| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2012 Red Hat, Inc. |
| * |
| * Author: Mikulas Patocka <mpatocka@redhat.com> |
| * |
| * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors |
| * |
| * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set |
| * default prefetch value. Data are read in "prefetch_cluster" chunks from the |
| * hash device. Setting this greatly improves performance when data and hash |
| * are on the same disk on different partitions on devices with poor random |
| * access behavior. |
| */ |
| |
| #include "dm-verity.h" |
| #include "dm-verity-fec.h" |
| #include "dm-verity-verify-sig.h" |
| #include "dm-audit.h" |
| #include <linux/module.h> |
| #include <linux/reboot.h> |
| #include <linux/scatterlist.h> |
| #include <linux/string.h> |
| #include <linux/jump_label.h> |
| #include <linux/security.h> |
| |
| #define DM_MSG_PREFIX "verity" |
| |
| #define DM_VERITY_ENV_LENGTH 42 |
| #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR" |
| |
| #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144 |
| |
| #define DM_VERITY_MAX_CORRUPTED_ERRS 100 |
| |
| #define DM_VERITY_OPT_LOGGING "ignore_corruption" |
| #define DM_VERITY_OPT_RESTART "restart_on_corruption" |
| #define DM_VERITY_OPT_PANIC "panic_on_corruption" |
| #define DM_VERITY_OPT_ERROR_RESTART "restart_on_error" |
| #define DM_VERITY_OPT_ERROR_PANIC "panic_on_error" |
| #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks" |
| #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once" |
| #define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet" |
| |
| #define DM_VERITY_OPTS_MAX (5 + DM_VERITY_OPTS_FEC + \ |
| DM_VERITY_ROOT_HASH_VERIFICATION_OPTS) |
| |
| static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE; |
| |
| module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644); |
| |
| static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled); |
| |
| /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */ |
| static DEFINE_STATIC_KEY_FALSE(ahash_enabled); |
| |
| struct dm_verity_prefetch_work { |
| struct work_struct work; |
| struct dm_verity *v; |
| unsigned short ioprio; |
| sector_t block; |
| unsigned int n_blocks; |
| }; |
| |
| /* |
| * Auxiliary structure appended to each dm-bufio buffer. If the value |
| * hash_verified is nonzero, hash of the block has been verified. |
| * |
| * The variable hash_verified is set to 0 when allocating the buffer, then |
| * it can be changed to 1 and it is never reset to 0 again. |
| * |
| * There is no lock around this value, a race condition can at worst cause |
| * that multiple processes verify the hash of the same buffer simultaneously |
| * and write 1 to hash_verified simultaneously. |
| * This condition is harmless, so we don't need locking. |
| */ |
| struct buffer_aux { |
| int hash_verified; |
| }; |
| |
| /* |
| * Initialize struct buffer_aux for a freshly created buffer. |
| */ |
| static void dm_bufio_alloc_callback(struct dm_buffer *buf) |
| { |
| struct buffer_aux *aux = dm_bufio_get_aux_data(buf); |
| |
| aux->hash_verified = 0; |
| } |
| |
| /* |
| * Translate input sector number to the sector number on the target device. |
| */ |
| static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector) |
| { |
| return v->data_start + dm_target_offset(v->ti, bi_sector); |
| } |
| |
| /* |
| * Return hash position of a specified block at a specified tree level |
| * (0 is the lowest level). |
| * The lowest "hash_per_block_bits"-bits of the result denote hash position |
| * inside a hash block. The remaining bits denote location of the hash block. |
| */ |
| static sector_t verity_position_at_level(struct dm_verity *v, sector_t block, |
| int level) |
| { |
| return block >> (level * v->hash_per_block_bits); |
| } |
| |
| static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req, |
| const u8 *data, size_t len, |
| struct crypto_wait *wait) |
| { |
| struct scatterlist sg; |
| |
| if (likely(!is_vmalloc_addr(data))) { |
| sg_init_one(&sg, data, len); |
| ahash_request_set_crypt(req, &sg, NULL, len); |
| return crypto_wait_req(crypto_ahash_update(req), wait); |
| } |
| |
| do { |
| int r; |
| size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data)); |
| |
| flush_kernel_vmap_range((void *)data, this_step); |
| sg_init_table(&sg, 1); |
| sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data)); |
| ahash_request_set_crypt(req, &sg, NULL, this_step); |
| r = crypto_wait_req(crypto_ahash_update(req), wait); |
| if (unlikely(r)) |
| return r; |
| data += this_step; |
| len -= this_step; |
| } while (len); |
| |
| return 0; |
| } |
| |
| /* |
| * Wrapper for crypto_ahash_init, which handles verity salting. |
| */ |
| static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req, |
| struct crypto_wait *wait, bool may_sleep) |
| { |
| int r; |
| |
| ahash_request_set_tfm(req, v->ahash_tfm); |
| ahash_request_set_callback(req, |
| may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0, |
| crypto_req_done, (void *)wait); |
| crypto_init_wait(wait); |
| |
| r = crypto_wait_req(crypto_ahash_init(req), wait); |
| |
| if (unlikely(r < 0)) { |
| if (r != -ENOMEM) |
| DMERR("crypto_ahash_init failed: %d", r); |
| return r; |
| } |
| |
| if (likely(v->salt_size && (v->version >= 1))) |
| r = verity_ahash_update(v, req, v->salt, v->salt_size, wait); |
| |
| return r; |
| } |
| |
| static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req, |
| u8 *digest, struct crypto_wait *wait) |
| { |
| int r; |
| |
| if (unlikely(v->salt_size && (!v->version))) { |
| r = verity_ahash_update(v, req, v->salt, v->salt_size, wait); |
| |
| if (r < 0) { |
| DMERR("%s failed updating salt: %d", __func__, r); |
| goto out; |
| } |
| } |
| |
| ahash_request_set_crypt(req, NULL, digest, 0); |
| r = crypto_wait_req(crypto_ahash_final(req), wait); |
| out: |
| return r; |
