| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. |
| * Author: Marc Zyngier <marc.zyngier@arm.com> |
| */ |
| |
| #define pr_fmt(fmt) "GICv3: " fmt |
| |
| #include <linux/acpi.h> |
| #include <linux/cpu.h> |
| #include <linux/cpu_pm.h> |
| #include <linux/delay.h> |
| #include <linux/interrupt.h> |
| #include <linux/irqdomain.h> |
| #include <linux/kernel.h> |
| #include <linux/kstrtox.h> |
| #include <linux/of.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/percpu.h> |
| #include <linux/refcount.h> |
| #include <linux/slab.h> |
| #include <linux/iopoll.h> |
| |
| #include <linux/irqchip.h> |
| #include <linux/irqchip/arm-gic-common.h> |
| #include <linux/irqchip/arm-gic-v3.h> |
| #include <linux/irqchip/arm-gic-v3-prio.h> |
| #include <linux/irqchip/irq-partition-percpu.h> |
| #include <linux/bitfield.h> |
| #include <linux/bits.h> |
| #include <linux/arm-smccc.h> |
| |
| #include <asm/cputype.h> |
| #include <asm/exception.h> |
| #include <asm/smp_plat.h> |
| #include <asm/virt.h> |
| |
| #include "irq-gic-common.h" |
| |
| static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ; |
| static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI; |
| |
| #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) |
| #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) |
| #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2) |
| |
| #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) |
| |
| static struct cpumask broken_rdists __read_mostly __maybe_unused; |
| |
| struct redist_region { |
| void __iomem *redist_base; |
| phys_addr_t phys_base; |
| bool single_redist; |
| }; |
| |
| struct gic_chip_data { |
| struct fwnode_handle *fwnode; |
| phys_addr_t dist_phys_base; |
| void __iomem *dist_base; |
| struct redist_region *redist_regions; |
| struct rdists rdists; |
| struct irq_domain *domain; |
| u64 redist_stride; |
| u32 nr_redist_regions; |
| u64 flags; |
| bool has_rss; |
| unsigned int ppi_nr; |
| struct partition_desc **ppi_descs; |
| }; |
| |
| #define T241_CHIPS_MAX 4 |
| static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; |
| static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); |
| |
| static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); |
| |
| static struct gic_chip_data gic_data __read_mostly; |
| static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); |
| |
| #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) |
| #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) |
| #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) |
| |
| /* |
| * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs |
| * are potentially stolen by the secure side. Some code, especially code dealing |
| * with hwirq IDs, is simplified by accounting for all 16. |
| */ |
| #define SGI_NR 16 |
| |
| /* |
| * The behaviours of RPR and PMR registers differ depending on the value of |
| * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the |
| * distributor and redistributors depends on whether security is enabled in the |
| * GIC. |
| * |
| * When security is enabled, non-secure priority values from the (re)distributor |
| * are presented to the GIC CPUIF as follow: |
| * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; |
| * |
| * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure |
| * EL1 are subject to a similar operation thus matching the priorities presented |
| * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, |
| * these values are unchanged by the GIC. |
| * |
| * see GICv3/GICv4 Architecture Specification (IHI0069D): |
| * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt |
| * priorities. |
| * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 |
| * interrupt. |
| */ |
| static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); |
| |
| static u32 gic_get_pribits(void) |
| { |
| u32 pribits; |
| |
| pribits = gic_read_ctlr(); |
| pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; |
| pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; |
| pribits++; |
| |
| return pribits; |
| } |
| |
| static bool gic_has_group0(void) |
| { |
| u32 val; |
| u32 old_pmr; |
| |
| old_pmr = gic_read_pmr(); |
| |
| /* |
| * Let's find out if Group0 is under control of EL3 or not by |
| * setting the highest possible, non-zero priority in PMR. |
| * |
| * If SCR_EL3.FIQ is set, the priority gets shifted down in |
| * order for the CPU interface to set bit 7, and keep the |
| * actual priority in the non-secure range. In the process, it |
| * looses the least significant bit and the actual priority |
| * becomes 0x80. Reading it back returns 0, indicating that |
| * we're don't have access to Group0. |
| */ |
| gic_write_pmr(BIT(8 - gic_get_pribits())); |
| val = gic_read_pmr(); |
| |
| gic_write_pmr(old_pmr); |
| |
| return val != 0; |
| } |
| |
| static inline bool gic_dist_security_disabled(void) |
| { |
| return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; |
| } |
| |
| static bool cpus_have_security_disabled __ro_after_init; |
| static bool cpus_have_group0 __ro_after_init; |
| |
| static void __init gic_prio_init(void) |
| { |
| cpus_have_security_disabled = gic_dist_security_disabled(); |
| cpus_have_group0 = gic_has_group0(); |
| |
| /* |
| * How priority values are used by the GIC depends on two things: |
| * the security state of the GIC (controlled by the GICD_CTRL.DS bit) |
| * and if Group 0 interrupts can be delivered to Linux in the non-secure |
| * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the |
| * way priorities are presented in ICC_PMR_EL1 and in the distributor: |
| * |
| * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor |
| * ------------------------------------------------------- |
| * 1 | - | unchanged | unchanged |
| * ------------------------------------------------------- |
| * 0 | 1 | non-secure | non-secure |
| * ------------------------------------------------------- |
| * 0 | 0 | unchanged | non-secure |
| * |
| * In the non-secure view reads and writes are modified: |
| * |
| * - A value written is right-shifted by one and the MSB is set, |
| * forcing the priority into the non-secure range. |
| * |
| * - A value read is left-shifted by one. |
| * |
| * In the first two cases, where ICC_PMR_EL1 and the interrupt priority |
| * are both either modified or unchanged, we can use the same set of |
| * priorities. |
| * |
| * In the last case, where only the interrupt priorities are modified to |
| * be in the non-secure range, we program the non-secure values into |
| * the distributor to match the PMR values we want. |
| */ |
| if (cpus_have_group0 & !cpus_have_security_disabled) { |
| dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq); |
| dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi); |
| } |
| |
| pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n", |
| cpus_have_security_disabled, |
| !cpus_have_group0); |
| } |
| |
| /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */ |
| static refcount_t *rdist_nmi_refs; |
| |
| static struct gic_kvm_info gic_v3_kvm_info __initdata; |
| static DEFINE_PER_CPU(bool, has_rss); |
| |
| #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) |
| #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) |
| #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) |
| #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) |
| |
| /* Our default, arbitrary priority value. Linux only uses one anyway. */ |
| #define DEFAULT_PMR_VALUE 0xf0 |
| |
| enum gic_intid_range { |
| SGI_RANGE, |
| PPI_RANGE, |
| SPI_RANGE, |
| EPPI_RANGE, |
| ESPI_RANGE, |
| LPI_RANGE, |
| __INVALID_RANGE__ |
| }; |
| |
| static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) |
| { |
| switch (hwirq) { |
| case 0 ... 15: |
| return SGI_RANGE; |
| case 16 ... 31: |
| return PPI_RANGE; |
| case 32 ... 1019: |
| return SPI_RANGE; |
| case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): |
| return EPPI_RANGE; |
| case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): |
| return ESPI_RANGE; |
| case 8192 ... GENMASK(23, 0): |
| return LPI_RANGE; |
| default: |
| return __INVALID_RANGE__; |
| } |
| } |
| |
| static enum gic_intid_range get_intid_range(struct irq_data *d) |
| { |
| return __get_intid_range(d->hwirq); |
| } |
| |
| static inline bool gic_irq_in_rdist(struct irq_data *d) |
| { |
| switch (get_intid_range(d)) { |
| case SGI_RANGE: |
| case PPI_RANGE: |
| case EPPI_RANGE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static inline void __iomem *gic_dist_base_alias(struct irq_data *d) |
| { |
| if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { |
| irq_hw_number_t hwirq = irqd_to_hwirq(d); |
| u32 chip; |
| |
| /* |
| * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} |
| * registers are directed to the chip that owns the SPI. The |
| * the alias region can also be used for writes to the |
| * GICD_In{E} except GICD_ICENABLERn. Each chip has support |
| * for 320 {E}SPIs. Mappings for all 4 chips: |
| * Chip0 = 32-351 |
| * Chip1 = 352-671 |
| * Chip2 = 672-991 |
| * Chip3 = 4096-4415 |
| */ |
| switch (__get_intid_range(hwirq)) { |
| case SPI_RANGE: |
| chip = (hwirq - 32) / 320; |
| break; |
| case ESPI_RANGE: |
