |
| .enter = intel_context_enter_engine, |
| .exit = intel_context_exit_engine, |
| |
| .sched_disable = guc_context_sched_disable, |
| |
| .update_stats = guc_context_update_stats, |
| |
| .reset = lrc_reset, |
| .destroy = guc_context_destroy, |
| |
| .create_virtual = guc_create_virtual, |
| .create_parallel = guc_create_parallel, |
| }; |
| |
| static void submit_work_cb(struct irq_work *wrk) |
| { |
| struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); |
| |
| might_lock(&rq->engine->sched_engine->lock); |
| i915_sw_fence_complete(&rq->submit); |
| } |
| |
| static void __guc_signal_context_fence(struct intel_context *ce) |
| { |
| struct i915_request *rq, *rn; |
| |
| lockdep_assert_held(&ce->guc_state.lock); |
| |
| if (!list_empty(&ce->guc_state.fences)) |
| trace_intel_context_fence_release(ce); |
| |
| /* |
| * Use an IRQ to ensure locking order of sched_engine->lock -> |
| * ce->guc_state.lock is preserved. |
| */ |
| list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, |
| guc_fence_link) { |
| list_del(&rq->guc_fence_link); |
| irq_work_queue(&rq->submit_work); |
| } |
| |
| INIT_LIST_HEAD(&ce->guc_state.fences); |
| } |
| |
| static void guc_signal_context_fence(struct intel_context *ce) |
| { |
| unsigned long flags; |
| |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| clr_context_wait_for_deregister_to_register(ce); |
| __guc_signal_context_fence(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| } |
| |
| static bool context_needs_register(struct intel_context *ce, bool new_guc_id) |
| { |
| return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || |
| !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && |
| !submission_disabled(ce_to_guc(ce)); |
| } |
| |
| static void guc_context_init(struct intel_context *ce) |
| { |
| const struct i915_gem_context *ctx; |
| int prio = I915_CONTEXT_DEFAULT_PRIORITY; |
| |
| rcu_read_lock(); |
| ctx = rcu_dereference(ce->gem_context); |
| if (ctx) |
| prio = ctx->sched.priority; |
| rcu_read_unlock(); |
| |
| ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); |
| |
| INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, |
| __delay_sched_disable); |
| |
| set_bit(CONTEXT_GUC_INIT, &ce->flags); |
| } |
| |
| static int guc_request_alloc(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| struct intel_guc *guc = ce_to_guc(ce); |
| unsigned long flags; |
| int ret; |
| |
| GEM_BUG_ON(!intel_context_is_pinned(rq->context)); |
| |
| /* |
| * Flush enough space to reduce the likelihood of waiting after |
| * we start building the request - in which case we will just |
| * have to repeat work. |
| */ |
| rq->reserved_space += GUC_REQUEST_SIZE; |
| |
| /* |
| * Note that after this point, we have committed to using |
| * this request as it is being used to both track the |
| * state of engine initialisation and liveness of the |
| * golden renderstate above. Think twice before you try |
| * to cancel/unwind this request now. |
| */ |
| |
| /* Unconditionally invalidate GPU caches and TLBs. */ |
| ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); |
| if (ret) |
| return ret; |
| |
| rq->reserved_space -= GUC_REQUEST_SIZE; |
| |
| if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) |
| guc_context_init(ce); |
| |
| /* |
| * If the context gets closed while the execbuf is ongoing, the context |
| * close code will race with the below code to cancel the delayed work. |
| * If the context close wins the race and cancels the work, it will |
| * immediately call the sched disable (see guc_context_close), so there |
| * is a chance we can get past this check while the sched_disable code |
| * is being executed. To make sure that code completes before we check |
| * the status further down, we wait for the close process to complete. |
| * Else, this code path could send a request down thinking that the |
| * context is still in a schedule-enable mode while the GuC ends up |
| * dropping the request completely because the disable did go from the |
| * context_close path right to GuC just prior. In the event the CT is |
| * full, we could potentially need to wait up to 1.5 seconds. |
| */ |
| if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) |
| intel_context_sched_disable_unpin(ce); |
| else if (intel_context_is_closed(ce)) |
| if (wait_for(context_close_done(ce), 1500)) |
| guc_warn(guc, "timed out waiting on context sched close before realloc\n"); |
| /* |
| * Call pin_guc_id here rather than in the pinning step as with |
| * dma_resv, contexts can be repeatedly pinned / unpinned trashing the |
| * guc_id and creating horrible race conditions. This is especially bad |
| * when guc_id are being stolen due to over subscription. By the time |
| * this function is reached, it is guaranteed that the guc_id will be |
| * persistent until the generated request is retired. Thus, sealing these |
| * race conditions. It is still safe to fail here if guc_id are |
| * exhausted and return -EAGAIN to the user indicating that they can try |
| * again in the future. |
| * |
| * There is no need for a lock here as the timeline mutex ensures at |
| * most one context can be executing this code path at once. The |
| * guc_id_ref is incremented once for every request in flight and |
| * decremented on each retire. When it is zero, a lock around the |
| * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. |
| */ |
| if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) |
| goto out; |
| |
| ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ |
| if (unlikely(ret < 0)) |
| return ret; |
| if (context_needs_register(ce, !!ret)) { |
| ret = try_context_registration(ce, true); |
| if (unlikely(ret)) { /* unwind */ |
| if (ret == -EPIPE) { |
| disable_submission(guc); |
| goto out; /* GPU will be reset */ |
| } |
| atomic_dec(&ce->guc_id.ref); |
| unpin_guc_id(guc, ce); |
| return ret; |
| } |
| } |
| |
| clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); |
| |
| out: |
| /* |
| * We block all requests on this context if a G2H is pending for a |
| * schedule disable or context deregistration as the GuC will fail a |
| * schedule enable or context registration if either G2H is pending |
| * respectfully. Once a G2H returns, the fence is released that is |
| * blocking these requests (see guc_signal_context_fence). |
| */ |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| if (context_wait_for_deregister_to_register(ce) || |
| context_pending_disable(ce)) { |
| init_irq_work(&rq->submit_work, submit_work_cb); |
| i915_sw_fence_await(&rq->submit); |
| |
| list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); |
| } |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| return 0; |
| } |
| |
| static int guc_virtual_context_pre_pin(struct intel_context *ce, |
| struct i915_gem_ww_ctx *ww, |
| void **vaddr) |
| { |
| struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); |
| |
| return __guc_context_pre_pin(ce, engine, ww, vaddr); |
| } |
| |
| static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); |
| int ret = __guc_context_pin(ce, engine, vaddr); |
| intel_engine_mask_t tmp, mask = ce->engine->mask; |
| |
| if (likely(!ret)) |
| for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| intel_engine_pm_get(engine); |
| |
| return ret; |
| } |
| |
| static void guc_virtual_context_unpin(struct intel_context *ce) |
| { |
| intel_engine_mask_t tmp, mask = ce->engine->mask; |
| struct intel_engine_cs *engine; |
| struct intel_guc *guc = ce_to_guc(ce); |
| |
| GEM_BUG_ON(context_enabled(ce)); |
| GEM_BUG_ON(intel_context_is_barrier(ce)); |
| |
| unpin_guc_id(guc, ce); |
| lrc_unpin(ce); |
| |
| for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| intel_engine_pm_put_async(engine); |
| } |
| |
| static void guc_virtual_context_enter(struct intel_context *ce) |
| { |
| intel_engine_mask_t tmp, mask = ce->engine->mask; |
| struct intel_engine_cs *engine; |
| |
| for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| intel_engine_pm_get(engine); |
| |