| } |
| |
| int verity_hash(struct dm_verity *v, struct dm_verity_io *io, |
| const u8 *data, size_t len, u8 *digest, bool may_sleep) |
| { |
| int r; |
| |
| if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) { |
| struct ahash_request *req = verity_io_hash_req(v, io); |
| struct crypto_wait wait; |
| |
| r = verity_ahash_init(v, req, &wait, may_sleep) ?: |
| verity_ahash_update(v, req, data, len, &wait) ?: |
| verity_ahash_final(v, req, digest, &wait); |
| } else { |
| struct shash_desc *desc = verity_io_hash_req(v, io); |
| |
| desc->tfm = v->shash_tfm; |
| r = crypto_shash_import(desc, v->initial_hashstate) ?: |
| crypto_shash_finup(desc, data, len, digest); |
| } |
| if (unlikely(r)) |
| DMERR("Error hashing block: %d", r); |
| return r; |
| } |
| |
| static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level, |
| sector_t *hash_block, unsigned int *offset) |
| { |
| sector_t position = verity_position_at_level(v, block, level); |
| unsigned int idx; |
| |
| *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits); |
| |
| if (!offset) |
| return; |
| |
| idx = position & ((1 << v->hash_per_block_bits) - 1); |
| if (!v->version) |
| *offset = idx * v->digest_size; |
| else |
| *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits); |
| } |
| |
| /* |
| * Handle verification errors. |
| */ |
| static int verity_handle_err(struct dm_verity *v, enum verity_block_type type, |
| unsigned long long block) |
| { |
| char verity_env[DM_VERITY_ENV_LENGTH]; |
| char *envp[] = { verity_env, NULL }; |
| const char *type_str = ""; |
| struct mapped_device *md = dm_table_get_md(v->ti->table); |
| |
| /* Corruption should be visible in device status in all modes */ |
| v->hash_failed = true; |
| |
| if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS) |
| goto out; |
| |
| v->corrupted_errs++; |
| |
| switch (type) { |
| case DM_VERITY_BLOCK_TYPE_DATA: |
| type_str = "data"; |
| break; |
| case DM_VERITY_BLOCK_TYPE_METADATA: |
| type_str = "metadata"; |
| break; |
| default: |
| BUG(); |
| } |
| |
| DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name, |
| type_str, block); |
| |
| if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) { |
| DMERR("%s: reached maximum errors", v->data_dev->name); |
| dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0); |
| } |
| |
| snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu", |
| DM_VERITY_ENV_VAR_NAME, type, block); |
| |
| kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp); |
| |
| out: |
| if (v->mode == DM_VERITY_MODE_LOGGING) |
| return 0; |
| |
| if (v->mode == DM_VERITY_MODE_RESTART) |
| kernel_restart("dm-verity device corrupted"); |
| |
| if (v->mode == DM_VERITY_MODE_PANIC) |
| panic("dm-verity device corrupted"); |
| |
| return 1; |
| } |
| |
| /* |
| * Verify hash of a metadata block pertaining to the specified data block |
| * ("block" argument) at a specified level ("level" argument). |
| * |
| * On successful return, verity_io_want_digest(v, io) contains the hash value |
| * for a lower tree level or for the data block (if we're at the lowest level). |
| * |
| * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned. |
| * If "skip_unverified" is false, unverified buffer is hashed and verified |
| * against current value of verity_io_want_digest(v, io). |
| */ |
| static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io, |
| sector_t block, int level, bool skip_unverified, |
| u8 *want_digest) |
| { |
| struct dm_buffer *buf; |
| struct buffer_aux *aux; |
| u8 *data; |
| int r; |
| sector_t hash_block; |
| unsigned int offset; |
| struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); |
| |
| verity_hash_at_level(v, block, level, &hash_block, &offset); |
| |
| if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { |
| data = dm_bufio_get(v->bufio, hash_block, &buf); |
| if (data == NULL) { |
| /* |
| * In tasklet and the hash was not in the bufio cache. |
| * Return early and resume execution from a work-queue |
| * to read the hash from disk. |
| */ |
| return -EAGAIN; |
| } |
| } else { |
| data = dm_bufio_read_with_ioprio(v->bufio, hash_block, |
| &buf, bio_prio(bio)); |
| } |
| |
| if (IS_ERR(data)) |
| return PTR_ERR(data); |
| |
| aux = dm_bufio_get_aux_data(buf); |
| |
| if (!aux->hash_verified) { |
| if (skip_unverified) { |
| r = 1; |
| goto release_ret_r; |
| } |
| |
| r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits, |
| verity_io_real_digest(v, io), !io->in_bh); |
| if (unlikely(r < 0)) |
| goto release_ret_r; |
| |
| if (likely(memcmp(verity_io_real_digest(v, io), want_digest, |
| v->digest_size) == 0)) |
| aux->hash_verified = 1; |
| else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { |
| /* |
| * Error handling code (FEC included) cannot be run in a |
| * tasklet since it may sleep, so fallback to work-queue. |
| */ |
| r = -EAGAIN; |
| goto release_ret_r; |
| } else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA, |
| hash_block, data) == 0) |
| aux->hash_verified = 1; |
| else if (verity_handle_err(v, |
| DM_VERITY_BLOCK_TYPE_METADATA, |
| hash_block)) { |
| struct bio *bio = |
| dm_bio_from_per_bio_data(io, |
| v->ti->per_io_data_size); |
| dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio, |
| block, 0); |
| r = -EIO; |
| goto release_ret_r; |
| } |
| } |
| |
| data += offset; |
| memcpy(want_digest, data, v->digest_size); |
| r = 0; |
| |
| release_ret_r: |
| dm_bufio_release(buf); |
| return r; |
| } |
| |
| /* |
| * Find a hash for a given block, write it to digest and verify the integrity |
| * of the hash tree if necessary. |
| */ |
| int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io, |
| sector_t block, u8 *digest, bool *is_zero) |
| { |
| int r = 0, i; |
| |
| if (likely(v->levels)) { |
| /* |
| * First, we try to get the requested hash for |