| chip = 3; |
| break; |
| default: |
| unreachable(); |
| } |
| return t241_dist_base_alias[chip]; |
| } |
| |
| return gic_data.dist_base; |
| } |
| |
| static inline void __iomem *gic_dist_base(struct irq_data *d) |
| { |
| switch (get_intid_range(d)) { |
| case SGI_RANGE: |
| case PPI_RANGE: |
| case EPPI_RANGE: |
| /* SGI+PPI -> SGI_base for this CPU */ |
| return gic_data_rdist_sgi_base(); |
| |
| case SPI_RANGE: |
| case ESPI_RANGE: |
| /* SPI -> dist_base */ |
| return gic_data.dist_base; |
| |
| default: |
| return NULL; |
| } |
| } |
| |
| static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) |
| { |
| u32 val; |
| int ret; |
| |
| ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit), |
| 1, USEC_PER_SEC); |
| if (ret == -ETIMEDOUT) |
| pr_err_ratelimited("RWP timeout, gone fishing\n"); |
| } |
| |
| /* Wait for completion of a distributor change */ |
| static void gic_dist_wait_for_rwp(void) |
| { |
| gic_do_wait_for_rwp(gic_data.dist_base, GICD_CTLR_RWP); |
| } |
| |
| /* Wait for completion of a redistributor change */ |
| static void gic_redist_wait_for_rwp(void) |
| { |
| gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); |
| } |
| |
| static void gic_enable_redist(bool enable) |
| { |
| void __iomem *rbase; |
| u32 val; |
| int ret; |
| |
| if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) |
| return; |
| |
| rbase = gic_data_rdist_rd_base(); |
| |
| val = readl_relaxed(rbase + GICR_WAKER); |
| if (enable) |
| /* Wake up this CPU redistributor */ |
| val &= ~GICR_WAKER_ProcessorSleep; |
| else |
| val |= GICR_WAKER_ProcessorSleep; |
| writel_relaxed(val, rbase + GICR_WAKER); |
| |
| if (!enable) { /* Check that GICR_WAKER is writeable */ |
| val = readl_relaxed(rbase + GICR_WAKER); |
| if (!(val & GICR_WAKER_ProcessorSleep)) |
| return; /* No PM support in this redistributor */ |
| } |
| |
| ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val, |
| enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep), |
| 1, USEC_PER_SEC); |
| if (ret == -ETIMEDOUT) { |
| pr_err_ratelimited("redistributor failed to %s...\n", |
| enable ? "wakeup" : "sleep"); |
| } |
| } |
| |
| /* |
| * Routines to disable, enable, EOI and route interrupts |
| */ |
| static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) |
| { |
| switch (get_intid_range(d)) { |
| case SGI_RANGE: |
| case PPI_RANGE: |
| case SPI_RANGE: |
| *index = d->hwirq; |
| return offset; |
| case EPPI_RANGE: |
| /* |
| * Contrary to the ESPI range, the EPPI range is contiguous |
| * to the PPI range in the registers, so let's adjust the |
| * displacement accordingly. Consistency is overrated. |
| */ |
| *index = d->hwirq - EPPI_BASE_INTID + 32; |
| return offset; |
| case ESPI_RANGE: |
| *index = d->hwirq - ESPI_BASE_INTID; |
| switch (offset) { |
| case GICD_ISENABLER: |
| return GICD_ISENABLERnE; |
| case GICD_ICENABLER: |
| return GICD_ICENABLERnE; |
| case GICD_ISPENDR: |
| return GICD_ISPENDRnE; |
| case GICD_ICPENDR: |
| return GICD_ICPENDRnE; |
| case GICD_ISACTIVER: |
| return GICD_ISACTIVERnE; |
| case GICD_ICACTIVER: |
| return GICD_ICACTIVERnE; |
| case GICD_IPRIORITYR: |
| return GICD_IPRIORITYRnE; |
| case GICD_ICFGR: |
| return GICD_ICFGRnE; |
| case GICD_IROUTER: |
| return GICD_IROUTERnE; |
| default: |
| break; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| WARN_ON(1); |
| *index = d->hwirq; |
| return offset; |
| } |
| |
| static int gic_peek_irq(struct irq_data *d, u32 offset) |
| { |
| void __iomem *base; |
| u32 index, mask; |
| |
| offset = convert_offset_index(d, offset, &index); |
| mask = 1 << (index % 32); |
| |
| if (gic_irq_in_rdist(d)) |
| base = gic_data_rdist_sgi_base(); |
| else |
| base = gic_dist_base_alias(d); |
| |
| return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); |
| } |
| |
| static void gic_poke_irq(struct irq_data *d, u32 offset) |
| { |
| void __iomem *base; |
| u32 index, mask; |
| |
| offset = convert_offset_index(d, offset, &index); |
| mask = 1 << (index % 32); |
| |
| if (gic_irq_in_rdist(d)) |
| base = gic_data_rdist_sgi_base(); |
| else |
| base = gic_data.dist_base; |
| |
| writel_relaxed(mask, base + offset + (index / 32) * 4); |
| } |
| |
| static void gic_mask_irq(struct irq_data *d) |
| { |
| gic_poke_irq(d, GICD_ICENABLER); |
| if (gic_irq_in_rdist(d)) |
| gic_redist_wait_for_rwp(); |
| else |
| gic_dist_wait_for_rwp(); |
| } |
| |
| static void gic_eoimode1_mask_irq(struct irq_data *d) |
| { |
| gic_mask_irq(d); |
| /* |
| * When masking a forwarded interrupt, make sure it is |
| * deactivated as well. |
| * |
| * This ensures that an interrupt that is getting |
| * disabled/masked will not get "stuck", because there is |
| * noone to deactivate it (guest is being terminated). |
| */ |
| if (irqd_is_forwarded_to_vcpu(d)) |
| gic_poke_irq(d, GICD_ICACTIVER); |
| } |
| |
| static void gic_unmask_irq(struct irq_data *d) |
| { |
| gic_poke_irq(d, GICD_ISENABLER); |
| } |
| |
| static inline bool gic_supports_nmi(void) |
| { |
| return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && |
| static_branch_likely(&supports_pseudo_nmis); |
| } |
| |
| static int gic_irq_set_irqchip_state(struct irq_data *d, |
| enum irqchip_irq_state which, bool val) |
| { |
| u32 reg; |
| |
| if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ |
| return -EINVAL; |
| |
| switch (which) { |
| case IRQCHIP_STATE_PENDING: |
| reg = val ? GICD_ISPENDR : GICD_ICPENDR; |
| break; |
| |
| case IRQCHIP_STATE_ACTIVE: |
| reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; |
| break; |
| |
| case IRQCHIP_STATE_MASKED: |
| if (val) { |
| gic_mask_irq(d); |
| return 0; |
| } |
| reg = GICD_ISENABLER; |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| gic_poke_irq(d, reg); |
| return 0; |
| } |
| |
| static int gic_irq_get_irqchip_state(struct irq_data *d, |
| enum irqchip_irq_state which, bool *val) |
| { |
| if (d->hwirq >= 8192) /* PPI/SPI only */ |
| return -EINVAL; |
| |
| switch (which) { |
| case IRQCHIP_STATE_PENDING: |
| *val = gic_peek_irq(d, GICD_ISPENDR); |
| break; |
| |
| case IRQCHIP_STATE_ACTIVE: |
| *val = gic_peek_irq(d, GICD_ISACTIVER); |
| break; |
| |
| case IRQCHIP_STATE_MASKED: |
| *val = !gic_peek_irq(d, GICD_ISENABLER); |
| break; |
| |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void gic_irq_set_prio(struct irq_data *d, u8 prio) |
| { |
| void __iomem *base = gic_dist_base(d); |
| u32 offset, index; |
| |
| offset = convert_offset_index(d, GICD_IPRIORITYR, &index); |
| |
| writeb_relaxed(prio, base + offset + index); |
| } |
| |
| static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) |
| { |
| switch (__get_intid_range(hwirq)) { |
| case PPI_RANGE: |
| return hwirq - 16; |
| case EPPI_RANGE: |
| return hwirq - EPPI_BASE_INTID + 16; |
| default: |
| unreachable(); |
| } |
| } |
| |
| static u32 __gic_get_rdist_index(irq_hw_number_t hwirq) |
| { |
| switch (__get_intid_range(hwirq)) { |
| case SGI_RANGE: |
| case PPI_RANGE: |
| return hwirq; |
| case EPPI_RANGE: |
| return hwirq - EPPI_BASE_INTID + 32; |
| default: |
| unreachable(); |
| } |
| } |
| |
| static u32 gic_get_rdist_index(struct irq_data *d) |
| { |
| return __gic_get_rdist_index(d->hwirq); |
| } |
| |
| static int gic_irq_nmi_setup(struct irq_data *d) |
| { |
| struct irq_desc *desc = irq_to_desc(d->irq); |
| |
| if (!gic_supports_nmi()) |
| return -EINVAL; |
| |
| if (gic_peek_irq(d, GICD_ISENABLER)) { |
| pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); |
| return -EINVAL; |
| } |
| |
| /* |
| * A secondary irq_chip should be in charge of LPI request, |
| * it should not be possible to get there |
| */ |
| if (WARN_ON(irqd_to_hwirq(d) >= 8192)) |
| return -EINVAL; |
| |
| /* desc lock should already be held */ |
| if (gic_irq_in_rdist(d)) { |
| u32 idx = gic_get_rdist_index(d); |
| |
| /* |
| * Setting up a percpu interrupt as NMI, only switch handler |
| * for first NMI |
| */ |
| if (!refcount_inc_not_zero(&rdist_nmi_refs[idx])) { |
| refcount_set(&rdist_nmi_refs[idx], 1); |
| desc->handle_irq = handle_percpu_devid_fasteoi_nmi; |
| } |
| } else { |
| desc->handle_irq = handle_fasteoi_nmi; |
| } |
| |
| gic_irq_set_prio(d, dist_prio_nmi); |
| |
| return 0; |
| } |
| |
| static void gic_irq_nmi_teardown(struct irq_data *d) |
| { |
| struct irq_desc *desc = irq_to_desc(d->irq); |
| |
| if (WARN_ON(!gic_supports_nmi())) |
| return; |
| |
| if (gic_peek_irq(d, GICD_ISENABLER)) { |
| pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq); |
| return; |
| } |
| |
| /* |
| * A secondary irq_chip should be in charge of LPI request, |
| * it should not be possible to get there |
| */ |
| if (WARN_ON(irqd_to_hwirq(d) >= 8192)) |
| return; |
| |
| /* desc lock should already be held */ |
| if (gic_irq_in_rdist(d)) { |
| u32 idx = gic_get_rdist_index(d); |
| |
| /* Tearing down NMI, only switch handler for last NMI */ |
| if (refcount_dec_and_test(&rdist_nmi_refs[idx])) |
| desc->handle_irq = handle_percpu_devid_irq; |
| } else { |
| desc->handle_irq = handle_fasteoi_irq; |
| } |
| |
| gic_irq_set_prio(d, dist_prio_irq); |
| } |
| |
| static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) |
| { |
| enum gic_intid_range range; |
| |