| intel_timeline_enter(ce->timeline); |
| } |
| |
| static void guc_virtual_context_exit(struct intel_context *ce) |
| { |
| intel_engine_mask_t tmp, mask = ce->engine->mask; |
| struct intel_engine_cs *engine; |
| |
| for_each_engine_masked(engine, ce->engine->gt, mask, tmp) |
| intel_engine_pm_put(engine); |
| |
| intel_timeline_exit(ce->timeline); |
| } |
| |
| static int guc_virtual_context_alloc(struct intel_context *ce) |
| { |
| struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); |
| |
| return lrc_alloc(ce, engine); |
| } |
| |
| static const struct intel_context_ops virtual_guc_context_ops = { |
| .flags = COPS_RUNTIME_CYCLES, |
| .alloc = guc_virtual_context_alloc, |
| |
| .close = guc_context_close, |
| |
| .pre_pin = guc_virtual_context_pre_pin, |
| .pin = guc_virtual_context_pin, |
| .unpin = guc_virtual_context_unpin, |
| .post_unpin = guc_context_post_unpin, |
| |
| .revoke = guc_context_revoke, |
| |
| .cancel_request = guc_context_cancel_request, |
| |
| .enter = guc_virtual_context_enter, |
| .exit = guc_virtual_context_exit, |
| |
| .sched_disable = guc_context_sched_disable, |
| .update_stats = guc_context_update_stats, |
| |
| .destroy = guc_context_destroy, |
| |
| .get_sibling = guc_virtual_get_sibling, |
| }; |
| |
| static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); |
| struct intel_guc *guc = ce_to_guc(ce); |
| int ret; |
| |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| |
| ret = pin_guc_id(guc, ce); |
| if (unlikely(ret < 0)) |
| return ret; |
| |
| return __guc_context_pin(ce, engine, vaddr); |
| } |
| |
| static int guc_child_context_pin(struct intel_context *ce, void *vaddr) |
| { |
| struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); |
| |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| |
| __intel_context_pin(ce->parallel.parent); |
| return __guc_context_pin(ce, engine, vaddr); |
| } |
| |
| static void guc_parent_context_unpin(struct intel_context *ce) |
| { |
| struct intel_guc *guc = ce_to_guc(ce); |
| |
| GEM_BUG_ON(context_enabled(ce)); |
| GEM_BUG_ON(intel_context_is_barrier(ce)); |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| |
| unpin_guc_id(guc, ce); |
| lrc_unpin(ce); |
| } |
| |
| static void guc_child_context_unpin(struct intel_context *ce) |
| { |
| GEM_BUG_ON(context_enabled(ce)); |
| GEM_BUG_ON(intel_context_is_barrier(ce)); |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| |
| lrc_unpin(ce); |
| } |
| |
| static void guc_child_context_post_unpin(struct intel_context *ce) |
| { |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); |
| GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); |
| |
| lrc_post_unpin(ce); |
| intel_context_unpin(ce->parallel.parent); |
| } |
| |
| static void guc_child_context_destroy(struct kref *kref) |
| { |
| struct intel_context *ce = container_of(kref, typeof(*ce), ref); |
| |
| __guc_context_destroy(ce); |
| } |
| |
| static const struct intel_context_ops virtual_parent_context_ops = { |
| .alloc = guc_virtual_context_alloc, |
| |
| .close = guc_context_close, |
| |
| .pre_pin = guc_context_pre_pin, |
| .pin = guc_parent_context_pin, |
| .unpin = guc_parent_context_unpin, |
| .post_unpin = guc_context_post_unpin, |
| |
| .revoke = guc_context_revoke, |
| |
| .cancel_request = guc_context_cancel_request, |
| |
| .enter = guc_virtual_context_enter, |
| .exit = guc_virtual_context_exit, |
| |
| .sched_disable = guc_context_sched_disable, |
| |
| .destroy = guc_context_destroy, |
| |
| .get_sibling = guc_virtual_get_sibling, |
| }; |
| |
| static const struct intel_context_ops virtual_child_context_ops = { |
| .alloc = guc_virtual_context_alloc, |
| |
| .pre_pin = guc_context_pre_pin, |
| .pin = guc_child_context_pin, |
| .unpin = guc_child_context_unpin, |
| .post_unpin = guc_child_context_post_unpin, |
| |
| .cancel_request = guc_context_cancel_request, |
| |
| .enter = guc_virtual_context_enter, |
| .exit = guc_virtual_context_exit, |
| |
| .destroy = guc_child_context_destroy, |
| |
| .get_sibling = guc_virtual_get_sibling, |
| }; |
| |
| /* |
| * The below override of the breadcrumbs is enabled when the user configures a |
| * context for parallel submission (multi-lrc, parent-child). |
| * |
| * The overridden breadcrumbs implements an algorithm which allows the GuC to |
| * safely preempt all the hw contexts configured for parallel submission |
| * between each BB. The contract between the i915 and GuC is if the parent |
| * context can be preempted, all the children can be preempted, and the GuC will |
| * always try to preempt the parent before the children. A handshake between the |
| * parent / children breadcrumbs ensures the i915 holds up its end of the deal |
| * creating a window to preempt between each set of BBs. |
| */ |
| static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags); |
| static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags); |
| static u32 * |
| emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs); |
| static u32 * |
| emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs); |
| |
| static struct intel_context * |
| guc_create_parallel(struct intel_engine_cs **engines, |
| unsigned int num_siblings, |
| unsigned int width) |
| { |
| struct intel_engine_cs **siblings = NULL; |
| struct intel_context *parent = NULL, *ce, *err; |
| int i, j; |
| |
| siblings = kmalloc_array(num_siblings, |
| sizeof(*siblings), |
| GFP_KERNEL); |
| if (!siblings) |
| return ERR_PTR(-ENOMEM); |
| |
| for (i = 0; i < width; ++i) { |
| for (j = 0; j < num_siblings; ++j) |
| siblings[j] = engines[i * num_siblings + j]; |
| |
| ce = intel_engine_create_virtual(siblings, num_siblings, |
| FORCE_VIRTUAL); |
| if (IS_ERR(ce)) { |
| err = ERR_CAST(ce); |
| goto unwind; |
| } |
| |
| if (i == 0) { |
| parent = ce; |
| parent->ops = &virtual_parent_context_ops; |
| } else { |
| ce->ops = &virtual_child_context_ops; |
| intel_context_bind_parent_child(parent, ce); |
| } |
| } |
| |
| parent->parallel.fence_context = dma_fence_context_alloc(1); |
| |
| parent->engine->emit_bb_start = |
| emit_bb_start_parent_no_preempt_mid_batch; |
| parent->engine->emit_fini_breadcrumb = |
| emit_fini_breadcrumb_parent_no_preempt_mid_batch; |
| parent->engine->emit_fini_breadcrumb_dw = |
| 12 + 4 * parent->parallel.number_children; |
| for_each_child(parent, ce) { |
| ce->engine->emit_bb_start = |
| emit_bb_start_child_no_preempt_mid_batch; |
| ce->engine->emit_fini_breadcrumb = |
| emit_fini_breadcrumb_child_no_preempt_mid_batch; |
| ce->engine->emit_fini_breadcrumb_dw = 16; |
| } |
| |
| kfree(siblings); |
| return parent; |
| |
| unwind: |
| if (parent) |
| intel_context_put(parent); |
| kfree(siblings); |
| return err; |
| } |
| |
| static bool |
| guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) |
| { |
| struct intel_engine_cs *sibling; |
| intel_engine_mask_t tmp, mask = b->engine_mask; |
| bool result = false; |
| |
| for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) |
| result |= intel_engine_irq_enable(sibling); |
| |
| return result; |
| } |
| |
| static void |
| guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) |
| { |
| struct intel_engine_cs *sibling; |
| intel_engine_mask_t tmp, mask = b->engine_mask; |
| |
| for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) |
| intel_engine_irq_disable(sibling); |
| } |
| |
| static void guc_init_breadcrumbs(struct intel_engine_cs *engine) |
| { |
| int i; |
| |
| /* |
| * In GuC submission mode we do not know which physical engine a request |
| * will be scheduled on, this creates a problem because the breadcrumb |
| * interrupt is per physical engine. To work around this we attach |
| * requests and direct all breadcrumb interrupts to the first instance |
| * of an engine per class. In addition all breadcrumb interrupts are |
| * enabled / disabled across an engine class in unison. |
| */ |
| for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { |
| struct intel_engine_cs *sibling = |
| engine->gt->engine_class[engine->class][i]; |
| |
| if (sibling) { |