| * the current block. If the hash block itself is |
| * verified, zero is returned. If it isn't, this |
| * function returns 1 and we fall back to whole |
| * chain verification. |
| */ |
| r = verity_verify_level(v, io, block, 0, true, digest); |
| if (likely(r <= 0)) |
| goto out; |
| } |
| |
| memcpy(digest, v->root_digest, v->digest_size); |
| |
| for (i = v->levels - 1; i >= 0; i--) { |
| r = verity_verify_level(v, io, block, i, false, digest); |
| if (unlikely(r)) |
| goto out; |
| } |
| out: |
| if (!r && v->zero_digest) |
| *is_zero = !memcmp(v->zero_digest, digest, v->digest_size); |
| else |
| *is_zero = false; |
| |
| return r; |
| } |
| |
| static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io, |
| sector_t cur_block, u8 *dest) |
| { |
| struct page *page; |
| void *buffer; |
| int r; |
| struct dm_io_request io_req; |
| struct dm_io_region io_loc; |
| |
| page = mempool_alloc(&v->recheck_pool, GFP_NOIO); |
| buffer = page_to_virt(page); |
| |
| io_req.bi_opf = REQ_OP_READ; |
| io_req.mem.type = DM_IO_KMEM; |
| io_req.mem.ptr.addr = buffer; |
| io_req.notify.fn = NULL; |
| io_req.client = v->io; |
| io_loc.bdev = v->data_dev->bdev; |
| io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT); |
| io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT); |
| r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT); |
| if (unlikely(r)) |
| goto free_ret; |
| |
| r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits, |
| verity_io_real_digest(v, io), true); |
| if (unlikely(r)) |
| goto free_ret; |
| |
| if (memcmp(verity_io_real_digest(v, io), |
| verity_io_want_digest(v, io), v->digest_size)) { |
| r = -EIO; |
| goto free_ret; |
| } |
| |
| memcpy(dest, buffer, 1 << v->data_dev_block_bits); |
| r = 0; |
| free_ret: |
| mempool_free(page, &v->recheck_pool); |
| |
| return r; |
| } |
| |
| static int verity_handle_data_hash_mismatch(struct dm_verity *v, |
| struct dm_verity_io *io, |
| struct bio *bio, sector_t blkno, |
| u8 *data) |
| { |
| if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { |
| /* |
| * Error handling code (FEC included) cannot be run in the |
| * BH workqueue, so fallback to a standard workqueue. |
| */ |
| return -EAGAIN; |
| } |
| if (verity_recheck(v, io, blkno, data) == 0) { |
| if (v->validated_blocks) |
| set_bit(blkno, v->validated_blocks); |
| return 0; |
| } |
| #if defined(CONFIG_DM_VERITY_FEC) |
| if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno, |
| data) == 0) |
| return 0; |
| #endif |
| if (bio->bi_status) |
| return -EIO; /* Error correction failed; Just return error */ |
| |
| if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) { |
| dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0); |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| /* |
| * Verify one "dm_verity_io" structure. |
| */ |
| static int verity_verify_io(struct dm_verity_io *io) |
| { |
| struct dm_verity *v = io->v; |
| const unsigned int block_size = 1 << v->data_dev_block_bits; |
| struct bvec_iter iter_copy; |
| struct bvec_iter *iter; |
| struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); |
| unsigned int b; |
| |
| if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) { |
| /* |
| * Copy the iterator in case we need to restart |
| * verification in a work-queue. |
| */ |
| iter_copy = io->iter; |
| iter = &iter_copy; |
| } else |
| iter = &io->iter; |
| |
| for (b = 0; b < io->n_blocks; |
| b++, bio_advance_iter(bio, iter, block_size)) { |
| int r; |
| sector_t cur_block = io->block + b; |
| bool is_zero; |
| struct bio_vec bv; |
| void *data; |
| |
| if (v->validated_blocks && bio->bi_status == BLK_STS_OK && |
| likely(test_bit(cur_block, v->validated_blocks))) |
| continue; |
| |
| r = verity_hash_for_block(v, io, cur_block, |
| verity_io_want_digest(v, io), |
| &is_zero); |
| if (unlikely(r < 0)) |
| return r; |
| |
| bv = bio_iter_iovec(bio, *iter); |
| if (unlikely(bv.bv_len < block_size)) { |
| /* |
| * Data block spans pages. This should not happen, |
| * since dm-verity sets dma_alignment to the data block |
| * size minus 1, and dm-verity also doesn't allow the |
| * data block size to be greater than PAGE_SIZE. |
| */ |
| DMERR_LIMIT("unaligned io (data block spans pages)"); |
| return -EIO; |
| } |
| |
| data = bvec_kmap_local(&bv); |
| |
| if (is_zero) { |
| /* |
| * If we expect a zero block, don't validate, just |
| * return zeros. |
| */ |
| memset(data, 0, block_size); |
| kunmap_local(data); |
| continue; |
| } |
| |
| r = verity_hash(v, io, data, block_size, |
| verity_io_real_digest(v, io), !io->in_bh); |
| if (unlikely(r < 0)) { |
| kunmap_local(data); |
| return r; |
| } |
| |
| if (likely(memcmp(verity_io_real_digest(v, io), |
| verity_io_want_digest(v, io), v->digest_size) == 0)) { |
| if (v->validated_blocks) |
| set_bit(cur_block, v->validated_blocks); |
| kunmap_local(data); |
| continue; |
| } |
| r = verity_handle_data_hash_mismatch(v, io, bio, cur_block, |
| data); |
| kunmap_local(data); |
| if (unlikely(r)) |
| return r; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Skip verity work in response to I/O error when system is shutting down. |
| */ |
| static inline bool verity_is_system_shutting_down(void) |
| { |
| return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF |
| || system_state == SYSTEM_RESTART; |
| } |
| |
| static void restart_io_error(struct work_struct *w) |
| { |
| kernel_restart("dm-verity device has I/O error"); |
| } |
| |
| /* |
| * End one "io" structure with a given error. |
| */ |
| static void verity_finish_io(struct dm_verity_io *io, blk_status_t status) |
| { |
| struct dm_verity *v = io->v; |
| struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size); |
| |
| bio->bi_end_io = io->orig_bi_end_io; |
| bio->bi_status = status; |
| |
| if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh) |
| verity_fec_finish_io(io); |