| if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) |
| return false; |
| |
| range = get_intid_range(d); |
| |
| /* |
| * The workaround is needed if the IRQ is an SPI and |
| * the target cpu is different from the one we are |
| * executing on. |
| */ |
| return (range == SPI_RANGE || range == ESPI_RANGE) && |
| !cpumask_test_cpu(raw_smp_processor_id(), |
| irq_data_get_effective_affinity_mask(d)); |
| } |
| |
| static void gic_eoi_irq(struct irq_data *d) |
| { |
| write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1); |
| isb(); |
| |
| if (gic_arm64_erratum_2941627_needed(d)) { |
| /* |
| * Make sure the GIC stream deactivate packet |
| * issued by ICC_EOIR1_EL1 has completed before |
| * deactivating through GICD_IACTIVER. |
| */ |
| dsb(sy); |
| gic_poke_irq(d, GICD_ICACTIVER); |
| } |
| } |
| |
| static void gic_eoimode1_eoi_irq(struct irq_data *d) |
| { |
| /* |
| * No need to deactivate an LPI, or an interrupt that |
| * is is getting forwarded to a vcpu. |
| */ |
| if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) |
| return; |
| |
| if (!gic_arm64_erratum_2941627_needed(d)) |
| gic_write_dir(irqd_to_hwirq(d)); |
| else |
| gic_poke_irq(d, GICD_ICACTIVER); |
| } |
| |
| static int gic_set_type(struct irq_data *d, unsigned int type) |
| { |
| irq_hw_number_t irq = irqd_to_hwirq(d); |
| enum gic_intid_range range; |
| void __iomem *base; |
| u32 offset, index; |
| int ret; |
| |
| range = get_intid_range(d); |
| |
| /* Interrupt configuration for SGIs can't be changed */ |
| if (range == SGI_RANGE) |
| return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; |
| |
| /* SPIs have restrictions on the supported types */ |
| if ((range == SPI_RANGE || range == ESPI_RANGE) && |
| type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) |
| return -EINVAL; |
| |
| if (gic_irq_in_rdist(d)) |
| base = gic_data_rdist_sgi_base(); |
| else |
| base = gic_dist_base_alias(d); |
| |
| offset = convert_offset_index(d, GICD_ICFGR, &index); |
| |
| ret = gic_configure_irq(index, type, base + offset); |
| if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { |
| /* Misconfigured PPIs are usually not fatal */ |
| pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n", irq); |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) |
| { |
| if (get_intid_range(d) == SGI_RANGE) |
| return -EINVAL; |
| |
| if (vcpu) |
| irqd_set_forwarded_to_vcpu(d); |
| else |
| irqd_clr_forwarded_to_vcpu(d); |
| return 0; |
| } |
| |
| static u64 gic_cpu_to_affinity(int cpu) |
| { |
| u64 mpidr = cpu_logical_map(cpu); |
| u64 aff; |
| |
| /* ASR8601 needs to have its affinities shifted down... */ |
| if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) |
| mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | |
| (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); |
| |
| aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 0)); |
| |
| return aff; |
| } |
| |
| static void gic_deactivate_unhandled(u32 irqnr) |
| { |
| if (static_branch_likely(&supports_deactivate_key)) { |
| if (irqnr < 8192) |
| gic_write_dir(irqnr); |
| } else { |
| write_gicreg(irqnr, ICC_EOIR1_EL1); |
| isb(); |
| } |
| } |
| |
| /* |
| * Follow a read of the IAR with any HW maintenance that needs to happen prior |
| * to invoking the relevant IRQ handler. We must do two things: |
| * |
| * (1) Ensure instruction ordering between a read of IAR and subsequent |
| * instructions in the IRQ handler using an ISB. |
| * |
| * It is possible for the IAR to report an IRQ which was signalled *after* |
| * the CPU took an IRQ exception as multiple interrupts can race to be |
| * recognized by the GIC, earlier interrupts could be withdrawn, and/or |
| * later interrupts could be prioritized by the GIC. |
| * |
| * For devices which are tightly coupled to the CPU, such as PMUs, a |
| * context synchronization event is necessary to ensure that system |
| * register state is not stale, as these may have been indirectly written |
| * *after* exception entry. |
| * |
| * (2) Deactivate the interrupt when EOI mode 1 is in use. |
| */ |
| static inline void gic_complete_ack(u32 irqnr) |
| { |
| if (static_branch_likely(&supports_deactivate_key)) |
| write_gicreg(irqnr, ICC_EOIR1_EL1); |
| |
| isb(); |
| } |
| |
| static bool gic_rpr_is_nmi_prio(void) |
| { |
| if (!gic_supports_nmi()) |
| return false; |
| |
| return unlikely(gic_read_rpr() == GICV3_PRIO_NMI); |
| } |
| |
| static bool gic_irqnr_is_special(u32 irqnr) |
| { |
| return irqnr >= 1020 && irqnr <= 1023; |
| } |
| |
| static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) |
| { |
| if (gic_irqnr_is_special(irqnr)) |
| return; |
| |
| gic_complete_ack(irqnr); |
| |
| if (generic_handle_domain_irq(gic_data.domain, irqnr)) { |
| WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr); |
| gic_deactivate_unhandled(irqnr); |
| } |
| } |
| |
| static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) |
| { |
| if (gic_irqnr_is_special(irqnr)) |
| return; |
| |
| gic_complete_ack(irqnr); |
| |
| if (generic_handle_domain_nmi(gic_data.domain, irqnr)) { |
| WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr); |
| gic_deactivate_unhandled(irqnr); |
| } |
| } |
| |
| /* |
| * An exception has been taken from a context with IRQs enabled, and this could |
| * be an IRQ or an NMI. |
| * |
| * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear |
| * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, |
| * after handling any NMI but before handling any IRQ. |
| * |
| * The entry code has performed IRQ entry, and if an NMI is detected we must |
| * perform NMI entry/exit around invoking the handler. |
| */ |
| static void __gic_handle_irq_from_irqson(struct pt_regs *regs) |
| { |
| bool is_nmi; |
| u32 irqnr; |
| |
| irqnr = gic_read_iar(); |
| |
| is_nmi = gic_rpr_is_nmi_prio(); |
| |
| if (is_nmi) { |
| nmi_enter(); |
| __gic_handle_nmi(irqnr, regs); |
| nmi_exit(); |
| } |
| |
| if (gic_prio_masking_enabled()) { |
| gic_pmr_mask_irqs(); |
| gic_arch_enable_irqs(); |
| } |
| |
| if (!is_nmi) |
| __gic_handle_irq(irqnr, regs); |
| } |
| |
| /* |
| * An exception has been taken from a context with IRQs disabled, which can only |
| * be an NMI. |
| * |
| * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave |
| * DAIF.IF (and ICC_PMR_EL1) unchanged. |
| * |
| * The entry code has performed NMI entry. |
| */ |
| static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) |
| { |
| u64 pmr; |
| u32 irqnr; |
| |
| /* |
| * We were in a context with IRQs disabled. However, the |
| * entry code has set PMR to a value that allows any |
| * interrupt to be acknowledged, and not just NMIs. This can |
| * lead to surprising effects if the NMI has been retired in |
| * the meantime, and that there is an IRQ pending. The IRQ |
| * would then be taken in NMI context, something that nobody |
| * wants to debug twice. |
| * |
| * Until we sort this, drop PMR again to a level that will |
| * actually only allow NMIs before reading IAR, and then |
| * restore it to what it was. |
| */ |
| pmr = gic_read_pmr(); |
| gic_pmr_mask_irqs(); |
| isb(); |
| irqnr = gic_read_iar(); |
| gic_write_pmr(pmr); |
| |
| __gic_handle_nmi(irqnr, regs); |
| } |
| |
| static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) |
| { |
| if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) |
| __gic_handle_irq_from_irqsoff(regs); |
| else |
| __gic_handle_irq_from_irqson(regs); |
| } |
| |
| static void __init gic_dist_init(void) |
| { |
| unsigned int i; |
| u64 affinity; |
| void __iomem *base = gic_data.dist_base; |
| u32 val; |
| |
| /* Disable the distributor */ |
| writel_relaxed(0, base + GICD_CTLR); |
| gic_dist_wait_for_rwp(); |
| |
| /* |
| * Configure SPIs as non-secure Group-1. This will only matter |
| * if the GIC only has a single security state. This will not |
| * do the right thing if the kernel is running in secure mode, |
| * but that's not the intended use case anyway. |
| */ |
| for (i = 32; i < GIC_LINE_NR; i += 32) |
| writel_relaxed(~0, base + GICD_IGROUPR + i / 8); |
| |
| /* Extended SPI range, not handled by the GICv2/GICv3 common code */ |
| for (i = 0; i < GIC_ESPI_NR; i += 32) { |
| writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); |
| writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); |
| } |
| |
| for (i = 0; i < GIC_ESPI_NR; i += 32) |
| writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); |
| |
| for (i = 0; i < GIC_ESPI_NR; i += 16) |
| writel_relaxed(0, base + GICD_ICFGRnE + i / 4); |
| |
| for (i = 0; i < GIC_ESPI_NR; i += 4) |
| writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq), |
| base + GICD_IPRIORITYRnE + i); |
| |
| /* Now do the common stuff */ |
| gic_dist_config(base, GIC_LINE_NR, dist_prio_irq); |
| |
| val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; |
| if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { |
| pr_info("Enabling SGIs without active state\n"); |
| val |= GICD_CTLR_nASSGIreq; |
| } |
| |
| /* Enable distributor with ARE, Group1, and wait for it to drain */ |
| writel_relaxed(val, base + GICD_CTLR); |
| gic_dist_wait_for_rwp(); |
| |
| /* |
| * Set all global interrupts to the boot CPU only. ARE must be |