| if (engine->breadcrumbs != sibling->breadcrumbs) { |
| intel_breadcrumbs_put(engine->breadcrumbs); |
| engine->breadcrumbs = |
| intel_breadcrumbs_get(sibling->breadcrumbs); |
| } |
| break; |
| } |
| } |
| |
| if (engine->breadcrumbs) { |
| engine->breadcrumbs->engine_mask |= engine->mask; |
| engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; |
| engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; |
| } |
| } |
| |
| static void guc_bump_inflight_request_prio(struct i915_request *rq, |
| int prio) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); |
| |
| /* Short circuit function */ |
| if (prio < I915_PRIORITY_NORMAL) |
| return; |
| |
| spin_lock(&ce->guc_state.lock); |
| |
| if (rq->guc_prio == GUC_PRIO_FINI) |
| goto exit; |
| |
| if (!new_guc_prio_higher(rq->guc_prio, new_guc_prio)) |
| goto exit; |
| |
| if (rq->guc_prio != GUC_PRIO_INIT) |
| sub_context_inflight_prio(ce, rq->guc_prio); |
| |
| rq->guc_prio = new_guc_prio; |
| add_context_inflight_prio(ce, rq->guc_prio); |
| update_context_prio(ce); |
| |
| exit: |
| spin_unlock(&ce->guc_state.lock); |
| } |
| |
| static void guc_retire_inflight_request_prio(struct i915_request *rq) |
| { |
| struct intel_context *ce = request_to_scheduling_context(rq); |
| |
| spin_lock(&ce->guc_state.lock); |
| guc_prio_fini(rq, ce); |
| spin_unlock(&ce->guc_state.lock); |
| } |
| |
| static void sanitize_hwsp(struct intel_engine_cs *engine) |
| { |
| struct intel_timeline *tl; |
| |
| list_for_each_entry(tl, &engine->status_page.timelines, engine_link) |
| intel_timeline_reset_seqno(tl); |
| } |
| |
| static void guc_sanitize(struct intel_engine_cs *engine) |
| { |
| /* |
| * Poison residual state on resume, in case the suspend didn't! |
| * |
| * We have to assume that across suspend/resume (or other loss |
| * of control) that the contents of our pinned buffers has been |
| * lost, replaced by garbage. Since this doesn't always happen, |
| * let's poison such state so that we more quickly spot when |
| * we falsely assume it has been preserved. |
| */ |
| if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) |
| memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); |
| |
| /* |
| * The kernel_context HWSP is stored in the status_page. As above, |
| * that may be lost on resume/initialisation, and so we need to |
| * reset the value in the HWSP. |
| */ |
| sanitize_hwsp(engine); |
| |
| /* And scrub the dirty cachelines for the HWSP */ |
| drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); |
| |
| intel_engine_reset_pinned_contexts(engine); |
| } |
| |
| static void setup_hwsp(struct intel_engine_cs *engine) |
| { |
| intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ |
| |
| ENGINE_WRITE_FW(engine, |
| RING_HWS_PGA, |
| i915_ggtt_offset(engine->status_page.vma)); |
| } |
| |
| static void start_engine(struct intel_engine_cs *engine) |
| { |
| ENGINE_WRITE_FW(engine, |
| RING_MODE_GEN7, |
| _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); |
| |
| ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); |
| ENGINE_POSTING_READ(engine, RING_MI_MODE); |
| } |
| |
| static int guc_resume(struct intel_engine_cs *engine) |
| { |
| assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); |
| |
| intel_mocs_init_engine(engine); |
| |
| intel_breadcrumbs_reset(engine->breadcrumbs); |
| |
| setup_hwsp(engine); |
| start_engine(engine); |
| |
| if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) |
| xehp_enable_ccs_engines(engine); |
| |
| return 0; |
| } |
| |
| static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) |
| { |
| return !sched_engine->tasklet.callback; |
| } |
| |
| static void guc_set_default_submission(struct intel_engine_cs *engine) |
| { |
| engine->submit_request = guc_submit_request; |
| } |
| |
| static inline int guc_kernel_context_pin(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| int ret; |
| |
| /* |
| * Note: we purposefully do not check the returns below because |
| * the registration can only fail if a reset is just starting. |
| * This is called at the end of reset so presumably another reset |
| * isn't happening and even it did this code would be run again. |
| */ |
| |
| if (context_guc_id_invalid(ce)) { |
| ret = pin_guc_id(guc, ce); |
| |
| if (ret < 0) |
| return ret; |
| } |
| |
| if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) |
| guc_context_init(ce); |
| |
| ret = try_context_registration(ce, true); |
| if (ret) |
| unpin_guc_id(guc, ce); |
| |
| return ret; |
| } |
| |
| static inline int guc_init_submission(struct intel_guc *guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* make sure all descriptors are clean... */ |
| xa_destroy(&guc->context_lookup); |
| |
| /* |
| * A reset might have occurred while we had a pending stalled request, |
| * so make sure we clean that up. |
| */ |
| guc->stalled_request = NULL; |
| guc->submission_stall_reason = STALL_NONE; |
| |
| /* |
| * Some contexts might have been pinned before we enabled GuC |
| * submission, so we need to add them to the GuC bookeeping. |
| * Also, after a reset the of the GuC we want to make sure that the |
| * information shared with GuC is properly reset. The kernel LRCs are |
| * not attached to the gem_context, so they need to be added separately. |
| */ |
| for_each_engine(engine, gt, id) { |
| struct intel_context *ce; |
| |
| list_for_each_entry(ce, &engine->pinned_contexts_list, |
| pinned_contexts_link) { |
| int ret = guc_kernel_context_pin(guc, ce); |
| |
| if (ret) { |
| /* No point in trying to clean up as i915 will wedge on failure */ |
| return ret; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void guc_release(struct intel_engine_cs *engine) |
| { |
| engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ |
| |
| intel_engine_cleanup_common(engine); |
| lrc_fini_wa_ctx(engine); |
| } |
| |
| static void virtual_guc_bump_serial(struct intel_engine_cs *engine) |
| { |
| struct intel_engine_cs *e; |
| intel_engine_mask_t tmp, mask = engine->mask; |
| |
| for_each_engine_masked(e, engine->gt, mask, tmp) |
| e->serial++; |
| } |
| |
| static void guc_default_vfuncs(struct intel_engine_cs *engine) |
| { |
| /* Default vfuncs which can be overridden by each engine. */ |
| |
| engine->resume = guc_resume; |
| |
| engine->cops = &guc_context_ops; |
| engine->request_alloc = guc_request_alloc; |
| engine->add_active_request = add_to_context; |
| engine->remove_active_request = remove_from_context; |
| |
| engine->sched_engine->schedule = i915_schedule; |
| |
| engine->reset.prepare = guc_engine_reset_prepare; |
| engine->reset.rewind = guc_rewind_nop; |
| engine->reset.cancel = guc_reset_nop; |
| engine->reset.finish = guc_reset_nop; |
| |
| engine->emit_flush = gen8_emit_flush_xcs; |
| engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; |
| if (GRAPHICS_VER(engine->i915) >= 12) { |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; |
| engine->emit_flush = gen12_emit_flush_xcs; |
| } |
| engine->set_default_submission = guc_set_default_submission; |
| engine->busyness = guc_engine_busyness; |
| |
| engine->flags |= I915_ENGINE_SUPPORTS_STATS; |
| engine->flags |= I915_ENGINE_HAS_PREEMPTION; |
| engine->flags |= I915_ENGINE_HAS_TIMESLICES; |
| |
| /* Wa_14014475959:dg2 */ |
| if (engine->class == COMPUTE_CLASS) |
| if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) || |
| IS_DG2(engine->i915)) |
| engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; |
| |
| /* Wa_16019325821 */ |
| /* Wa_14019159160 */ |
| if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) && |
| IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) |
| engine->flags |= I915_ENGINE_USES_WA_HOLD_SWITCHOUT; |
| |
| /* |
| * TODO: GuC supports timeslicing and semaphores as well, but they're |
| * handled by the firmware so some minor tweaks are required before |
| * enabling. |
| * |
| * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; |
| */ |
| |
| engine->emit_bb_start = gen8_emit_bb_start; |
| if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) |