| |
| if (unlikely(status != BLK_STS_OK) && |
| unlikely(!(bio->bi_opf & REQ_RAHEAD)) && |
| !verity_is_system_shutting_down()) { |
| if (v->error_mode == DM_VERITY_MODE_PANIC) { |
| panic("dm-verity device has I/O error"); |
| } |
| if (v->error_mode == DM_VERITY_MODE_RESTART) { |
| static DECLARE_WORK(restart_work, restart_io_error); |
| queue_work(v->verify_wq, &restart_work); |
| /* |
| * We deliberately don't call bio_endio here, because |
| * the machine will be restarted anyway. |
| */ |
| return; |
| } |
| } |
| |
| bio_endio(bio); |
| } |
| |
| static void verity_work(struct work_struct *w) |
| { |
| struct dm_verity_io *io = container_of(w, struct dm_verity_io, work); |
| |
| io->in_bh = false; |
| |
| verity_finish_io(io, errno_to_blk_status(verity_verify_io(io))); |
| } |
| |
| static void verity_bh_work(struct work_struct *w) |
| { |
| struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work); |
| int err; |
| |
| io->in_bh = true; |
| err = verity_verify_io(io); |
| if (err == -EAGAIN || err == -ENOMEM) { |
| /* fallback to retrying with work-queue */ |
| INIT_WORK(&io->work, verity_work); |
| queue_work(io->v->verify_wq, &io->work); |
| return; |
| } |
| |
| verity_finish_io(io, errno_to_blk_status(err)); |
| } |
| |
| static void verity_end_io(struct bio *bio) |
| { |
| struct dm_verity_io *io = bio->bi_private; |
| |
| if (bio->bi_status && |
| (!verity_fec_is_enabled(io->v) || |
| verity_is_system_shutting_down() || |
| (bio->bi_opf & REQ_RAHEAD))) { |
| verity_finish_io(io, bio->bi_status); |
| return; |
| } |
| |
| if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) { |
| INIT_WORK(&io->bh_work, verity_bh_work); |
| queue_work(system_bh_wq, &io->bh_work); |
| } else { |
| INIT_WORK(&io->work, verity_work); |
| queue_work(io->v->verify_wq, &io->work); |
| } |
| } |
| |
| /* |
| * Prefetch buffers for the specified io. |
| * The root buffer is not prefetched, it is assumed that it will be cached |
| * all the time. |
| */ |
| static void verity_prefetch_io(struct work_struct *work) |
| { |
| struct dm_verity_prefetch_work *pw = |
| container_of(work, struct dm_verity_prefetch_work, work); |
| struct dm_verity *v = pw->v; |
| int i; |
| |
| for (i = v->levels - 2; i >= 0; i--) { |
| sector_t hash_block_start; |
| sector_t hash_block_end; |
| |
| verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL); |
| verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL); |
| |
| if (!i) { |
| unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster); |
| |
| cluster >>= v->data_dev_block_bits; |
| if (unlikely(!cluster)) |
| goto no_prefetch_cluster; |
| |
| if (unlikely(cluster & (cluster - 1))) |
| cluster = 1 << __fls(cluster); |
| |
| hash_block_start &= ~(sector_t)(cluster - 1); |
| hash_block_end |= cluster - 1; |
| if (unlikely(hash_block_end >= v->hash_blocks)) |
| hash_block_end = v->hash_blocks - 1; |
| } |
| no_prefetch_cluster: |
| dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start, |
| hash_block_end - hash_block_start + 1, |
| pw->ioprio); |
| } |
| |
| kfree(pw); |
| } |
| |
| static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io, |
| unsigned short ioprio) |
| { |
| sector_t block = io->block; |
| unsigned int n_blocks = io->n_blocks; |
| struct dm_verity_prefetch_work *pw; |
| |
| if (v->validated_blocks) { |
| while (n_blocks && test_bit(block, v->validated_blocks)) { |
| block++; |
| n_blocks--; |
| } |
| while (n_blocks && test_bit(block + n_blocks - 1, |
| v->validated_blocks)) |
| n_blocks--; |
| if (!n_blocks) |
| return; |
| } |
| |
| pw = kmalloc(sizeof(struct dm_verity_prefetch_work), |
| GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| |
| if (!pw) |
| return; |
| |
| INIT_WORK(&pw->work, verity_prefetch_io); |
| pw->v = v; |
| pw->block = block; |
| pw->n_blocks = n_blocks; |
| pw->ioprio = ioprio; |
| queue_work(v->verify_wq, &pw->work); |
| } |
| |
| /* |
| * Bio map function. It allocates dm_verity_io structure and bio vector and |
| * fills them. Then it issues prefetches and the I/O. |
| */ |
| static int verity_map(struct dm_target *ti, struct bio *bio) |
| { |
| struct dm_verity *v = ti->private; |
| struct dm_verity_io *io; |
| |
| bio_set_dev(bio, v->data_dev->bdev); |
| bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector); |
| |
| if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) & |
| ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) { |
| DMERR_LIMIT("unaligned io"); |
| return DM_MAPIO_KILL; |
| } |
| |
| if (bio_end_sector(bio) >> |
| (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) { |
| DMERR_LIMIT("io out of range"); |
| return DM_MAPIO_KILL; |
| } |
| |
| if (bio_data_dir(bio) == WRITE) |
| return DM_MAPIO_KILL; |
| |
| io = dm_per_bio_data(bio, ti->per_io_data_size); |
| io->v = v; |
| io->orig_bi_end_io = bio->bi_end_io; |
| io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT); |
| io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits; |
| |
| bio->bi_end_io = verity_end_io; |
| bio->bi_private = io; |
| io->iter = bio->bi_iter; |
| |
| verity_fec_init_io(io); |
| |
| verity_submit_prefetch(v, io, bio_prio(bio)); |
| |
| submit_bio_noacct(bio); |
| |
| return DM_MAPIO_SUBMITTED; |
| } |
| |
| /* |
| * Status: V (valid) or C (corruption found) |
| */ |
| static void verity_status(struct dm_target *ti, status_type_t type, |
| unsigned int status_flags, char *result, unsigned int maxlen) |
| { |
| struct dm_verity *v = ti->private; |
| unsigned int args = 0; |
| unsigned int sz = 0; |
| unsigned int x; |
| |
| switch (type) { |
| case STATUSTYPE_INFO: |
| DMEMIT("%c", v->hash_failed ? 'C' : 'V'); |
| break; |
| case STATUSTYPE_TABLE: |
| DMEMIT("%u %s %s %u %u %llu %llu %s ", |
| v->version, |
| v->data_dev->name, |
| v->hash_dev->name, |
| 1 << v->data_dev_block_bits, |
| 1 << v->hash_dev_block_bits, |