| * enabled. |
| */ |
| affinity = gic_cpu_to_affinity(smp_processor_id()); |
| for (i = 32; i < GIC_LINE_NR; i++) |
| gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); |
| |
| for (i = 0; i < GIC_ESPI_NR; i++) |
| gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); |
| } |
| |
| static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) |
| { |
| int ret = -ENODEV; |
| int i; |
| |
| for (i = 0; i < gic_data.nr_redist_regions; i++) { |
| void __iomem *ptr = gic_data.redist_regions[i].redist_base; |
| u64 typer; |
| u32 reg; |
| |
| reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| if (reg != GIC_PIDR2_ARCH_GICv3 && |
| reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ |
| pr_warn("No redistributor present @%p\n", ptr); |
| break; |
| } |
| |
| do { |
| typer = gic_read_typer(ptr + GICR_TYPER); |
| ret = fn(gic_data.redist_regions + i, ptr); |
| if (!ret) |
| return 0; |
| |
| if (gic_data.redist_regions[i].single_redist) |
| break; |
| |
| if (gic_data.redist_stride) { |
| ptr += gic_data.redist_stride; |
| } else { |
| ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ |
| if (typer & GICR_TYPER_VLPIS) |
| ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ |
| } |
| } while (!(typer & GICR_TYPER_LAST)); |
| } |
| |
| return ret ? -ENODEV : 0; |
| } |
| |
| static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) |
| { |
| unsigned long mpidr; |
| u64 typer; |
| u32 aff; |
| |
| /* |
| * Convert affinity to a 32bit value that can be matched to |
| * GICR_TYPER bits [63:32]. |
| */ |
| mpidr = gic_cpu_to_affinity(smp_processor_id()); |
| |
| aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | |
| MPIDR_AFFINITY_LEVEL(mpidr, 0)); |
| |
| typer = gic_read_typer(ptr + GICR_TYPER); |
| if ((typer >> 32) == aff) { |
| u64 offset = ptr - region->redist_base; |
| raw_spin_lock_init(&gic_data_rdist()->rd_lock); |
| gic_data_rdist_rd_base() = ptr; |
| gic_data_rdist()->phys_base = region->phys_base + offset; |
| |
| pr_info("CPU%d: found redistributor %lx region %d:%pa\n", |
| smp_processor_id(), mpidr, |
| (int)(region - gic_data.redist_regions), |
| &gic_data_rdist()->phys_base); |
| return 0; |
| } |
| |
| /* Try next one */ |
| return 1; |
| } |
| |
| static int gic_populate_rdist(void) |
| { |
| if (gic_iterate_rdists(__gic_populate_rdist) == 0) |
| return 0; |
| |
| /* We couldn't even deal with ourselves... */ |
| WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n", |
| smp_processor_id(), |
| (unsigned long)cpu_logical_map(smp_processor_id())); |
| return -ENODEV; |
| } |
| |
| static int __gic_update_rdist_properties(struct redist_region *region, |
| void __iomem *ptr) |
| { |
| u64 typer = gic_read_typer(ptr + GICR_TYPER); |
| u32 ctlr = readl_relaxed(ptr + GICR_CTLR); |
| |
| /* Boot-time cleanup */ |
| if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { |
| u64 val; |
| |
| /* Deactivate any present vPE */ |
| val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); |
| if (val & GICR_VPENDBASER_Valid) |
| gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, |
| ptr + SZ_128K + GICR_VPENDBASER); |
| |
| /* Mark the VPE table as invalid */ |
| val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); |
| val &= ~GICR_VPROPBASER_4_1_VALID; |
| gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); |
| } |
| |
| gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); |
| |
| /* |
| * TYPER.RVPEID implies some form of DirectLPI, no matter what the |
| * doc says... :-/ And CTLR.IR implies another subset of DirectLPI |
| * that the ITS driver can make use of for LPIs (and not VLPIs). |
| * |
| * These are 3 different ways to express the same thing, depending |
| * on the revision of the architecture and its relaxations over |
| * time. Just group them under the 'direct_lpi' banner. |
| */ |
| gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); |
| gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | |
| !!(ctlr & GICR_CTLR_IR) | |
| gic_data.rdists.has_rvpeid); |
| gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); |
| |
| /* Detect non-sensical configurations */ |
| if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { |
| gic_data.rdists.has_direct_lpi = false; |
| gic_data.rdists.has_vlpis = false; |
| gic_data.rdists.has_rvpeid = false; |
| } |
| |
| gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); |
| |
| return 1; |
| } |
| |
| static void gic_update_rdist_properties(void) |
| { |
| gic_data.ppi_nr = UINT_MAX; |
| gic_iterate_rdists(__gic_update_rdist_properties); |
| if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) |
| gic_data.ppi_nr = 0; |
| pr_info("GICv3 features: %d PPIs%s%s\n", |
| gic_data.ppi_nr, |
| gic_data.has_rss ? ", RSS" : "", |
| gic_data.rdists.has_direct_lpi ? ", DirectLPI" : ""); |
| |
| if (gic_data.rdists.has_vlpis) |
| pr_info("GICv4 features: %s%s%s\n", |
| gic_data.rdists.has_direct_lpi ? "DirectLPI " : "", |
| gic_data.rdists.has_rvpeid ? "RVPEID " : "", |
| gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : ""); |
| } |
| |
| static void gic_cpu_sys_reg_enable(void) |
| { |
| /* |
| * Need to check that the SRE bit has actually been set. If |
| * not, it means that SRE is disabled at EL2. We're going to |
| * die painfully, and there is nothing we can do about it. |
| * |
| * Kindly inform the luser. |
| */ |
| if (!gic_enable_sre()) |
| pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n"); |
| |
| } |
| |
| static void gic_cpu_sys_reg_init(void) |
| { |
| int i, cpu = smp_processor_id(); |
| u64 mpidr = gic_cpu_to_affinity(cpu); |
| u64 need_rss = MPIDR_RS(mpidr); |
| bool group0; |
| u32 pribits; |
| |
| pribits = gic_get_pribits(); |
| |
| group0 = gic_has_group0(); |
| |
| /* Set priority mask register */ |
| if (!gic_prio_masking_enabled()) { |
| write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); |
| } else if (gic_supports_nmi()) { |
| /* |
| * Check that all CPUs use the same priority space. |
| * |
| * If there's a mismatch with the boot CPU, the system is |
| * likely to die as interrupt masking will not work properly on |
| * all CPUs. |
| */ |
| WARN_ON(group0 != cpus_have_group0); |
| WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled); |
| } |
| |
| /* |
| * Some firmwares hand over to the kernel with the BPR changed from |
| * its reset value (and with a value large enough to prevent |
| * any pre-emptive interrupts from working at all). Writing a zero |
| * to BPR restores is reset value. |
| */ |
| gic_write_bpr1(0); |
| |
| if (static_branch_likely(&supports_deactivate_key)) { |
| /* EOI drops priority only (mode 1) */ |
| gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); |
| } else { |
| /* EOI deactivates interrupt too (mode 0) */ |
| gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); |
| } |
| |
| /* Always whack Group0 before Group1 */ |
| if (group0) { |
| switch(pribits) { |
| case 8: |
| case 7: |
| write_gicreg(0, ICC_AP0R3_EL1); |
| write_gicreg(0, ICC_AP0R2_EL1); |
| fallthrough; |
| case 6: |
| write_gicreg(0, ICC_AP0R1_EL1); |
| fallthrough; |
| case 5: |
| case 4: |
| write_gicreg(0, ICC_AP0R0_EL1); |
| } |
| |
| isb(); |
| } |
| |
| switch(pribits) { |
| case 8: |
| case 7: |
| write_gicreg(0, ICC_AP1R3_EL1); |
| write_gicreg(0, ICC_AP1R2_EL1); |
| fallthrough; |
| case 6: |
| write_gicreg(0, ICC_AP1R1_EL1); |
| fallthrough; |
| case 5: |
| case 4: |
| write_gicreg(0, ICC_AP1R0_EL1); |
| } |
| |
| isb(); |
| |
| /* ... and let's hit the road... */ |
| gic_write_grpen1(1); |
| |
| /* Keep the RSS capability status in per_cpu variable */ |
| per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); |
| |
| /* Check all the CPUs have capable of sending SGIs to other CPUs */ |
| for_each_online_cpu(i) { |
| bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); |
| |
| need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); |
| if (need_rss && (!have_rss)) |
| pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n", |
| cpu, (unsigned long)mpidr, |
| i, (unsigned long)gic_cpu_to_affinity(i)); |
| } |
| |
| /** |
| * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, |
| * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED |
| * UNPREDICTABLE choice of : |
| * - The write is ignored. |
| * - The RS field is treated as 0. |
| */ |
| if (need_rss && (!gic_data.has_rss)) |
| pr_crit_once("RSS is required but GICD doesn't support it\n"); |
| } |
| |
| static bool gicv3_nolpi; |
| |
| static int __init gicv3_nolpi_cfg(char *buf) |
| { |
| return kstrtobool(buf, &gicv3_nolpi); |
| } |
| early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg); |
| |
| static int gic_dist_supports_lpis(void) |
| { |
| return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && |
| !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && |
| !gicv3_nolpi); |
| } |
| |
| static void gic_cpu_init(void) |
| { |
| void __iomem *rbase; |
| int i; |
| |
| /* Register ourselves with the rest of the world */ |
| if (gic_populate_rdist()) |
| return; |
| |
| gic_enable_redist(true); |
| |
| WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && |
| !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), |