| engine->emit_bb_start = xehp_emit_bb_start; |
| } |
| |
| static void rcs_submission_override(struct intel_engine_cs *engine) |
| { |
| switch (GRAPHICS_VER(engine->i915)) { |
| case 12: |
| engine->emit_flush = gen12_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; |
| break; |
| case 11: |
| engine->emit_flush = gen11_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; |
| break; |
| default: |
| engine->emit_flush = gen8_emit_flush_rcs; |
| engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; |
| break; |
| } |
| } |
| |
| static inline void guc_default_irqs(struct intel_engine_cs *engine) |
| { |
| engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; |
| intel_engine_set_irq_handler(engine, cs_irq_handler); |
| } |
| |
| static void guc_sched_engine_destroy(struct kref *kref) |
| { |
| struct i915_sched_engine *sched_engine = |
| container_of(kref, typeof(*sched_engine), ref); |
| struct intel_guc *guc = sched_engine->private_data; |
| |
| guc->sched_engine = NULL; |
| tasklet_kill(&sched_engine->tasklet); /* flush the callback */ |
| kfree(sched_engine); |
| } |
| |
| int intel_guc_submission_setup(struct intel_engine_cs *engine) |
| { |
| struct drm_i915_private *i915 = engine->i915; |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| |
| /* |
| * The setup relies on several assumptions (e.g. irqs always enabled) |
| * that are only valid on gen11+ |
| */ |
| GEM_BUG_ON(GRAPHICS_VER(i915) < 11); |
| |
| if (!guc->sched_engine) { |
| guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); |
| if (!guc->sched_engine) |
| return -ENOMEM; |
| |
| guc->sched_engine->schedule = i915_schedule; |
| guc->sched_engine->disabled = guc_sched_engine_disabled; |
| guc->sched_engine->private_data = guc; |
| guc->sched_engine->destroy = guc_sched_engine_destroy; |
| guc->sched_engine->bump_inflight_request_prio = |
| guc_bump_inflight_request_prio; |
| guc->sched_engine->retire_inflight_request_prio = |
| guc_retire_inflight_request_prio; |
| tasklet_setup(&guc->sched_engine->tasklet, |
| guc_submission_tasklet); |
| } |
| i915_sched_engine_put(engine->sched_engine); |
| engine->sched_engine = i915_sched_engine_get(guc->sched_engine); |
| |
| guc_default_vfuncs(engine); |
| guc_default_irqs(engine); |
| guc_init_breadcrumbs(engine); |
| |
| if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) |
| rcs_submission_override(engine); |
| |
| lrc_init_wa_ctx(engine); |
| |
| /* Finally, take ownership and responsibility for cleanup! */ |
| engine->sanitize = guc_sanitize; |
| engine->release = guc_release; |
| |
| return 0; |
| } |
| |
| struct scheduling_policy { |
| /* internal data */ |
| u32 max_words, num_words; |
| u32 count; |
| /* API data */ |
| struct guc_update_scheduling_policy h2g; |
| }; |
| |
| static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) |
| { |
| u32 *start = (void *)&policy->h2g; |
| u32 *end = policy->h2g.data + policy->num_words; |
| size_t delta = end - start; |
| |
| return delta; |
| } |
| |
| static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) |
| { |
| policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; |
| policy->max_words = ARRAY_SIZE(policy->h2g.data); |
| policy->num_words = 0; |
| policy->count = 0; |
| |
| return policy; |
| } |
| |
| static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, |
| u32 action, u32 *data, u32 len) |
| { |
| u32 *klv_ptr = policy->h2g.data + policy->num_words; |
| |
| GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); |
| *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | |
| FIELD_PREP(GUC_KLV_0_LEN, len); |
| memcpy(klv_ptr, data, sizeof(u32) * len); |
| policy->num_words += 1 + len; |
| policy->count++; |
| } |
| |
| static int __guc_action_set_scheduling_policies(struct intel_guc *guc, |
| struct scheduling_policy *policy) |
| { |
| int ret; |
| |
| ret = intel_guc_send(guc, (u32 *)&policy->h2g, |
| __guc_scheduling_policy_action_size(policy)); |
| if (ret < 0) { |
| guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", |
| ERR_PTR(ret)); |
| return ret; |
| } |
| |
| if (ret != policy->count) { |
| guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", |
| ret, policy->count); |
| if (ret > policy->count) |
| return -EPROTO; |
| } |
| |
| return 0; |
| } |
| |
| static int guc_init_global_schedule_policy(struct intel_guc *guc) |
| { |
| struct scheduling_policy policy; |
| struct intel_gt *gt = guc_to_gt(guc); |
| intel_wakeref_t wakeref; |
| int ret; |
| |
| if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) |
| return 0; |
| |
| __guc_scheduling_policy_start_klv(&policy); |
| |
| with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { |
| u32 yield[] = { |
| GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, |
| GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, |
| }; |
| |
| __guc_scheduling_policy_add_klv(&policy, |
| GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, |
| yield, ARRAY_SIZE(yield)); |
| |
| ret = __guc_action_set_scheduling_policies(guc, &policy); |
| } |
| |
| return ret; |
| } |
| |
| static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| u32 val; |
| |
| if (GRAPHICS_VER(gt->i915) < 12) |
| return; |
| |
| if (to_guc) |
| val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; |
| else |
| val = 0; |
| |
| intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); |
| } |
| |
| int intel_guc_submission_enable(struct intel_guc *guc) |
| { |
| int ret; |
| |
| /* Semaphore interrupt enable and route to GuC */ |
| guc_route_semaphores(guc, true); |
| |
| ret = guc_init_submission(guc); |
| if (ret) |
| goto fail_sem; |
| |
| ret = guc_init_engine_stats(guc); |
| if (ret) |
| goto fail_sem; |
| |
| ret = guc_init_global_schedule_policy(guc); |
| if (ret) |
| goto fail_stats; |
| |
| return 0; |
| |
| fail_stats: |
| guc_fini_engine_stats(guc); |
| fail_sem: |
| guc_route_semaphores(guc, false); |
| return ret; |
| } |
| |
| /* Note: By the time we're here, GuC may have already been reset */ |
| void intel_guc_submission_disable(struct intel_guc *guc) |
| { |
| guc_cancel_busyness_worker(guc); |
| |
| /* Semaphore interrupt disable and route to host */ |
| guc_route_semaphores(guc, false); |
| } |
| |
| static bool __guc_submission_supported(struct intel_guc *guc) |
| { |
| /* GuC submission is unavailable for pre-Gen11 */ |
| return intel_guc_is_supported(guc) && |
| GRAPHICS_VER(guc_to_i915(guc)) >= 11; |
| } |
| |
| static bool __guc_submission_selected(struct intel_guc *guc) |
| { |
| struct drm_i915_private *i915 = guc_to_i915(guc); |
| |
| if (!intel_guc_submission_is_supported(guc)) |
| return false; |
| |
| return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; |
| } |
| |
| int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) |
| { |
| return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); |
| } |
| |
| /* |
| * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher |
| * workloads are able to enjoy the latency reduction when delaying the schedule-disable |
| * operation. This matches the 30fps game-render + encode (real world) workload this |
| * knob was tested against. |
| */ |
| #define SCHED_DISABLE_DELAY_MS 34 |
| |
| /* |
| * A threshold of 75% is a reasonable starting point considering that real world apps |
| * generally don't get anywhere near this. |
| */ |
| #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ |
| (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) |
| |
| void intel_guc_submission_init_early(struct intel_guc *guc) |
| { |
| xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); |
| |
| spin_lock_init(&guc->submission_state.lock); |
| INIT_LIST_HEAD(&guc->submission_state.guc_id_list); |
| ida_init(&guc->submission_state.guc_ids); |
| INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); |
| INIT_WORK(&guc->submission_state.destroyed_worker, |
| destroyed_worker_func); |
| INIT_WORK(&guc->submission_state.reset_fail_worker, |
| reset_fail_worker_func); |
| |
| spin_lock_init(&guc->timestamp.lock); |
| INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); |
| |
| guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; |
| guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; |
| guc->submission_state.sched_disable_gucid_threshold = |
| NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); |
| guc->submission_supported = __guc_submission_supported(guc); |
| guc->submission_selected = __guc_submission_selected(guc); |
| } |
| |
| static inline struct intel_context * |
| g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) |
| { |
| struct intel_context *ce; |
| |
| if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { |
| guc_err(guc, "Invalid ctx_id %u\n", ctx_id); |
| return NULL; |
| } |
| |
| ce = __get_context(guc, ctx_id); |
| if (unlikely(!ce)) { |
| guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); |
| return NULL; |
| } |
| |
| if (unlikely(intel_context_is_child(ce))) { |
| guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); |
| return NULL; |
| } |
| |
| return ce; |
| } |
| |
| static void wait_wake_outstanding_tlb_g2h(struct intel_guc *guc, u32 seqno) |
| { |
| struct intel_guc_tlb_wait *wait; |
| unsigned long flags; |
| |
| xa_lock_irqsave(&guc->tlb_lookup, flags); |
| wait = xa_load(&guc->tlb_lookup, seqno); |
| |
| if (wait) |
| wake_up(&wait->wq); |
| else |
| guc_dbg(guc, |
| "Stale TLB invalidation response with seqno %d\n", seqno); |
| |
| xa_unlock_irqrestore(&guc->tlb_lookup, flags); |
| } |
| |
| int intel_guc_tlb_invalidation_done(struct intel_guc *guc, |
| const u32 *payload, u32 len) |
| { |
| if (len < 1) |
| return -EPROTO; |
| |
| wait_wake_outstanding_tlb_g2h(guc, payload[0]); |
| return 0; |
| } |
| |
| static long must_wait_woken(struct wait_queue_entry *wq_entry, long timeout) |
| { |
| /* |
| * This is equivalent to wait_woken() with the exception that |
| * we do not wake up early if the kthread task has been completed. |
| * As we are called from page reclaim in any task context, |
| * we may be invoked from stopped kthreads, but we *must* |
| * complete the wait from the HW. |
| */ |
| do { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| if (wq_entry->flags & WQ_FLAG_WOKEN) |
| break; |
| |
| timeout = schedule_timeout(timeout); |
| } while (timeout); |
| |
| /* See wait_woken() and woken_wake_function() */ |
| __set_current_state(TASK_RUNNING); |
| smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); |
| |
| return timeout; |
| } |
| |
| static bool intel_gt_is_enabled(const struct intel_gt *gt) |
| { |
| /* Check if GT is wedged or suspended */ |
| if (intel_gt_is_wedged(gt) || !intel_irqs_enabled(gt->i915)) |
| return false; |
| return true; |
| } |
| |
| static int guc_send_invalidate_tlb(struct intel_guc *guc, |
| enum intel_guc_tlb_invalidation_type type) |
| { |
| struct intel_guc_tlb_wait _wq, *wq = &_wq; |
| struct intel_gt *gt = guc_to_gt(guc); |
| DEFINE_WAIT_FUNC(wait, woken_wake_function); |
| int err; |
| u32 seqno; |
| u32 action[] = { |
| INTEL_GUC_ACTION_TLB_INVALIDATION, |
| 0, |
| REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_TYPE_MASK, type) | |
| REG_FIELD_PREP(INTEL_GUC_TLB_INVAL_MODE_MASK, |
| INTEL_GUC_TLB_INVAL_MODE_HEAVY) | |
| INTEL_GUC_TLB_INVAL_FLUSH_CACHE, |
| }; |
| u32 size = ARRAY_SIZE(action); |
| |
| /* |
| * Early guard against GT enablement. TLB invalidation should not be |
| * attempted if the GT is disabled due to suspend/wedge. |
| */ |
| if (!intel_gt_is_enabled(gt)) |
| return -EINVAL; |
| |
| init_waitqueue_head(&_wq.wq); |
| |
| if (xa_alloc_cyclic_irq(&guc->tlb_lookup, &seqno, wq, |
| xa_limit_32b, &guc->next_seqno, |
| GFP_ATOMIC | __GFP_NOWARN) < 0) { |
| /* Under severe memory pressure? Serialise TLB allocations */ |
| xa_lock_irq(&guc->tlb_lookup); |
| wq = xa_load(&guc->tlb_lookup, guc->serial_slot); |
| wait_event_lock_irq(wq->wq, |
| !READ_ONCE(wq->busy), |
| guc->tlb_lookup.xa_lock); |
| /* |
| * Update wq->busy under lock to ensure only one waiter can |
| * issue the TLB invalidation command using the serial slot at a |
| * time. The condition is set to true before releasing the lock |
| * so that other caller continue to wait until woken up again. |
| */ |
| wq->busy = true; |
| xa_unlock_irq(&guc->tlb_lookup); |
| |
| seqno = guc->serial_slot; |
| } |
| |
| action[1] = seqno; |
| |
| add_wait_queue(&wq->wq, &wait); |
| |
| /* This is a critical reclaim path and thus we must loop here. */ |
| err = intel_guc_send_busy_loop(guc, action, size, G2H_LEN_DW_INVALIDATE_TLB, true); |
| if (err) |
| goto out; |
| |
| /* |
| * Late guard against GT enablement. It is not an error for the TLB |
| * invalidation to time out if the GT is disabled during the process |
| * due to suspend/wedge. In fact, the TLB invalidation is cancelled |
| * in this case. |
| */ |
| if (!must_wait_woken(&wait, intel_guc_ct_max_queue_time_jiffies()) && |
| intel_gt_is_enabled(gt)) { |
| guc_err(guc, |
| "TLB invalidation response timed out for seqno %u\n", seqno); |
| err = -ETIME; |
| } |
| out: |
| remove_wait_queue(&wq->wq, &wait); |
| if (seqno != guc->serial_slot) |
| xa_erase_irq(&guc->tlb_lookup, seqno); |
| |
| return err; |
| } |
| |
| /* Send a H2G command to invalidate the TLBs at engine level and beyond. */ |
| int intel_guc_invalidate_tlb_engines(struct intel_guc *guc) |
| { |
| return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_ENGINES); |
| } |
| |
| /* Send a H2G command to invalidate the GuC's internal TLB. */ |
| int intel_guc_invalidate_tlb_guc(struct intel_guc *guc) |
| { |
| return guc_send_invalidate_tlb(guc, INTEL_GUC_TLB_INVAL_GUC); |
| } |
| |
| int intel_guc_deregister_done_process_msg(struct intel_guc *guc, |
| const u32 *msg, |
| u32 len) |
| { |
| struct intel_context *ce; |
| u32 ctx_id; |
| |
| if (unlikely(len < 1)) { |
| guc_err(guc, "Invalid length %u\n", len); |
| return -EPROTO; |
| } |
| ctx_id = msg[0]; |
| |
| ce = g2h_context_lookup(guc, ctx_id); |
| if (unlikely(!ce)) |
| return -EPROTO; |
| |
| trace_intel_context_deregister_done(ce); |
| |
| #ifdef CONFIG_DRM_I915_SELFTEST |
| if (unlikely(ce->drop_deregister)) { |
| ce->drop_deregister = false; |
| return 0; |
| } |
| #endif |
| |
| if (context_wait_for_deregister_to_register(ce)) { |
| struct intel_runtime_pm *runtime_pm = |
| &ce->engine->gt->i915->runtime_pm; |
| intel_wakeref_t wakeref; |
| |
| /* |
| * Previous owner of this guc_id has been deregistered, now safe |
| * register this context. |
| */ |
| with_intel_runtime_pm(runtime_pm, wakeref) |
| register_context(ce, true); |
| guc_signal_context_fence(ce); |
| intel_context_put(ce); |
| } else if (context_destroyed(ce)) { |
| /* Context has been destroyed */ |
| intel_gt_pm_put_async_untracked(guc_to_gt(guc)); |
| release_guc_id(guc, ce); |
| __guc_context_destroy(ce); |
| } |
| |
| decr_outstanding_submission_g2h(guc); |
| |
| return 0; |
| } |
| |
| int intel_guc_sched_done_process_msg(struct intel_guc *guc, |
| const u32 *msg, |
| u32 len) |
| { |
| struct intel_context *ce; |
| unsigned long flags; |
| u32 ctx_id; |
| |
| if (unlikely(len < 2)) { |
| guc_err(guc, "Invalid length %u\n", len); |
| return -EPROTO; |
| } |
| ctx_id = msg[0]; |
| |
| ce = g2h_context_lookup(guc, ctx_id); |
| if (unlikely(!ce)) |
| return -EPROTO; |
| |
| if (unlikely(context_destroyed(ce) || |
| (!context_pending_enable(ce) && |
| !context_pending_disable(ce)))) { |
| guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", |
| ce->guc_state.sched_state, ctx_id); |
| return -EPROTO; |
| } |
| |
| trace_intel_context_sched_done(ce); |
| |
| if (context_pending_enable(ce)) { |
| #ifdef CONFIG_DRM_I915_SELFTEST |
| if (unlikely(ce->drop_schedule_enable)) { |
| ce->drop_schedule_enable = false; |
| return 0; |
| } |
| #endif |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| clr_context_pending_enable(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| } else if (context_pending_disable(ce)) { |
| bool banned; |
| |
| #ifdef CONFIG_DRM_I915_SELFTEST |
| if (unlikely(ce->drop_schedule_disable)) { |