| (unsigned long long)v->data_blocks, |
| (unsigned long long)v->hash_start, |
| v->alg_name |
| ); |
| for (x = 0; x < v->digest_size; x++) |
| DMEMIT("%02x", v->root_digest[x]); |
| DMEMIT(" "); |
| if (!v->salt_size) |
| DMEMIT("-"); |
| else |
| for (x = 0; x < v->salt_size; x++) |
| DMEMIT("%02x", v->salt[x]); |
| if (v->mode != DM_VERITY_MODE_EIO) |
| args++; |
| if (v->error_mode != DM_VERITY_MODE_EIO) |
| args++; |
| if (verity_fec_is_enabled(v)) |
| args += DM_VERITY_OPTS_FEC; |
| if (v->zero_digest) |
| args++; |
| if (v->validated_blocks) |
| args++; |
| if (v->use_bh_wq) |
| args++; |
| if (v->signature_key_desc) |
| args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS; |
| if (!args) |
| return; |
| DMEMIT(" %u", args); |
| if (v->mode != DM_VERITY_MODE_EIO) { |
| DMEMIT(" "); |
| switch (v->mode) { |
| case DM_VERITY_MODE_LOGGING: |
| DMEMIT(DM_VERITY_OPT_LOGGING); |
| break; |
| case DM_VERITY_MODE_RESTART: |
| DMEMIT(DM_VERITY_OPT_RESTART); |
| break; |
| case DM_VERITY_MODE_PANIC: |
| DMEMIT(DM_VERITY_OPT_PANIC); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| if (v->error_mode != DM_VERITY_MODE_EIO) { |
| DMEMIT(" "); |
| switch (v->error_mode) { |
| case DM_VERITY_MODE_RESTART: |
| DMEMIT(DM_VERITY_OPT_ERROR_RESTART); |
| break; |
| case DM_VERITY_MODE_PANIC: |
| DMEMIT(DM_VERITY_OPT_ERROR_PANIC); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| if (v->zero_digest) |
| DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES); |
| if (v->validated_blocks) |
| DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE); |
| if (v->use_bh_wq) |
| DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY); |
| sz = verity_fec_status_table(v, sz, result, maxlen); |
| if (v->signature_key_desc) |
| DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY |
| " %s", v->signature_key_desc); |
| break; |
| |
| case STATUSTYPE_IMA: |
| DMEMIT_TARGET_NAME_VERSION(ti->type); |
| DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V'); |
| DMEMIT(",verity_version=%u", v->version); |
| DMEMIT(",data_device_name=%s", v->data_dev->name); |
| DMEMIT(",hash_device_name=%s", v->hash_dev->name); |
| DMEMIT(",verity_algorithm=%s", v->alg_name); |
| |
| DMEMIT(",root_digest="); |
| for (x = 0; x < v->digest_size; x++) |
| DMEMIT("%02x", v->root_digest[x]); |
| |
| DMEMIT(",salt="); |
| if (!v->salt_size) |
| DMEMIT("-"); |
| else |
| for (x = 0; x < v->salt_size; x++) |
| DMEMIT("%02x", v->salt[x]); |
| |
| DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n'); |
| DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n'); |
| if (v->signature_key_desc) |
| DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc); |
| |
| if (v->mode != DM_VERITY_MODE_EIO) { |
| DMEMIT(",verity_mode="); |
| switch (v->mode) { |
| case DM_VERITY_MODE_LOGGING: |
| DMEMIT(DM_VERITY_OPT_LOGGING); |
| break; |
| case DM_VERITY_MODE_RESTART: |
| DMEMIT(DM_VERITY_OPT_RESTART); |
| break; |
| case DM_VERITY_MODE_PANIC: |
| DMEMIT(DM_VERITY_OPT_PANIC); |
| break; |
| default: |
| DMEMIT("invalid"); |
| } |
| } |
| if (v->error_mode != DM_VERITY_MODE_EIO) { |
| DMEMIT(",verity_error_mode="); |
| switch (v->error_mode) { |
| case DM_VERITY_MODE_RESTART: |
| DMEMIT(DM_VERITY_OPT_ERROR_RESTART); |
| break; |
| case DM_VERITY_MODE_PANIC: |
| DMEMIT(DM_VERITY_OPT_ERROR_PANIC); |
| break; |
| default: |
| DMEMIT("invalid"); |
| } |
| } |
| DMEMIT(";"); |
| break; |
| } |
| } |
| |
| static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) |
| { |
| struct dm_verity *v = ti->private; |
| |
| *bdev = v->data_dev->bdev; |
| |
| if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev)) |
| return 1; |
| return 0; |
| } |
| |
| static int verity_iterate_devices(struct dm_target *ti, |
| iterate_devices_callout_fn fn, void *data) |
| { |
| struct dm_verity *v = ti->private; |
| |
| return fn(ti, v->data_dev, v->data_start, ti->len, data); |
| } |
| |
| static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits) |
| { |
| struct dm_verity *v = ti->private; |
| |
| if (limits->logical_block_size < 1 << v->data_dev_block_bits) |
| limits->logical_block_size = 1 << v->data_dev_block_bits; |
| |
| if (limits->physical_block_size < 1 << v->data_dev_block_bits) |
| limits->physical_block_size = 1 << v->data_dev_block_bits; |
| |
| limits->io_min = limits->logical_block_size; |
| |
| /* |
| * Similar to what dm-crypt does, opt dm-verity out of support for |
| * direct I/O that is aligned to less than the traditional direct I/O |
| * alignment requirement of logical_block_size. This prevents dm-verity |
| * data blocks from crossing pages, eliminating various edge cases. |
| */ |
| limits->dma_alignment = limits->logical_block_size - 1; |
| } |
| |
| #ifdef CONFIG_SECURITY |
| |
| static int verity_init_sig(struct dm_verity *v, const void *sig, |
| size_t sig_size) |
| { |
| v->sig_size = sig_size; |
| |
| if (sig) { |
| v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL); |
| if (!v->root_digest_sig) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void verity_free_sig(struct dm_verity *v) |
| { |
| kfree(v->root_digest_sig); |
| } |
| |
| #else |
| |
| static inline int verity_init_sig(struct dm_verity *v, const void *sig, |
| size_t sig_size) |
| { |
| return 0; |
| } |
| |
| static inline void verity_free_sig(struct dm_verity *v) |
| { |
| } |
| |
| #endif /* CONFIG_SECURITY */ |
| |
| static void verity_dtr(struct dm_target *ti) |
| { |
| struct dm_verity *v = ti->private; |
| |
| if (v->verify_wq) |
| destroy_workqueue(v->verify_wq); |
| |
| mempool_exit(&v->recheck_pool); |
| if (v->io) |
| dm_io_client_destroy(v->io); |
| |
| if (v->bufio) |
| dm_bufio_client_destroy(v->bufio); |
| |
| kvfree(v->validated_blocks); |
| kfree(v->salt); |
| kfree(v->initial_hashstate); |
| kfree(v->root_digest); |
| kfree(v->zero_digest); |
| verity_free_sig(v); |
| |