| "Distributor has extended ranges, but CPU%d doesn't\n", |
| smp_processor_id()); |
| |
| rbase = gic_data_rdist_sgi_base(); |
| |
| /* Configure SGIs/PPIs as non-secure Group-1 */ |
| for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32) |
| writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); |
| |
| gic_cpu_config(rbase, gic_data.ppi_nr + SGI_NR, dist_prio_irq); |
| gic_redist_wait_for_rwp(); |
| |
| /* initialise system registers */ |
| gic_cpu_sys_reg_init(); |
| } |
| |
| #ifdef CONFIG_SMP |
| |
| #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) |
| #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) |
| |
| /* |
| * gic_starting_cpu() is called after the last point where cpuhp is allowed |
| * to fail. So pre check for problems earlier. |
| */ |
| static int gic_check_rdist(unsigned int cpu) |
| { |
| if (cpumask_test_cpu(cpu, &broken_rdists)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int gic_starting_cpu(unsigned int cpu) |
| { |
| gic_cpu_sys_reg_enable(); |
| gic_cpu_init(); |
| |
| if (gic_dist_supports_lpis()) |
| its_cpu_init(); |
| |
| return 0; |
| } |
| |
| static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, |
| unsigned long cluster_id) |
| { |
| int next_cpu, cpu = *base_cpu; |
| unsigned long mpidr; |
| u16 tlist = 0; |
| |
| mpidr = gic_cpu_to_affinity(cpu); |
| |
| while (cpu < nr_cpu_ids) { |
| tlist |= 1 << (mpidr & 0xf); |
| |
| next_cpu = cpumask_next(cpu, mask); |
| if (next_cpu >= nr_cpu_ids) |
| goto out; |
| cpu = next_cpu; |
| |
| mpidr = gic_cpu_to_affinity(cpu); |
| |
| if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { |
| cpu--; |
| goto out; |
| } |
| } |
| out: |
| *base_cpu = cpu; |
| return tlist; |
| } |
| |
| #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ |
| (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ |
| << ICC_SGI1R_AFFINITY_## level ##_SHIFT) |
| |
| static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) |
| { |
| u64 val; |
| |
| val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | |
| MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | |
| irq << ICC_SGI1R_SGI_ID_SHIFT | |
| MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | |
| MPIDR_TO_SGI_RS(cluster_id) | |
| tlist << ICC_SGI1R_TARGET_LIST_SHIFT); |
| |
| pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val); |
| gic_write_sgi1r(val); |
| } |
| |
| static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) |
| { |
| int cpu; |
| |
| if (WARN_ON(d->hwirq >= 16)) |
| return; |
| |
| /* |
| * Ensure that stores to Normal memory are visible to the |
| * other CPUs before issuing the IPI. |
| */ |
| dsb(ishst); |
| |
| for_each_cpu(cpu, mask) { |
| u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); |
| u16 tlist; |
| |
| tlist = gic_compute_target_list(&cpu, mask, cluster_id); |
| gic_send_sgi(cluster_id, tlist, d->hwirq); |
| } |
| |
| /* Force the above writes to ICC_SGI1R_EL1 to be executed */ |
| isb(); |
| } |
| |
| static void __init gic_smp_init(void) |
| { |
| struct irq_fwspec sgi_fwspec = { |
| .fwnode = gic_data.fwnode, |
| .param_count = 1, |
| }; |
| int base_sgi; |
| |
| cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN, |
| "irqchip/arm/gicv3:checkrdist", |
| gic_check_rdist, NULL); |
| |
| cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING, |
| "irqchip/arm/gicv3:starting", |
| gic_starting_cpu, NULL); |
| |
| /* Register all 8 non-secure SGIs */ |
| base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec); |
| if (WARN_ON(base_sgi <= 0)) |
| return; |
| |
| set_smp_ipi_range(base_sgi, 8); |
| } |
| |
| static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, |
| bool force) |
| { |
| unsigned int cpu; |
| u32 offset, index; |
| void __iomem *reg; |
| int enabled; |
| u64 val; |
| |
| if (force) |
| cpu = cpumask_first(mask_val); |
| else |
| cpu = cpumask_any_and(mask_val, cpu_online_mask); |
| |
| if (cpu >= nr_cpu_ids) |
| return -EINVAL; |
| |
| if (gic_irq_in_rdist(d)) |
| return -EINVAL; |
| |
| /* If interrupt was enabled, disable it first */ |
| enabled = gic_peek_irq(d, GICD_ISENABLER); |
| if (enabled) |
| gic_mask_irq(d); |
| |
| offset = convert_offset_index(d, GICD_IROUTER, &index); |
| reg = gic_dist_base(d) + offset + (index * 8); |
| val = gic_cpu_to_affinity(cpu); |
| |
| gic_write_irouter(val, reg); |
| |
| /* |
| * If the interrupt was enabled, enabled it again. Otherwise, |
| * just wait for the distributor to have digested our changes. |
| */ |
| if (enabled) |
| gic_unmask_irq(d); |
| |
| irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| |
| return IRQ_SET_MASK_OK_DONE; |
| } |
| #else |
| #define gic_set_affinity NULL |
| #define gic_ipi_send_mask NULL |
| #define gic_smp_init() do { } while(0) |
| #endif |
| |
| static int gic_retrigger(struct irq_data *data) |
| { |
| return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true); |
| } |
| |
| #ifdef CONFIG_CPU_PM |
| static int gic_cpu_pm_notifier(struct notifier_block *self, |
| unsigned long cmd, void *v) |
| { |
| if (cmd == CPU_PM_EXIT) { |
| if (gic_dist_security_disabled()) |
| gic_enable_redist(true); |
| gic_cpu_sys_reg_enable(); |
| gic_cpu_sys_reg_init(); |
| } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { |
| gic_write_grpen1(0); |
| gic_enable_redist(false); |
| } |
| return NOTIFY_OK; |
| } |
| |
| static struct notifier_block gic_cpu_pm_notifier_block = { |
| .notifier_call = gic_cpu_pm_notifier, |
| }; |
| |
| static void gic_cpu_pm_init(void) |
| { |
| cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); |
| } |
| |
| #else |
| static inline void gic_cpu_pm_init(void) { } |
| #endif /* CONFIG_CPU_PM */ |
| |
| static struct irq_chip gic_chip = { |
| .name = "GICv3", |
| .irq_mask = gic_mask_irq, |
| .irq_unmask = gic_unmask_irq, |
| .irq_eoi = gic_eoi_irq, |
| .irq_set_type = gic_set_type, |
| .irq_set_affinity = gic_set_affinity, |
| .irq_retrigger = gic_retrigger, |
| .irq_get_irqchip_state = gic_irq_get_irqchip_state, |
| .irq_set_irqchip_state = gic_irq_set_irqchip_state, |
| .irq_nmi_setup = gic_irq_nmi_setup, |
| .irq_nmi_teardown = gic_irq_nmi_teardown, |
| .ipi_send_mask = gic_ipi_send_mask, |
| .flags = IRQCHIP_SET_TYPE_MASKED | |
| IRQCHIP_SKIP_SET_WAKE | |
| IRQCHIP_MASK_ON_SUSPEND, |
| }; |
| |
| static struct irq_chip gic_eoimode1_chip = { |
| .name = "GICv3", |
| .irq_mask = gic_eoimode1_mask_irq, |
| .irq_unmask = gic_unmask_irq, |
| .irq_eoi = gic_eoimode1_eoi_irq, |
| .irq_set_type = gic_set_type, |
| .irq_set_affinity = gic_set_affinity, |
| .irq_retrigger = gic_retrigger, |
| .irq_get_irqchip_state = gic_irq_get_irqchip_state, |
| .irq_set_irqchip_state = gic_irq_set_irqchip_state, |
| .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, |
| .irq_nmi_setup = gic_irq_nmi_setup, |
| .irq_nmi_teardown = gic_irq_nmi_teardown, |
| .ipi_send_mask = gic_ipi_send_mask, |
| .flags = IRQCHIP_SET_TYPE_MASKED | |
| IRQCHIP_SKIP_SET_WAKE | |
| IRQCHIP_MASK_ON_SUSPEND, |
| }; |
| |
| static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, |
| irq_hw_number_t hw) |
| { |
| struct irq_chip *chip = &gic_chip; |
| struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq)); |
| |
| if (static_branch_likely(&supports_deactivate_key)) |
| chip = &gic_eoimode1_chip; |
| |
| switch (__get_intid_range(hw)) { |
| case SGI_RANGE: |
| case PPI_RANGE: |
| case EPPI_RANGE: |
| irq_set_percpu_devid(irq); |
| irq_domain_set_info(d, irq, hw, chip, d->host_data, |
| handle_percpu_devid_irq, NULL, NULL); |
| break; |
| |
| case SPI_RANGE: |
| case ESPI_RANGE: |
| irq_domain_set_info(d, irq, hw, chip, d->host_data, |
| handle_fasteoi_irq, NULL, NULL); |
| irq_set_probe(irq); |
| irqd_set_single_target(irqd); |
| break; |
| |
| case LPI_RANGE: |
| if (!gic_dist_supports_lpis()) |
| return -EPERM; |
| irq_domain_set_info(d, irq, hw, chip, d->host_data, |
| handle_fasteoi_irq, NULL, NULL); |
| break; |
| |
| default: |
| return -EPERM; |
| } |
| |
| /* Prevents SW retriggers which mess up the ACK/EOI ordering */ |
| irqd_set_handle_enforce_irqctx(irqd); |
| return 0; |
| } |
| |
| static int gic_irq_domain_translate(struct irq_domain *d, |
| struct irq_fwspec *fwspec, |
| unsigned long *hwirq, |
| unsigned int *type) |
| { |
| if (fwspec->param_count == 1 && fwspec->param[0] < 16) { |
| *hwirq = fwspec->param[0]; |
| *type = IRQ_TYPE_EDGE_RISING; |
| return 0; |
| } |
| |
| if (is_of_node(fwspec->fwnode)) { |
| if (fwspec->param_count < 3) |
| return -EINVAL; |
| |
| switch (fwspec->param[0]) { |
| case 0: /* SPI */ |
| *hwirq = fwspec->param[1] + 32; |
| break; |
| case 1: /* PPI */ |
| *hwirq = fwspec->param[1] + 16; |
| break; |
| case 2: /* ESPI */ |
| *hwirq = fwspec->param[1] + ESPI_BASE_INTID; |
| break; |
| case 3: /* EPPI */ |
| *hwirq = fwspec->param[1] + EPPI_BASE_INTID; |
| break; |
| case GIC_IRQ_TYPE_LPI: /* LPI */ |
| *hwirq = fwspec->param[1]; |
| break; |
| case GIC_IRQ_TYPE_PARTITION: |
| *hwirq = fwspec->param[1]; |
| if (fwspec->param[1] >= 16) |
| *hwirq += EPPI_BASE_INTID - 16; |
| else |
| *hwirq += 16; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; |
| |
| /* |
| * Make it clear that broken DTs are... broken. |
| * Partitioned PPIs are an unfortunate exception. |