| ce->drop_schedule_disable = false; |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Unpin must be done before __guc_signal_context_fence, |
| * otherwise a race exists between the requests getting |
| * submitted + retired before this unpin completes resulting in |
| * the pin_count going to zero and the context still being |
| * enabled. |
| */ |
| intel_context_sched_disable_unpin(ce); |
| |
| spin_lock_irqsave(&ce->guc_state.lock, flags); |
| banned = context_banned(ce); |
| clr_context_banned(ce); |
| clr_context_pending_disable(ce); |
| __guc_signal_context_fence(ce); |
| guc_blocked_fence_complete(ce); |
| spin_unlock_irqrestore(&ce->guc_state.lock, flags); |
| |
| if (banned) { |
| guc_cancel_context_requests(ce); |
| intel_engine_signal_breadcrumbs(ce->engine); |
| } |
| } |
| |
| decr_outstanding_submission_g2h(guc); |
| intel_context_put(ce); |
| |
| return 0; |
| } |
| |
| static void capture_error_state(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| struct drm_i915_private *i915 = gt->i915; |
| intel_wakeref_t wakeref; |
| intel_engine_mask_t engine_mask; |
| |
| if (intel_engine_is_virtual(ce->engine)) { |
| struct intel_engine_cs *e; |
| intel_engine_mask_t tmp, virtual_mask = ce->engine->mask; |
| |
| engine_mask = 0; |
| for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) { |
| bool match = intel_guc_capture_is_matching_engine(gt, ce, e); |
| |
| if (match) { |
| intel_engine_set_hung_context(e, ce); |
| engine_mask |= e->mask; |
| i915_increase_reset_engine_count(&i915->gpu_error, |
| e); |
| } |
| } |
| |
| if (!engine_mask) { |
| guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s", |
| ce->guc_id.id, ce->engine->name); |
| engine_mask = ~0U; |
| } |
| } else { |
| intel_engine_set_hung_context(ce->engine, ce); |
| engine_mask = ce->engine->mask; |
| i915_increase_reset_engine_count(&i915->gpu_error, ce->engine); |
| } |
| |
| with_intel_runtime_pm(&i915->runtime_pm, wakeref) |
| i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); |
| } |
| |
| static void guc_context_replay(struct intel_context *ce) |
| { |
| struct i915_sched_engine *sched_engine = ce->engine->sched_engine; |
| |
| __guc_reset_context(ce, ce->engine->mask); |
| tasklet_hi_schedule(&sched_engine->tasklet); |
| } |
| |
| static void guc_handle_context_reset(struct intel_guc *guc, |
| struct intel_context *ce) |
| { |
| bool capture = intel_context_is_schedulable(ce); |
| |
| trace_intel_context_reset(ce); |
| |
| guc_dbg(guc, "%s context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", |
| capture ? "Got" : "Ignoring", |
| ce->guc_id.id, ce->engine->name, |
| str_yes_no(intel_context_is_exiting(ce)), |
| str_yes_no(intel_context_is_banned(ce))); |
| |
| if (capture) { |
| capture_error_state(guc, ce); |
| guc_context_replay(ce); |
| } |
| } |
| |
| int intel_guc_context_reset_process_msg(struct intel_guc *guc, |
| const u32 *msg, u32 len) |
| { |
| struct intel_context *ce; |
| unsigned long flags; |
| int ctx_id; |
| |
| if (unlikely(len != 1)) { |
| guc_err(guc, "Invalid length %u", len); |
| return -EPROTO; |
| } |
| |
| ctx_id = msg[0]; |
| |
| /* |
| * The context lookup uses the xarray but lookups only require an RCU lock |
| * not the full spinlock. So take the lock explicitly and keep it until the |
| * context has been reference count locked to ensure it can't be destroyed |
| * asynchronously until the reset is done. |
| */ |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| ce = g2h_context_lookup(guc, ctx_id); |
| if (ce) |
| intel_context_get(ce); |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| |
| if (unlikely(!ce)) |
| return -EPROTO; |
| |
| guc_handle_context_reset(guc, ce); |
| intel_context_put(ce); |
| |
| return 0; |
| } |
| |
| int intel_guc_error_capture_process_msg(struct intel_guc *guc, |
| const u32 *msg, u32 len) |
| { |
| u32 status; |
| |
| if (unlikely(len != 1)) { |
| guc_dbg(guc, "Invalid length %u", len); |
| return -EPROTO; |
| } |
| |
| status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; |
| if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) |
| guc_warn(guc, "No space for error capture"); |
| |
| intel_guc_capture_process(guc); |
| |
| return 0; |
| } |
| |
| struct intel_engine_cs * |
| intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) |
| { |
| struct intel_gt *gt = guc_to_gt(guc); |
| u8 engine_class = guc_class_to_engine_class(guc_class); |
| |
| /* Class index is checked in class converter */ |
| GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); |
| |
| return gt->engine_class[engine_class][instance]; |
| } |
| |
| static void reset_fail_worker_func(struct work_struct *w) |
| { |
| struct intel_guc *guc = container_of(w, struct intel_guc, |
| submission_state.reset_fail_worker); |
| struct intel_gt *gt = guc_to_gt(guc); |
| intel_engine_mask_t reset_fail_mask; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| reset_fail_mask = guc->submission_state.reset_fail_mask; |
| guc->submission_state.reset_fail_mask = 0; |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| |
| if (likely(reset_fail_mask)) { |
| struct intel_engine_cs *engine; |
| enum intel_engine_id id; |
| |
| /* |
| * GuC is toast at this point - it dead loops after sending the failed |
| * reset notification. So need to manually determine the guilty context. |
| * Note that it should be reliable to do this here because the GuC is |
| * toast and will not be scheduling behind the KMD's back. |
| */ |
| for_each_engine_masked(engine, gt, reset_fail_mask, id) |
| intel_guc_find_hung_context(engine); |
| |
| intel_gt_handle_error(gt, reset_fail_mask, |
| I915_ERROR_CAPTURE, |
| "GuC failed to reset engine mask=0x%x", |
| reset_fail_mask); |
| } |
| } |
| |
| int intel_guc_engine_failure_process_msg(struct intel_guc *guc, |
| const u32 *msg, u32 len) |
| { |
| struct intel_engine_cs *engine; |
| u8 guc_class, instance; |
| u32 reason; |
| unsigned long flags; |
| |
| if (unlikely(len != 3)) { |
| guc_err(guc, "Invalid length %u", len); |
| return -EPROTO; |
| } |
| |
| guc_class = msg[0]; |
| instance = msg[1]; |
| reason = msg[2]; |
| |
| engine = intel_guc_lookup_engine(guc, guc_class, instance); |
| if (unlikely(!engine)) { |
| guc_err(guc, "Invalid engine %d:%d", guc_class, instance); |
| return -EPROTO; |
| } |
| |
| /* |
| * This is an unexpected failure of a hardware feature. So, log a real |
| * error message not just the informational that comes with the reset. |
| */ |
| guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", |
| guc_class, instance, engine->name, reason); |
| |
| spin_lock_irqsave(&guc->submission_state.lock, flags); |
| guc->submission_state.reset_fail_mask |= engine->mask; |
| spin_unlock_irqrestore(&guc->submission_state.lock, flags); |
| |
| /* |
| * A GT reset flushes this worker queue (G2H handler) so we must use |
| * another worker to trigger a GT reset. |
| */ |
| queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); |
| |
| return 0; |
| } |
| |
| void intel_guc_find_hung_context(struct intel_engine_cs *engine) |
| { |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| struct intel_context *ce; |
| struct i915_request *rq; |
| unsigned long index; |
| unsigned long flags; |
| |
| /* Reset called during driver load? GuC not yet initialised! */ |
| if (unlikely(!guc_submission_initialized(guc))) |
| return; |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| bool found; |
| |
| if (!kref_get_unless_zero(&ce->ref)) |
| continue; |
| |
| xa_unlock(&guc->context_lookup); |
| |
| if (!intel_context_is_pinned(ce)) |
| goto next; |
| |
| if (intel_engine_is_virtual(ce->engine)) { |
| if (!(ce->engine->mask & engine->mask)) |
| goto next; |
| } else { |
| if (ce->engine != engine) |
| goto next; |
| } |
| |
| found = false; |
| spin_lock(&ce->guc_state.lock); |
| list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { |
| if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) |
| continue; |
| |
| found = true; |
| break; |
| } |
| spin_unlock(&ce->guc_state.lock); |
| |
| if (found) { |