| if (v->ahash_tfm) { |
| static_branch_dec(&ahash_enabled); |
| crypto_free_ahash(v->ahash_tfm); |
| } else { |
| crypto_free_shash(v->shash_tfm); |
| } |
| |
| kfree(v->alg_name); |
| |
| if (v->hash_dev) |
| dm_put_device(ti, v->hash_dev); |
| |
| if (v->data_dev) |
| dm_put_device(ti, v->data_dev); |
| |
| verity_fec_dtr(v); |
| |
| kfree(v->signature_key_desc); |
| |
| if (v->use_bh_wq) |
| static_branch_dec(&use_bh_wq_enabled); |
| |
| kfree(v); |
| |
| dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1); |
| } |
| |
| static int verity_alloc_most_once(struct dm_verity *v) |
| { |
| struct dm_target *ti = v->ti; |
| |
| /* the bitset can only handle INT_MAX blocks */ |
| if (v->data_blocks > INT_MAX) { |
| ti->error = "device too large to use check_at_most_once"; |
| return -E2BIG; |
| } |
| |
| v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks), |
| sizeof(unsigned long), |
| GFP_KERNEL); |
| if (!v->validated_blocks) { |
| ti->error = "failed to allocate bitset for check_at_most_once"; |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int verity_alloc_zero_digest(struct dm_verity *v) |
| { |
| int r = -ENOMEM; |
| struct dm_verity_io *io; |
| u8 *zero_data; |
| |
| v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL); |
| |
| if (!v->zero_digest) |
| return r; |
| |
| io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL); |
| |
| if (!io) |
| return r; /* verity_dtr will free zero_digest */ |
| |
| zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL); |
| |
| if (!zero_data) |
| goto out; |
| |
| r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits, |
| v->zero_digest, true); |
| |
| out: |
| kfree(io); |
| kfree(zero_data); |
| |
| return r; |
| } |
| |
| static inline bool verity_is_verity_mode(const char *arg_name) |
| { |
| return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_PANIC)); |
| } |
| |
| static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name) |
| { |
| if (v->mode) |
| return -EINVAL; |
| |
| if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) |
| v->mode = DM_VERITY_MODE_LOGGING; |
| else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) |
| v->mode = DM_VERITY_MODE_RESTART; |
| else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC)) |
| v->mode = DM_VERITY_MODE_PANIC; |
| |
| return 0; |
| } |
| |
| static inline bool verity_is_verity_error_mode(const char *arg_name) |
| { |
| return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) || |
| !strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)); |
| } |
| |
| static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name) |
| { |
| if (v->error_mode) |
| return -EINVAL; |
| |
| if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART)) |
| v->error_mode = DM_VERITY_MODE_RESTART; |
| else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC)) |
| v->error_mode = DM_VERITY_MODE_PANIC; |
| |
| return 0; |
| } |
| |
| static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v, |
| struct dm_verity_sig_opts *verify_args, |
| bool only_modifier_opts) |
| { |
| int r = 0; |
| unsigned int argc; |
| struct dm_target *ti = v->ti; |
| const char *arg_name; |
| |
| static const struct dm_arg _args[] = { |
| {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"}, |
| }; |
| |
| r = dm_read_arg_group(_args, as, &argc, &ti->error); |
| if (r) |
| return -EINVAL; |
| |
| if (!argc) |
| return 0; |
| |
| do { |
| arg_name = dm_shift_arg(as); |
| argc--; |
| |
| if (verity_is_verity_mode(arg_name)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_parse_verity_mode(v, arg_name); |
| if (r) { |
| ti->error = "Conflicting error handling parameters"; |
| return r; |
| } |
| continue; |
| |
| } else if (verity_is_verity_error_mode(arg_name)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_parse_verity_error_mode(v, arg_name); |
| if (r) { |
| ti->error = "Conflicting error handling parameters"; |
| return r; |
| } |
| continue; |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_alloc_zero_digest(v); |
| if (r) { |
| ti->error = "Cannot allocate zero digest"; |
| return r; |
| } |
| continue; |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_alloc_most_once(v); |
| if (r) |
| return r; |
| continue; |
| |
| } else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) { |
| v->use_bh_wq = true; |
| static_branch_inc(&use_bh_wq_enabled); |
| continue; |
| |
| } else if (verity_is_fec_opt_arg(arg_name)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_fec_parse_opt_args(as, v, &argc, arg_name); |
| if (r) |
| return r; |
| continue; |
| |
| } else if (verity_verify_is_sig_opt_arg(arg_name)) { |
| if (only_modifier_opts) |
| continue; |
| r = verity_verify_sig_parse_opt_args(as, v, |
| verify_args, |
| &argc, arg_name); |
| if (r) |
| return r; |
| continue; |
| |
| } else if (only_modifier_opts) { |
| /* |
| * Ignore unrecognized opt, could easily be an extra |
| * argument to an option whose parsing was skipped. |
| * Normal parsing (@only_modifier_opts=false) will |
| * properly parse all options (and their extra args). |
| */ |
| continue; |
| } |
| |
| DMERR("Unrecognized verity feature request: %s", arg_name); |
| ti->error = "Unrecognized verity feature request"; |
| return -EINVAL; |
| } while (argc && !r); |
| |
| return r; |
| } |
| |
| static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name) |
| { |
| struct dm_target *ti = v->ti; |
| struct crypto_ahash *ahash; |
| struct crypto_shash *shash = NULL; |
| const char *driver_name; |
| |
| v->alg_name = kstrdup(alg_name, GFP_KERNEL); |
| if (!v->alg_name) { |
| ti->error = "Cannot allocate algorithm name"; |
| return -ENOMEM; |
| } |
| |
| /* |
| * Allocate the hash transformation object that this dm-verity instance |
| * will use. The vast majority of dm-verity users use CPU-based |
| * hashing, so when possible use the shash API to minimize the crypto |