| */ |
| WARN_ON(*type == IRQ_TYPE_NONE && |
| fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); |
| return 0; |
| } |
| |
| if (is_fwnode_irqchip(fwspec->fwnode)) { |
| if(fwspec->param_count != 2) |
| return -EINVAL; |
| |
| if (fwspec->param[0] < 16) { |
| pr_err(FW_BUG "Illegal GSI%d translation request\n", |
| fwspec->param[0]); |
| return -EINVAL; |
| } |
| |
| *hwirq = fwspec->param[0]; |
| *type = fwspec->param[1]; |
| |
| WARN_ON(*type == IRQ_TYPE_NONE); |
| return 0; |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs, void *arg) |
| { |
| int i, ret; |
| irq_hw_number_t hwirq; |
| unsigned int type = IRQ_TYPE_NONE; |
| struct irq_fwspec *fwspec = arg; |
| |
| ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type); |
| if (ret) |
| return ret; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| ret = gic_irq_domain_map(domain, virq + i, hwirq + i); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| unsigned int nr_irqs) |
| { |
| int i; |
| |
| for (i = 0; i < nr_irqs; i++) { |
| struct irq_data *d = irq_domain_get_irq_data(domain, virq + i); |
| irq_set_handler(virq + i, NULL); |
| irq_domain_reset_irq_data(d); |
| } |
| } |
| |
| static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, |
| irq_hw_number_t hwirq) |
| { |
| enum gic_intid_range range; |
| |
| if (!gic_data.ppi_descs) |
| return false; |
| |
| if (!is_of_node(fwspec->fwnode)) |
| return false; |
| |
| if (fwspec->param_count < 4 || !fwspec->param[3]) |
| return false; |
| |
| range = __get_intid_range(hwirq); |
| if (range != PPI_RANGE && range != EPPI_RANGE) |
| return false; |
| |
| return true; |
| } |
| |
| static int gic_irq_domain_select(struct irq_domain *d, |
| struct irq_fwspec *fwspec, |
| enum irq_domain_bus_token bus_token) |
| { |
| unsigned int type, ret, ppi_idx; |
| irq_hw_number_t hwirq; |
| |
| /* Not for us */ |
| if (fwspec->fwnode != d->fwnode) |
| return 0; |
| |
| /* Handle pure domain searches */ |
| if (!fwspec->param_count) |
| return d->bus_token == bus_token; |
| |
| /* If this is not DT, then we have a single domain */ |
| if (!is_of_node(fwspec->fwnode)) |
| return 1; |
| |
| ret = gic_irq_domain_translate(d, fwspec, &hwirq, &type); |
| if (WARN_ON_ONCE(ret)) |
| return 0; |
| |
| if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) |
| return d == gic_data.domain; |
| |
| /* |
| * If this is a PPI and we have a 4th (non-null) parameter, |
| * then we need to match the partition domain. |
| */ |
| ppi_idx = __gic_get_ppi_index(hwirq); |
| return d == partition_get_domain(gic_data.ppi_descs[ppi_idx]); |
| } |
| |
| static const struct irq_domain_ops gic_irq_domain_ops = { |
| .translate = gic_irq_domain_translate, |
| .alloc = gic_irq_domain_alloc, |
| .free = gic_irq_domain_free, |
| .select = gic_irq_domain_select, |
| }; |
| |
| static int partition_domain_translate(struct irq_domain *d, |
| struct irq_fwspec *fwspec, |
| unsigned long *hwirq, |
| unsigned int *type) |
| { |
| unsigned long ppi_intid; |
| struct device_node *np; |
| unsigned int ppi_idx; |
| int ret; |
| |
| if (!gic_data.ppi_descs) |
| return -ENOMEM; |
| |
| np = of_find_node_by_phandle(fwspec->param[3]); |
| if (WARN_ON(!np)) |
| return -EINVAL; |
| |
| ret = gic_irq_domain_translate(d, fwspec, &ppi_intid, type); |
| if (WARN_ON_ONCE(ret)) |
| return 0; |
| |
| ppi_idx = __gic_get_ppi_index(ppi_intid); |
| ret = partition_translate_id(gic_data.ppi_descs[ppi_idx], |
| of_node_to_fwnode(np)); |
| if (ret < 0) |
| return ret; |
| |
| *hwirq = ret; |
| *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; |
| |
| return 0; |
| } |
| |
| static const struct irq_domain_ops partition_domain_ops = { |
| .translate = partition_domain_translate, |
| .select = gic_irq_domain_select, |
| }; |
| |
| static bool gic_enable_quirk_msm8996(void *data) |
| { |
| struct gic_chip_data *d = data; |
| |
| d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; |
| |
| return true; |
| } |
| |
| static bool gic_enable_quirk_cavium_38539(void *data) |
| { |
| struct gic_chip_data *d = data; |
| |
| d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; |
| |
| return true; |
| } |
| |
| static bool gic_enable_quirk_hip06_07(void *data) |
| { |
| struct gic_chip_data *d = data; |
| |
| /* |
| * HIP06 GICD_IIDR clashes with GIC-600 product number (despite |
| * not being an actual ARM implementation). The saving grace is |
| * that GIC-600 doesn't have ESPI, so nothing to do in that case. |
| * HIP07 doesn't even have a proper IIDR, and still pretends to |
| * have ESPI. In both cases, put them right. |
| */ |
| if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { |
| /* Zero both ESPI and the RES0 field next to it... */ |
| d->rdists.gicd_typer &= ~GENMASK(9, 8); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #define T241_CHIPN_MASK GENMASK_ULL(45, 44) |
| #define T241_CHIP_GICDA_OFFSET 0x1580000 |
| #define SMCCC_SOC_ID_T241 0x036b0241 |
| |
| static bool gic_enable_quirk_nvidia_t241(void *data) |
| { |
| s32 soc_id = arm_smccc_get_soc_id_version(); |
| unsigned long chip_bmask = 0; |
| phys_addr_t phys; |
| u32 i; |
| |
| /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ |
| if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) |
| return false; |
| |
| /* Find the chips based on GICR regions PHYS addr */ |
| for (i = 0; i < gic_data.nr_redist_regions; i++) { |
| chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, |
| (u64)gic_data.redist_regions[i].phys_base)); |
| } |
| |
| if (hweight32(chip_bmask) < 3) |
| return false; |
| |
| /* Setup GICD alias regions */ |
| for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { |
| if (chip_bmask & BIT(i)) { |
| phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; |
| phys |= FIELD_PREP(T241_CHIPN_MASK, i); |
| t241_dist_base_alias[i] = ioremap(phys, SZ_64K); |
| WARN_ON_ONCE(!t241_dist_base_alias[i]); |
| } |
| } |
| static_branch_enable(&gic_nvidia_t241_erratum); |
| return true; |
| } |
| |
| static bool gic_enable_quirk_asr8601(void *data) |
| { |
| struct gic_chip_data *d = data; |
| |
| d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; |
| |
| return true; |
| } |
| |
| static bool gic_enable_quirk_arm64_2941627(void *data) |
| { |
| static_branch_enable(&gic_arm64_2941627_erratum); |
| return true; |
| } |
| |
| static bool rd_set_non_coherent(void *data) |
| { |
| struct gic_chip_data *d = data; |
| |
| d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| return true; |
| } |
| |
| static const struct gic_quirk gic_quirks[] = { |
| { |
| .desc = "GICv3: Qualcomm MSM8996 broken firmware", |
| .compatible = "qcom,msm8996-gic-v3", |
| .init = gic_enable_quirk_msm8996, |
| }, |
| { |
| .desc = "GICv3: ASR erratum 8601001", |
| .compatible = "asr,asr8601-gic-v3", |
| .init = gic_enable_quirk_asr8601, |
| }, |
| { |
| .desc = "GICv3: HIP06 erratum 161010803", |
| .iidr = 0x0204043b, |
| .mask = 0xffffffff, |
| .init = gic_enable_quirk_hip06_07, |
| }, |
| { |
| .desc = "GICv3: HIP07 erratum 161010803", |
| .iidr = 0x00000000, |
| .mask = 0xffffffff, |
| .init = gic_enable_quirk_hip06_07, |
| }, |
| { |
| /* |
| * Reserved register accesses generate a Synchronous |
| * External Abort. This erratum applies to: |
| * - ThunderX: CN88xx |
| * - OCTEON TX: CN83xx, CN81xx |
| * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* |
| */ |
| .desc = "GICv3: Cavium erratum 38539", |
| .iidr = 0xa000034c, |
| .mask = 0xe8f00fff, |
| .init = gic_enable_quirk_cavium_38539, |
| }, |
| { |
| .desc = "GICv3: NVIDIA erratum T241-FABRIC-4", |
| .iidr = 0x0402043b, |
| .mask = 0xffffffff, |
| .init = gic_enable_quirk_nvidia_t241, |
| }, |
| { |
| /* |
| * GIC-700: 2941627 workaround - IP variant [0,1] |
| * |
| */ |
| .desc = "GICv3: ARM64 erratum 2941627", |
| .iidr = 0x0400043b, |
| .mask = 0xff0e0fff, |
| .init = gic_enable_quirk_arm64_2941627, |
| }, |
| { |
| /* |
| * GIC-700: 2941627 workaround - IP variant [2] |
| */ |
| .desc = "GICv3: ARM64 erratum 2941627", |
| .iidr = 0x0402043b, |
| .mask = 0xff0f0fff, |
| .init = gic_enable_quirk_arm64_2941627, |
| }, |
| { |
| .desc = "GICv3: non-coherent attribute", |
| .property = "dma-noncoherent", |
| .init = rd_set_non_coherent, |
| }, |
| { |
| } |
| }; |
| |
| static void gic_enable_nmi_support(void) |
| { |
| int i; |
| |
| if (!gic_prio_masking_enabled()) |
| return; |
| |
| rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR, |
| sizeof(*rdist_nmi_refs), GFP_KERNEL); |
| if (!rdist_nmi_refs) |
| return; |
| |
| for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++) |
| refcount_set(&rdist_nmi_refs[i], 0); |
| |
| pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n", |
| gic_has_relaxed_pmr_sync() ? "relaxed" : "forced"); |
| |
| static_branch_enable(&supports_pseudo_nmis); |
| |
| if (static_branch_likely(&supports_deactivate_key)) |
| gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; |
| else |
| gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; |
| } |
| |
| static int __init gic_init_bases(phys_addr_t dist_phys_base, |
| void __iomem *dist_base, |
| struct redist_region *rdist_regs, |
| u32 nr_redist_regions, |
| u64 redist_stride, |
| struct fwnode_handle *handle) |