| intel_engine_set_hung_context(engine, ce); |
| |
| /* Can only cope with one hang at a time... */ |
| intel_context_put(ce); |
| xa_lock(&guc->context_lookup); |
| goto done; |
| } |
| |
| next: |
| intel_context_put(ce); |
| xa_lock(&guc->context_lookup); |
| } |
| done: |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| void intel_guc_dump_active_requests(struct intel_engine_cs *engine, |
| struct i915_request *hung_rq, |
| struct drm_printer *m) |
| { |
| struct intel_guc *guc = gt_to_guc(engine->gt); |
| struct intel_context *ce; |
| unsigned long index; |
| unsigned long flags; |
| |
| /* Reset called during driver load? GuC not yet initialised! */ |
| if (unlikely(!guc_submission_initialized(guc))) |
| return; |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| if (!kref_get_unless_zero(&ce->ref)) |
| continue; |
| |
| xa_unlock(&guc->context_lookup); |
| |
| if (!intel_context_is_pinned(ce)) |
| goto next; |
| |
| if (intel_engine_is_virtual(ce->engine)) { |
| if (!(ce->engine->mask & engine->mask)) |
| goto next; |
| } else { |
| if (ce->engine != engine) |
| goto next; |
| } |
| |
| spin_lock(&ce->guc_state.lock); |
| intel_engine_dump_active_requests(&ce->guc_state.requests, |
| hung_rq, m); |
| spin_unlock(&ce->guc_state.lock); |
| |
| next: |
| intel_context_put(ce); |
| xa_lock(&guc->context_lookup); |
| } |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| void intel_guc_submission_print_info(struct intel_guc *guc, |
| struct drm_printer *p) |
| { |
| struct i915_sched_engine *sched_engine = guc->sched_engine; |
| struct rb_node *rb; |
| unsigned long flags; |
| |
| if (!sched_engine) |
| return; |
| |
| drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", |
| guc->submission_version.major, guc->submission_version.minor, |
| guc->submission_version.patch); |
| drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", |
| atomic_read(&guc->outstanding_submission_g2h)); |
| drm_printf(p, "GuC tasklet count: %u\n", |
| atomic_read(&sched_engine->tasklet.count)); |
| |
| spin_lock_irqsave(&sched_engine->lock, flags); |
| drm_printf(p, "Requests in GuC submit tasklet:\n"); |
| for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { |
| struct i915_priolist *pl = to_priolist(rb); |
| struct i915_request *rq; |
| |
| priolist_for_each_request(rq, pl) |
| drm_printf(p, "guc_id=%u, seqno=%llu\n", |
| rq->context->guc_id.id, |
| rq->fence.seqno); |
| } |
| spin_unlock_irqrestore(&sched_engine->lock, flags); |
| drm_printf(p, "\n"); |
| } |
| |
| static inline void guc_log_context_priority(struct drm_printer *p, |
| struct intel_context *ce) |
| { |
| int i; |
| |
| drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); |
| drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); |
| for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; |
| i < GUC_CLIENT_PRIORITY_NUM; ++i) { |
| drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", |
| i, ce->guc_state.prio_count[i]); |
| } |
| drm_printf(p, "\n"); |
| } |
| |
| static inline void guc_log_context(struct drm_printer *p, |
| struct intel_context *ce) |
| { |
| drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); |
| drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); |
| drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", |
| ce->ring->head, |
| ce->lrc_reg_state[CTX_RING_HEAD]); |
| drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", |
| ce->ring->tail, |
| ce->lrc_reg_state[CTX_RING_TAIL]); |
| drm_printf(p, "\t\tContext Pin Count: %u\n", |
| atomic_read(&ce->pin_count)); |
| drm_printf(p, "\t\tGuC ID Ref Count: %u\n", |
| atomic_read(&ce->guc_id.ref)); |
| drm_printf(p, "\t\tSchedule State: 0x%x\n", |
| ce->guc_state.sched_state); |
| } |
| |
| void intel_guc_submission_print_context_info(struct intel_guc *guc, |
| struct drm_printer *p) |
| { |
| struct intel_context *ce; |
| unsigned long index; |
| unsigned long flags; |
| |
| xa_lock_irqsave(&guc->context_lookup, flags); |
| xa_for_each(&guc->context_lookup, index, ce) { |
| GEM_BUG_ON(intel_context_is_child(ce)); |
| |
| guc_log_context(p, ce); |
| guc_log_context_priority(p, ce); |
| |
| if (intel_context_is_parent(ce)) { |
| struct intel_context *child; |
| |
| drm_printf(p, "\t\tNumber children: %u\n", |
| ce->parallel.number_children); |
| |
| if (ce->parallel.guc.wq_status) { |
| drm_printf(p, "\t\tWQI Head: %u\n", |
| READ_ONCE(*ce->parallel.guc.wq_head)); |
| drm_printf(p, "\t\tWQI Tail: %u\n", |
| READ_ONCE(*ce->parallel.guc.wq_tail)); |
| drm_printf(p, "\t\tWQI Status: %u\n", |
| READ_ONCE(*ce->parallel.guc.wq_status)); |
| } |
| |
| if (ce->engine->emit_bb_start == |
| emit_bb_start_parent_no_preempt_mid_batch) { |
| u8 i; |
| |
| drm_printf(p, "\t\tChildren Go: %u\n", |
| get_children_go_value(ce)); |
| for (i = 0; i < ce->parallel.number_children; ++i) |
| drm_printf(p, "\t\tChildren Join: %u\n", |
| get_children_join_value(ce, i)); |
| } |
| |
| for_each_child(ce, child) |
| guc_log_context(p, child); |
| } |
| } |
| xa_unlock_irqrestore(&guc->context_lookup, flags); |
| } |
| |
| static inline u32 get_children_go_addr(struct intel_context *ce) |
| { |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| |
| return i915_ggtt_offset(ce->state) + |
| __get_parent_scratch_offset(ce) + |
| offsetof(struct parent_scratch, go.semaphore); |
| } |
| |
| static inline u32 get_children_join_addr(struct intel_context *ce, |
| u8 child_index) |
| { |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| |
| return i915_ggtt_offset(ce->state) + |
| __get_parent_scratch_offset(ce) + |
| offsetof(struct parent_scratch, join[child_index].semaphore); |
| } |
| |
| #define PARENT_GO_BB 1 |
| #define PARENT_GO_FINI_BREADCRUMB 0 |
| #define CHILD_GO_BB 1 |
| #define CHILD_GO_FINI_BREADCRUMB 0 |
| static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags) |
| { |
| struct intel_context *ce = rq->context; |
| u32 *cs; |
| u8 i; |
| |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| |
| cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* Wait on children */ |
| for (i = 0; i < ce->parallel.number_children; ++i) { |
| *cs++ = (MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD); |
| *cs++ = PARENT_GO_BB; |
| *cs++ = get_children_join_addr(ce, i); |
| *cs++ = 0; |
| } |
| |
| /* Turn off preemption */ |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| *cs++ = MI_NOOP; |
| |
| /* Tell children go */ |
| cs = gen8_emit_ggtt_write(cs, |
| CHILD_GO_BB, |
| get_children_go_addr(ce), |
| 0); |
| |
| /* Jump to batch */ |
| *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| *cs++ = MI_NOOP; |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, |
| u64 offset, u32 len, |
| const unsigned int flags) |
| { |
| struct intel_context *ce = rq->context; |
| struct intel_context *parent = intel_context_to_parent(ce); |
| u32 *cs; |
| |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| |
| cs = intel_ring_begin(rq, 12); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| /* Signal parent */ |
| cs = gen8_emit_ggtt_write(cs, |
| PARENT_GO_BB, |
| get_children_join_addr(parent, |
| ce->parallel.child_index), |
| 0); |
| |
| /* Wait on parent for go */ |
| *cs++ = (MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD); |
| *cs++ = CHILD_GO_BB; |
| *cs++ = get_children_go_addr(parent); |
| *cs++ = 0; |
| |
| /* Turn off preemption */ |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; |
| |
| /* Jump to batch */ |
| *cs++ = MI_BATCH_BUFFER_START_GEN8 | |
| (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); |
| *cs++ = lower_32_bits(offset); |
| *cs++ = upper_32_bits(offset); |
| |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static u32 * |
| __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs) |
| { |
| struct intel_context *ce = rq->context; |
| u8 i; |
| |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| |
| /* Wait on children */ |
| for (i = 0; i < ce->parallel.number_children; ++i) { |
| *cs++ = (MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD); |
| *cs++ = PARENT_GO_FINI_BREADCRUMB; |