| * API overhead. If the ahash API resolves to a different driver |
| * (likely an off-CPU hardware offload), use ahash instead. Also use |
| * ahash if the obsolete dm-verity format with the appended salt is |
| * being used, so that quirk only needs to be handled in one place. |
| */ |
| ahash = crypto_alloc_ahash(alg_name, 0, |
| v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0); |
| if (IS_ERR(ahash)) { |
| ti->error = "Cannot initialize hash function"; |
| return PTR_ERR(ahash); |
| } |
| driver_name = crypto_ahash_driver_name(ahash); |
| if (v->version >= 1 /* salt prepended, not appended? */) { |
| shash = crypto_alloc_shash(alg_name, 0, 0); |
| if (!IS_ERR(shash) && |
| strcmp(crypto_shash_driver_name(shash), driver_name) != 0) { |
| /* |
| * ahash gave a different driver than shash, so probably |
| * this is a case of real hardware offload. Use ahash. |
| */ |
| crypto_free_shash(shash); |
| shash = NULL; |
| } |
| } |
| if (!IS_ERR_OR_NULL(shash)) { |
| crypto_free_ahash(ahash); |
| ahash = NULL; |
| v->shash_tfm = shash; |
| v->digest_size = crypto_shash_digestsize(shash); |
| v->hash_reqsize = sizeof(struct shash_desc) + |
| crypto_shash_descsize(shash); |
| DMINFO("%s using shash \"%s\"", alg_name, driver_name); |
| } else { |
| v->ahash_tfm = ahash; |
| static_branch_inc(&ahash_enabled); |
| v->digest_size = crypto_ahash_digestsize(ahash); |
| v->hash_reqsize = sizeof(struct ahash_request) + |
| crypto_ahash_reqsize(ahash); |
| DMINFO("%s using ahash \"%s\"", alg_name, driver_name); |
| } |
| if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) { |
| ti->error = "Digest size too big"; |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg) |
| { |
| struct dm_target *ti = v->ti; |
| |
| if (strcmp(arg, "-") != 0) { |
| v->salt_size = strlen(arg) / 2; |
| v->salt = kmalloc(v->salt_size, GFP_KERNEL); |
| if (!v->salt) { |
| ti->error = "Cannot allocate salt"; |
| return -ENOMEM; |
| } |
| if (strlen(arg) != v->salt_size * 2 || |
| hex2bin(v->salt, arg, v->salt_size)) { |
| ti->error = "Invalid salt"; |
| return -EINVAL; |
| } |
| } |
| if (v->shash_tfm) { |
| SHASH_DESC_ON_STACK(desc, v->shash_tfm); |
| int r; |
| |
| /* |
| * Compute the pre-salted hash state that can be passed to |
| * crypto_shash_import() for each block later. |
| */ |
| v->initial_hashstate = kmalloc( |
| crypto_shash_statesize(v->shash_tfm), GFP_KERNEL); |
| if (!v->initial_hashstate) { |
| ti->error = "Cannot allocate initial hash state"; |
| return -ENOMEM; |
| } |
| desc->tfm = v->shash_tfm; |
| r = crypto_shash_init(desc) ?: |
| crypto_shash_update(desc, v->salt, v->salt_size) ?: |
| crypto_shash_export(desc, v->initial_hashstate); |
| if (r) { |
| ti->error = "Cannot set up initial hash state"; |
| return r; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * Target parameters: |
| * <version> The current format is version 1. |
| * Vsn 0 is compatible with original Chromium OS releases. |
| * <data device> |
| * <hash device> |
| * <data block size> |
| * <hash block size> |
| * <the number of data blocks> |
| * <hash start block> |
| * <algorithm> |
| * <digest> |
| * <salt> Hex string or "-" if no salt. |
| */ |
| static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv) |
| { |
| struct dm_verity *v; |
| struct dm_verity_sig_opts verify_args = {0}; |
| struct dm_arg_set as; |
| unsigned int num; |
| unsigned long long num_ll; |
| int r; |
| int i; |
| sector_t hash_position; |
| char dummy; |
| char *root_hash_digest_to_validate; |
| |
| v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL); |
| if (!v) { |
| ti->error = "Cannot allocate verity structure"; |
| return -ENOMEM; |
| } |
| ti->private = v; |
| v->ti = ti; |
| |
| r = verity_fec_ctr_alloc(v); |
| if (r) |
| goto bad; |
| |
| if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) { |
| ti->error = "Device must be readonly"; |
| r = -EINVAL; |
| goto bad; |
| } |
| |
| if (argc < 10) { |
| ti->error = "Not enough arguments"; |
| r = -EINVAL; |
| goto bad; |
| } |
| |
| /* Parse optional parameters that modify primary args */ |
| if (argc > 10) { |
| as.argc = argc - 10; |
| as.argv = argv + 10; |
| r = verity_parse_opt_args(&as, v, &verify_args, true); |
| if (r < 0) |
| goto bad; |
| } |
| |
| if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 || |
| num > 1) { |
| ti->error = "Invalid version"; |
| r = -EINVAL; |
| goto bad; |
| } |
| v->version = num; |
| |
| r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev); |
| if (r) { |
| ti->error = "Data device lookup failed"; |
| goto bad; |
| } |
| |
| r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev); |
| if (r) { |
| ti->error = "Hash device lookup failed"; |
| goto bad; |
| } |
| |
| if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 || |
| !num || (num & (num - 1)) || |
| num < bdev_logical_block_size(v->data_dev->bdev) || |
| num > PAGE_SIZE) { |
| ti->error = "Invalid data device block size"; |
| r = -EINVAL; |
| goto bad; |
| } |
| v->data_dev_block_bits = __ffs(num); |
| |
| if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 || |
| !num || (num & (num - 1)) || |
| num < bdev_logical_block_size(v->hash_dev->bdev) || |
| num > INT_MAX) { |
| ti->error = "Invalid hash device block size"; |
| r = -EINVAL; |
| goto bad; |
| } |
| v->hash_dev_block_bits = __ffs(num); |
| |
| if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 || |
| (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) |
| >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) { |
| ti->error = "Invalid data blocks"; |
| r = -EINVAL; |
| goto bad; |
| } |
| v->data_blocks = num_ll; |
| |
| if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) { |
| ti->error = "Data device is too small"; |
| r = -EINVAL; |
| goto bad; |
| } |
| |
| if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 || |