| { |
| u32 typer; |
| int err; |
| |
| if (!is_hyp_mode_available()) |
| static_branch_disable(&supports_deactivate_key); |
| |
| if (static_branch_likely(&supports_deactivate_key)) |
| pr_info("GIC: Using split EOI/Deactivate mode\n"); |
| |
| gic_data.fwnode = handle; |
| gic_data.dist_phys_base = dist_phys_base; |
| gic_data.dist_base = dist_base; |
| gic_data.redist_regions = rdist_regs; |
| gic_data.nr_redist_regions = nr_redist_regions; |
| gic_data.redist_stride = redist_stride; |
| |
| /* |
| * Find out how many interrupts are supported. |
| */ |
| typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); |
| gic_data.rdists.gicd_typer = typer; |
| |
| gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), |
| gic_quirks, &gic_data); |
| |
| pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32); |
| pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR); |
| |
| /* |
| * ThunderX1 explodes on reading GICD_TYPER2, in violation of the |
| * architecture spec (which says that reserved registers are RES0). |
| */ |
| if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) |
| gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); |
| |
| gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops, |
| &gic_data); |
| gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); |
| if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { |
| /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ |
| gic_data.rdists.has_rvpeid = true; |
| gic_data.rdists.has_vlpis = true; |
| gic_data.rdists.has_direct_lpi = true; |
| gic_data.rdists.has_vpend_valid_dirty = true; |
| } |
| |
| if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { |
| err = -ENOMEM; |
| goto out_free; |
| } |
| |
| irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED); |
| |
| gic_data.has_rss = !!(typer & GICD_TYPER_RSS); |
| |
| if (typer & GICD_TYPER_MBIS) { |
| err = mbi_init(handle, gic_data.domain); |
| if (err) |
| pr_err("Failed to initialize MBIs\n"); |
| } |
| |
| set_handle_irq(gic_handle_irq); |
| |
| gic_update_rdist_properties(); |
| |
| gic_cpu_sys_reg_enable(); |
| gic_prio_init(); |
| gic_dist_init(); |
| gic_cpu_init(); |
| gic_enable_nmi_support(); |
| gic_smp_init(); |
| gic_cpu_pm_init(); |
| |
| if (gic_dist_supports_lpis()) { |
| its_init(handle, &gic_data.rdists, gic_data.domain, dist_prio_irq); |
| its_cpu_init(); |
| its_lpi_memreserve_init(); |
| } else { |
| if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) |
| gicv2m_init(handle, gic_data.domain); |
| } |
| |
| return 0; |
| |
| out_free: |
| if (gic_data.domain) |
| irq_domain_remove(gic_data.domain); |
| free_percpu(gic_data.rdists.rdist); |
| return err; |
| } |
| |
| static int __init gic_validate_dist_version(void __iomem *dist_base) |
| { |
| u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| |
| if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* Create all possible partitions at boot time */ |
| static void __init gic_populate_ppi_partitions(struct device_node *gic_node) |
| { |
| struct device_node *parts_node, *child_part; |
| int part_idx = 0, i; |
| int nr_parts; |
| struct partition_affinity *parts; |
| |
| parts_node = of_get_child_by_name(gic_node, "ppi-partitions"); |
| if (!parts_node) |
| return; |
| |
| gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); |
| if (!gic_data.ppi_descs) |
| goto out_put_node; |
| |
| nr_parts = of_get_child_count(parts_node); |
| |
| if (!nr_parts) |
| goto out_put_node; |
| |
| parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); |
| if (WARN_ON(!parts)) |
| goto out_put_node; |
| |
| for_each_child_of_node(parts_node, child_part) { |
| struct partition_affinity *part; |
| int n; |
| |
| part = &parts[part_idx]; |
| |
| part->partition_id = of_node_to_fwnode(child_part); |
| |
| pr_info("GIC: PPI partition %pOFn[%d] { ", |
| child_part, part_idx); |
| |
| n = of_property_count_elems_of_size(child_part, "affinity", |
| sizeof(u32)); |
| WARN_ON(n <= 0); |
| |
| for (i = 0; i < n; i++) { |
| int err, cpu; |
| u32 cpu_phandle; |
| struct device_node *cpu_node; |
| |
| err = of_property_read_u32_index(child_part, "affinity", |
| i, &cpu_phandle); |
| if (WARN_ON(err)) |
| continue; |
| |
| cpu_node = of_find_node_by_phandle(cpu_phandle); |
| if (WARN_ON(!cpu_node)) |
| continue; |
| |
| cpu = of_cpu_node_to_id(cpu_node); |
| if (WARN_ON(cpu < 0)) { |
| of_node_put(cpu_node); |
| continue; |
| } |
| |
| pr_cont("%pOF[%d] ", cpu_node, cpu); |
| |
| cpumask_set_cpu(cpu, &part->mask); |
| of_node_put(cpu_node); |
| } |
| |
| pr_cont("}\n"); |
| part_idx++; |
| } |
| |
| for (i = 0; i < gic_data.ppi_nr; i++) { |
| unsigned int irq; |
| struct partition_desc *desc; |
| struct irq_fwspec ppi_fwspec = { |
| .fwnode = gic_data.fwnode, |
| .param_count = 3, |
| .param = { |
| [0] = GIC_IRQ_TYPE_PARTITION, |
| [1] = i, |
| [2] = IRQ_TYPE_NONE, |
| }, |
| }; |
| |
| irq = irq_create_fwspec_mapping(&ppi_fwspec); |
| if (WARN_ON(!irq)) |
| continue; |
| desc = partition_create_desc(gic_data.fwnode, parts, nr_parts, |
| irq, &partition_domain_ops); |
| if (WARN_ON(!desc)) |
| continue; |
| |
| gic_data.ppi_descs[i] = desc; |
| } |
| |
| out_put_node: |
| of_node_put(parts_node); |
| } |
| |
| static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions) |
| { |
| int ret; |
| struct resource r; |
| |
| gic_v3_kvm_info.type = GIC_V3; |
| |
| gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, 0); |
| if (!gic_v3_kvm_info.maint_irq) |
| return; |
| |
| /* Also skip GICD, GICC, GICH */ |
| ret = of_address_to_resource(node, nr_redist_regions + 3, &r); |
| if (!ret) |
| gic_v3_kvm_info.vcpu = r; |
| |
| gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; |
| gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; |
| vgic_set_kvm_info(&gic_v3_kvm_info); |
| } |
| |
| static void gic_request_region(resource_size_t base, resource_size_t size, |
| const char *name) |
| { |
| if (!request_mem_region(base, size, name)) |
| pr_warn_once(FW_BUG "%s region %pa has overlapping address\n", |
| name, &base); |
| } |
| |
| static void __iomem *gic_of_iomap(struct device_node *node, int idx, |
| const char *name, struct resource *res) |
| { |
| void __iomem *base; |
| int ret; |
| |
| ret = of_address_to_resource(node, idx, res); |
| if (ret) |
| return IOMEM_ERR_PTR(ret); |
| |
| gic_request_region(res->start, resource_size(res), name); |
| base = of_iomap(node, idx); |
| |
| return base ?: IOMEM_ERR_PTR(-ENOMEM); |
| } |
| |
| static int __init gic_of_init(struct device_node *node, struct device_node *parent) |
| { |
| phys_addr_t dist_phys_base; |
| void __iomem *dist_base; |
| struct redist_region *rdist_regs; |
| struct resource res; |
| u64 redist_stride; |
| u32 nr_redist_regions; |
| int err, i; |
| |
| dist_base = gic_of_iomap(node, 0, "GICD", &res); |
| if (IS_ERR(dist_base)) { |
| pr_err("%pOF: unable to map gic dist registers\n", node); |
| return PTR_ERR(dist_base); |
| } |
| |
| dist_phys_base = res.start; |
| |
| err = gic_validate_dist_version(dist_base); |
| if (err) { |
| pr_err("%pOF: no distributor detected, giving up\n", node); |
| goto out_unmap_dist; |
| } |
| |
| if (of_property_read_u32(node, "#redistributor-regions", &nr_redist_regions)) |
| nr_redist_regions = 1; |
| |
| rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), |
| GFP_KERNEL); |
| if (!rdist_regs) { |
| err = -ENOMEM; |
| goto out_unmap_dist; |
| } |
| |
| for (i = 0; i < nr_redist_regions; i++) { |
| rdist_regs[i].redist_base = gic_of_iomap(node, 1 + i, "GICR", &res); |
| if (IS_ERR(rdist_regs[i].redist_base)) { |
| pr_err("%pOF: couldn't map region %d\n", node, i); |
| err = -ENODEV; |
| goto out_unmap_rdist; |
| } |
| rdist_regs[i].phys_base = res.start; |
| } |
| |
| if (of_property_read_u64(node, "redistributor-stride", &redist_stride)) |
| redist_stride = 0; |
| |
| gic_enable_of_quirks(node, gic_quirks, &gic_data); |
| |
| err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, |
| nr_redist_regions, redist_stride, &node->fwnode); |
| if (err) |
| goto out_unmap_rdist; |
| |
| gic_populate_ppi_partitions(node); |
| |
| if (static_branch_likely(&supports_deactivate_key)) |
| gic_of_setup_kvm_info(node, nr_redist_regions); |
| return 0; |
| |
| out_unmap_rdist: |
| for (i = 0; i < nr_redist_regions; i++) |
| if (rdist_regs[i].redist_base && !IS_ERR(rdist_regs[i].redist_base)) |
| iounmap(rdist_regs[i].redist_base); |
| kfree(rdist_regs); |
| out_unmap_dist: |
| iounmap(dist_base); |
| return err; |
| } |
| |
| IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init); |
| |
| #ifdef CONFIG_ACPI |
| static struct |
| { |
| void __iomem *dist_base; |
| struct redist_region *redist_regs; |
| u32 nr_redist_regions; |
| bool single_redist; |
| int enabled_rdists; |
| u32 maint_irq; |
| int maint_irq_mode; |
| phys_addr_t vcpu_base; |
| } acpi_data __initdata; |
| |
| static void __init |
| gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) |
| { |
| static int count = 0; |
| |
| acpi_data.redist_regs[count].phys_base = phys_base; |
| acpi_data.redist_regs[count].redist_base = redist_base; |
| acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; |
| count++; |
| } |
| |