| *cs++ = get_children_join_addr(ce, i); |
| *cs++ = 0; |
| } |
| |
| /* Turn on preemption */ |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| *cs++ = MI_NOOP; |
| |
| /* Tell children go */ |
| cs = gen8_emit_ggtt_write(cs, |
| CHILD_GO_FINI_BREADCRUMB, |
| get_children_go_addr(ce), |
| 0); |
| |
| return cs; |
| } |
| |
| /* |
| * If this true, a submission of multi-lrc requests had an error and the |
| * requests need to be skipped. The front end (execuf IOCTL) should've called |
| * i915_request_skip which squashes the BB but we still need to emit the fini |
| * breadrcrumbs seqno write. At this point we don't know how many of the |
| * requests in the multi-lrc submission were generated so we can't do the |
| * handshake between the parent and children (e.g. if 4 requests should be |
| * generated but 2nd hit an error only 1 would be seen by the GuC backend). |
| * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error |
| * has occurred on any of the requests in submission / relationship. |
| */ |
| static inline bool skip_handshake(struct i915_request *rq) |
| { |
| return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); |
| } |
| |
| #define NON_SKIP_LEN 6 |
| static u32 * |
| emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs) |
| { |
| struct intel_context *ce = rq->context; |
| __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; |
| __maybe_unused u32 *start_fini_breadcrumb_cs = cs; |
| |
| GEM_BUG_ON(!intel_context_is_parent(ce)); |
| |
| if (unlikely(skip_handshake(rq))) { |
| /* |
| * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, |
| * the NON_SKIP_LEN comes from the length of the emits below. |
| */ |
| memset(cs, 0, sizeof(u32) * |
| (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); |
| cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; |
| } else { |
| cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); |
| } |
| |
| /* Emit fini breadcrumb */ |
| before_fini_breadcrumb_user_interrupt_cs = cs; |
| cs = gen8_emit_ggtt_write(cs, |
| rq->fence.seqno, |
| i915_request_active_timeline(rq)->hwsp_offset, |
| 0); |
| |
| /* User interrupt */ |
| *cs++ = MI_USER_INTERRUPT; |
| *cs++ = MI_NOOP; |
| |
| /* Ensure our math for skip + emit is correct */ |
| GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != |
| cs); |
| GEM_BUG_ON(start_fini_breadcrumb_cs + |
| ce->engine->emit_fini_breadcrumb_dw != cs); |
| |
| rq->tail = intel_ring_offset(rq, cs); |
| |
| return cs; |
| } |
| |
| static u32 * |
| __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs) |
| { |
| struct intel_context *ce = rq->context; |
| struct intel_context *parent = intel_context_to_parent(ce); |
| |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| |
| /* Turn on preemption */ |
| *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; |
| *cs++ = MI_NOOP; |
| |
| /* Signal parent */ |
| cs = gen8_emit_ggtt_write(cs, |
| PARENT_GO_FINI_BREADCRUMB, |
| get_children_join_addr(parent, |
| ce->parallel.child_index), |
| 0); |
| |
| /* Wait parent on for go */ |
| *cs++ = (MI_SEMAPHORE_WAIT | |
| MI_SEMAPHORE_GLOBAL_GTT | |
| MI_SEMAPHORE_POLL | |
| MI_SEMAPHORE_SAD_EQ_SDD); |
| *cs++ = CHILD_GO_FINI_BREADCRUMB; |
| *cs++ = get_children_go_addr(parent); |
| *cs++ = 0; |
| |
| return cs; |
| } |
| |
| static u32 * |
| emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, |
| u32 *cs) |
| { |
| struct intel_context *ce = rq->context; |
| __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; |
| __maybe_unused u32 *start_fini_breadcrumb_cs = cs; |
| |
| GEM_BUG_ON(!intel_context_is_child(ce)); |
| |
| if (unlikely(skip_handshake(rq))) { |
| /* |
| * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, |
| * the NON_SKIP_LEN comes from the length of the emits below. |
| */ |
| memset(cs, 0, sizeof(u32) * |
| (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); |
| cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; |
| } else { |
| cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); |
| } |
| |
| /* Emit fini breadcrumb */ |
| before_fini_breadcrumb_user_interrupt_cs = cs; |
| cs = gen8_emit_ggtt_write(cs, |
| rq->fence.seqno, |
| i915_request_active_timeline(rq)->hwsp_offset, |
| 0); |
| |
| /* User interrupt */ |
| *cs++ = MI_USER_INTERRUPT; |
| *cs++ = MI_NOOP; |
| |
| /* Ensure our math for skip + emit is correct */ |
| GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != |
| cs); |
| GEM_BUG_ON(start_fini_breadcrumb_cs + |
| ce->engine->emit_fini_breadcrumb_dw != cs); |
| |
| rq->tail = intel_ring_offset(rq, cs); |
| |
| return cs; |
| } |
| |
| #undef NON_SKIP_LEN |
| |
| static struct intel_context * |
| guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, |
| unsigned long flags) |
| { |
| struct guc_virtual_engine *ve; |
| struct intel_guc *guc; |
| unsigned int n; |
| int err; |
| |
| ve = kzalloc(sizeof(*ve), GFP_KERNEL); |
| if (!ve) |
| return ERR_PTR(-ENOMEM); |
| |
| guc = gt_to_guc(siblings[0]->gt); |
| |
| ve->base.i915 = siblings[0]->i915; |
| ve->base.gt = siblings[0]->gt; |
| ve->base.uncore = siblings[0]->uncore; |
| ve->base.id = -1; |
| |
| ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; |
| ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; |
| ve->base.saturated = ALL_ENGINES; |
| |
| snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); |
| |
| ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); |
| |
| ve->base.cops = &virtual_guc_context_ops; |
| ve->base.request_alloc = guc_request_alloc; |
| ve->base.bump_serial = virtual_guc_bump_serial; |
| |
| ve->base.submit_request = guc_submit_request; |
| |
| ve->base.flags = I915_ENGINE_IS_VIRTUAL; |
| |
| BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES); |
| ve->base.mask = VIRTUAL_ENGINES; |
| |
| intel_context_init(&ve->context, &ve->base); |
| |
| for (n = 0; n < count; n++) { |
| struct intel_engine_cs *sibling = siblings[n]; |
| |
| GEM_BUG_ON(!is_power_of_2(sibling->mask)); |
| if (sibling->mask & ve->base.mask) { |
| guc_dbg(guc, "duplicate %s entry in load balancer\n", |
| sibling->name); |
| err = -EINVAL; |
| goto err_put; |
| } |
| |
| ve->base.mask |= sibling->mask; |
| ve->base.logical_mask |= sibling->logical_mask; |
| |
| if (n != 0 && ve->base.class != sibling->class) { |
| guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", |
| sibling->class, ve->base.class); |
| err = -EINVAL; |
| goto err_put; |
| } else if (n == 0) { |
| ve->base.class = sibling->class; |
| ve->base.uabi_class = sibling->uabi_class; |
| snprintf(ve->base.name, sizeof(ve->base.name), |
| "v%dx%d", ve->base.class, count); |
| ve->base.context_size = sibling->context_size; |
| |
| ve->base.add_active_request = |
| sibling->add_active_request; |
| ve->base.remove_active_request = |
| sibling->remove_active_request; |
| ve->base.emit_bb_start = sibling->emit_bb_start; |
| ve->base.emit_flush = sibling->emit_flush; |
| ve->base.emit_init_breadcrumb = |
| sibling->emit_init_breadcrumb; |
| ve->base.emit_fini_breadcrumb = |
| sibling->emit_fini_breadcrumb; |
| ve->base.emit_fini_breadcrumb_dw = |
| sibling->emit_fini_breadcrumb_dw; |
| ve->base.breadcrumbs = |
| intel_breadcrumbs_get(sibling->breadcrumbs); |
| |
| ve->base.flags |= sibling->flags; |
| |
| ve->base.props.timeslice_duration_ms = |
| sibling->props.timeslice_duration_ms; |
| ve->base.props.preempt_timeout_ms = |
| sibling->props.preempt_timeout_ms; |
| } |
| } |
| |
| return &ve->context; |
| |
| err_put: |
| intel_context_put(&ve->context); |
| return ERR_PTR(err); |
| } |
| |
| bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) |
| { |
| struct intel_engine_cs *engine; |
| intel_engine_mask_t tmp, mask = ve->mask; |
| |
| for_each_engine_masked(engine, ve->gt, mask, tmp) |
| if (READ_ONCE(engine->props.heartbeat_interval_ms)) |
| return true; |
| |
| return false; |
| } |
| |
| #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) |
| #include "selftest_guc.c" |
| #include "selftest_guc_multi_lrc.c" |
| #include "selftest_guc_hangcheck.c" |
| #endif |