| static int __init |
| gic_acpi_parse_madt_redist(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_redistributor *redist = |
| (struct acpi_madt_generic_redistributor *)header; |
| void __iomem *redist_base; |
| |
| redist_base = ioremap(redist->base_address, redist->length); |
| if (!redist_base) { |
| pr_err("Couldn't map GICR region @%llx\n", redist->base_address); |
| return -ENOMEM; |
| } |
| |
| if (acpi_get_madt_revision() >= 7 && |
| (redist->flags & ACPI_MADT_GICR_NON_COHERENT)) |
| gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| |
| gic_request_region(redist->base_address, redist->length, "GICR"); |
| |
| gic_acpi_register_redist(redist->base_address, redist_base); |
| return 0; |
| } |
| |
| static int __init |
| gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_interrupt *gicc = |
| (struct acpi_madt_generic_interrupt *)header; |
| u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; |
| void __iomem *redist_base; |
| |
| /* Neither enabled or online capable means it doesn't exist, skip it */ |
| if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) |
| return 0; |
| |
| /* |
| * Capable but disabled CPUs can be brought online later. What about |
| * the redistributor? ACPI doesn't want to say! |
| * Virtual hotplug systems can use the MADT's "always-on" GICR entries. |
| * Otherwise, prevent such CPUs from being brought online. |
| */ |
| if (!(gicc->flags & ACPI_MADT_ENABLED)) { |
| int cpu = get_cpu_for_acpi_id(gicc->uid); |
| |
| pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n", cpu); |
| if (cpu >= 0) |
| cpumask_set_cpu(cpu, &broken_rdists); |
| return 0; |
| } |
| |
| redist_base = ioremap(gicc->gicr_base_address, size); |
| if (!redist_base) |
| return -ENOMEM; |
| gic_request_region(gicc->gicr_base_address, size, "GICR"); |
| |
| if (acpi_get_madt_revision() >= 7 && |
| (gicc->flags & ACPI_MADT_GICC_NON_COHERENT)) |
| gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| |
| gic_acpi_register_redist(gicc->gicr_base_address, redist_base); |
| return 0; |
| } |
| |
| static int __init gic_acpi_collect_gicr_base(void) |
| { |
| acpi_tbl_entry_handler redist_parser; |
| enum acpi_madt_type type; |
| |
| if (acpi_data.single_redist) { |
| type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; |
| redist_parser = gic_acpi_parse_madt_gicc; |
| } else { |
| type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; |
| redist_parser = gic_acpi_parse_madt_redist; |
| } |
| |
| /* Collect redistributor base addresses in GICR entries */ |
| if (acpi_table_parse_madt(type, redist_parser, 0) > 0) |
| return 0; |
| |
| pr_info("No valid GICR entries exist\n"); |
| return -ENODEV; |
| } |
| |
| static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| /* Subtable presence means that redist exists, that's it */ |
| return 0; |
| } |
| |
| static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_interrupt *gicc = |
| (struct acpi_madt_generic_interrupt *)header; |
| |
| /* |
| * If GICC is enabled and has valid gicr base address, then it means |
| * GICR base is presented via GICC. The redistributor is only known to |
| * be accessible if the GICC is marked as enabled. If this bit is not |
| * set, we'd need to add the redistributor at runtime, which isn't |
| * supported. |
| */ |
| if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address) |
| acpi_data.enabled_rdists++; |
| |
| return 0; |
| } |
| |
| static int __init gic_acpi_count_gicr_regions(void) |
| { |
| int count; |
| |
| /* |
| * Count how many redistributor regions we have. It is not allowed |
| * to mix redistributor description, GICR and GICC subtables have to be |
| * mutually exclusive. |
| */ |
| count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, |
| gic_acpi_match_gicr, 0); |
| if (count > 0) { |
| acpi_data.single_redist = false; |
| return count; |
| } |
| |
| count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, |
| gic_acpi_match_gicc, 0); |
| if (count > 0) { |
| acpi_data.single_redist = true; |
| count = acpi_data.enabled_rdists; |
| } |
| |
| return count; |
| } |
| |
| static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header, |
| struct acpi_probe_entry *ape) |
| { |
| struct acpi_madt_generic_distributor *dist; |
| int count; |
| |
| dist = (struct acpi_madt_generic_distributor *)header; |
| if (dist->version != ape->driver_data) |
| return false; |
| |
| /* We need to do that exercise anyway, the sooner the better */ |
| count = gic_acpi_count_gicr_regions(); |
| if (count <= 0) |
| return false; |
| |
| acpi_data.nr_redist_regions = count; |
| return true; |
| } |
| |
| static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header, |
| const unsigned long end) |
| { |
| struct acpi_madt_generic_interrupt *gicc = |
| (struct acpi_madt_generic_interrupt *)header; |
| int maint_irq_mode; |
| static int first_madt = true; |
| |
| if (!(gicc->flags & |
| (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) |
| return 0; |
| |
| maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? |
| ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; |
| |
| if (first_madt) { |
| first_madt = false; |
| |
| acpi_data.maint_irq = gicc->vgic_interrupt; |
| acpi_data.maint_irq_mode = maint_irq_mode; |
| acpi_data.vcpu_base = gicc->gicv_base_address; |
| |
| return 0; |
| } |
| |
| /* |
| * The maintenance interrupt and GICV should be the same for every CPU |
| */ |
| if ((acpi_data.maint_irq != gicc->vgic_interrupt) || |
| (acpi_data.maint_irq_mode != maint_irq_mode) || |
| (acpi_data.vcpu_base != gicc->gicv_base_address)) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static bool __init gic_acpi_collect_virt_info(void) |
| { |
| int count; |
| |
| count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT, |
| gic_acpi_parse_virt_madt_gicc, 0); |
| |
| return (count > 0); |
| } |
| |
| #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) |
| #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) |
| #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) |
| |
| static void __init gic_acpi_setup_kvm_info(void) |
| { |
| int irq; |
| |
| if (!gic_acpi_collect_virt_info()) { |
| pr_warn("Unable to get hardware information used for virtualization\n"); |
| return; |
| } |
| |
| gic_v3_kvm_info.type = GIC_V3; |
| |
| irq = acpi_register_gsi(NULL, acpi_data.maint_irq, |
| acpi_data.maint_irq_mode, |
| ACPI_ACTIVE_HIGH); |
| if (irq <= 0) |
| return; |
| |
| gic_v3_kvm_info.maint_irq = irq; |
| |
| if (acpi_data.vcpu_base) { |
| struct resource *vcpu = &gic_v3_kvm_info.vcpu; |
| |
| vcpu->flags = IORESOURCE_MEM; |
| vcpu->start = acpi_data.vcpu_base; |
| vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; |
| } |
| |
| gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; |
| gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; |
| vgic_set_kvm_info(&gic_v3_kvm_info); |
| } |
| |
| static struct fwnode_handle *gsi_domain_handle; |
| |
| static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) |
| { |
| return gsi_domain_handle; |
| } |
| |
| static int __init |
| gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end) |
| { |
| struct acpi_madt_generic_distributor *dist; |
| size_t size; |
| int i, err; |
| |
| /* Get distributor base address */ |
| dist = (struct acpi_madt_generic_distributor *)header; |
| acpi_data.dist_base = ioremap(dist->base_address, |
| ACPI_GICV3_DIST_MEM_SIZE); |
| if (!acpi_data.dist_base) { |
| pr_err("Unable to map GICD registers\n"); |
| return -ENOMEM; |
| } |
| gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD"); |
| |
| err = gic_validate_dist_version(acpi_data.dist_base); |
| if (err) { |
| pr_err("No distributor detected at @%p, giving up\n", |
| acpi_data.dist_base); |
| goto out_dist_unmap; |
| } |
| |
| size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; |
| acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); |
| if (!acpi_data.redist_regs) { |
| err = -ENOMEM; |
| goto out_dist_unmap; |
| } |
| |
| err = gic_acpi_collect_gicr_base(); |
| if (err) |
| goto out_redist_unmap; |
| |
| gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address); |
| if (!gsi_domain_handle) { |
| err = -ENOMEM; |
| goto out_redist_unmap; |
| } |
| |
| err = gic_init_bases(dist->base_address, acpi_data.dist_base, |
| acpi_data.redist_regs, acpi_data.nr_redist_regions, |
| 0, gsi_domain_handle); |
| if (err) |
| goto out_fwhandle_free; |
| |
| acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id); |
| |
| if (static_branch_likely(&supports_deactivate_key)) |
| gic_acpi_setup_kvm_info(); |
| |
| return 0; |
| |
| out_fwhandle_free: |
| irq_domain_free_fwnode(gsi_domain_handle); |
| out_redist_unmap: |
| for (i = 0; i < acpi_data.nr_redist_regions; i++) |
| if (acpi_data.redist_regs[i].redist_base) |
| iounmap(acpi_data.redist_regs[i].redist_base); |
| kfree(acpi_data.redist_regs); |
| out_dist_unmap: |
| iounmap(acpi_data.dist_base); |
| return err; |
| } |
| IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, |
| gic_acpi_init); |
| IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, |
| gic_acpi_init); |
| IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, |
| gic_acpi_init); |
| #endif |