| (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT)) |
| >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) { |
| ti->error = "Invalid hash start"; |
| r = -EINVAL; |
| goto bad; |
| } |
| v->hash_start = num_ll; |
| |
| r = verity_setup_hash_alg(v, argv[7]); |
| if (r) |
| goto bad; |
| |
| v->root_digest = kmalloc(v->digest_size, GFP_KERNEL); |
| if (!v->root_digest) { |
| ti->error = "Cannot allocate root digest"; |
| r = -ENOMEM; |
| goto bad; |
| } |
| if (strlen(argv[8]) != v->digest_size * 2 || |
| hex2bin(v->root_digest, argv[8], v->digest_size)) { |
| ti->error = "Invalid root digest"; |
| r = -EINVAL; |
| goto bad; |
| } |
| root_hash_digest_to_validate = argv[8]; |
| |
| r = verity_setup_salt_and_hashstate(v, argv[9]); |
| if (r) |
| goto bad; |
| |
| argv += 10; |
| argc -= 10; |
| |
| /* Optional parameters */ |
| if (argc) { |
| as.argc = argc; |
| as.argv = argv; |
| r = verity_parse_opt_args(&as, v, &verify_args, false); |
| if (r < 0) |
| goto bad; |
| } |
| |
| /* Root hash signature is a optional parameter*/ |
| r = verity_verify_root_hash(root_hash_digest_to_validate, |
| strlen(root_hash_digest_to_validate), |
| verify_args.sig, |
| verify_args.sig_size); |
| if (r < 0) { |
| ti->error = "Root hash verification failed"; |
| goto bad; |
| } |
| |
| r = verity_init_sig(v, verify_args.sig, verify_args.sig_size); |
| if (r < 0) { |
| ti->error = "Cannot allocate root digest signature"; |
| goto bad; |
| } |
| |
| v->hash_per_block_bits = |
| __fls((1 << v->hash_dev_block_bits) / v->digest_size); |
| |
| v->levels = 0; |
| if (v->data_blocks) |
| while (v->hash_per_block_bits * v->levels < 64 && |
| (unsigned long long)(v->data_blocks - 1) >> |
| (v->hash_per_block_bits * v->levels)) |
| v->levels++; |
| |
| if (v->levels > DM_VERITY_MAX_LEVELS) { |
| ti->error = "Too many tree levels"; |
| r = -E2BIG; |
| goto bad; |
| } |
| |
| hash_position = v->hash_start; |
| for (i = v->levels - 1; i >= 0; i--) { |
| sector_t s; |
| |
| v->hash_level_block[i] = hash_position; |
| s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1) |
| >> ((i + 1) * v->hash_per_block_bits); |
| if (hash_position + s < hash_position) { |
| ti->error = "Hash device offset overflow"; |
| r = -E2BIG; |
| goto bad; |
| } |
| hash_position += s; |
| } |
| v->hash_blocks = hash_position; |
| |
| r = mempool_init_page_pool(&v->recheck_pool, 1, 0); |
| if (unlikely(r)) { |
| ti->error = "Cannot allocate mempool"; |
| goto bad; |
| } |
| |
| v->io = dm_io_client_create(); |
| if (IS_ERR(v->io)) { |
| r = PTR_ERR(v->io); |
| v->io = NULL; |
| ti->error = "Cannot allocate dm io"; |
| goto bad; |
| } |
| |
| v->bufio = dm_bufio_client_create(v->hash_dev->bdev, |
| 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux), |
| dm_bufio_alloc_callback, NULL, |
| v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0); |
| if (IS_ERR(v->bufio)) { |
| ti->error = "Cannot initialize dm-bufio"; |
| r = PTR_ERR(v->bufio); |
| v->bufio = NULL; |
| goto bad; |
| } |
| |
| if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) { |
| ti->error = "Hash device is too small"; |
| r = -E2BIG; |
| goto bad; |
| } |
| |
| /* |
| * Using WQ_HIGHPRI improves throughput and completion latency by |
| * reducing wait times when reading from a dm-verity device. |
| * |
| * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI |
| * allows verify_wq to preempt softirq since verification in BH workqueue |
| * will fall-back to using it for error handling (or if the bufio cache |
| * doesn't have required hashes). |
| */ |
| v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); |
| if (!v->verify_wq) { |
| ti->error = "Cannot allocate workqueue"; |
| r = -ENOMEM; |
| goto bad; |
| } |
| |
| ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize; |
| |
| r = verity_fec_ctr(v); |
| if (r) |
| goto bad; |
| |
| ti->per_io_data_size = roundup(ti->per_io_data_size, |
| __alignof__(struct dm_verity_io)); |
| |
| verity_verify_sig_opts_cleanup(&verify_args); |
| |
| dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1); |
| |
| return 0; |
| |
| bad: |
| |
| verity_verify_sig_opts_cleanup(&verify_args); |
| dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0); |
| verity_dtr(ti); |
| |
| return r; |
| } |
| |
| /* |
| * Get the verity mode (error behavior) of a verity target. |
| * |
| * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity |
| * target. |
| */ |
| int dm_verity_get_mode(struct dm_target *ti) |
| { |
| struct dm_verity *v = ti->private; |
| |
| if (!dm_is_verity_target(ti)) |
| return -EINVAL; |
| |
| return v->mode; |
| } |
| |
| /* |
| * Get the root digest of a verity target. |
| * |
| * Returns a copy of the root digest, the caller is responsible for |
| * freeing the memory of the digest. |
| */ |
| int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size) |
| { |
| struct dm_verity *v = ti->private; |
| |
| if (!dm_is_verity_target(ti)) |
| return -EINVAL; |
| |
| *root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL); |
| if (*root_digest == NULL) |
| return -ENOMEM; |
| |
| *digest_size = v->digest_size; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SECURITY |
| |
| #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG |
| |
| static int verity_security_set_signature(struct block_device *bdev, |
| struct dm_verity *v) |
| { |
| /* |
| * if the dm-verity target is unsigned, v->root_digest_sig will |
| * be NULL, and the hook call is still required to let LSMs mark |
| * the device as unsigned. This information is crucial for LSMs to |
| * block operations such as execution on unsigned files |
| */ |
| return security_bdev_setintegrity(bdev, |
| LSM_INT_DMVERITY_SIG_VALID, |
| v->root_digest_sig, |
| v->sig_size); |
| } |
| |
| #else |
| |
| static inline int verity_security_set_signature(struct block_device *bdev, |
| struct dm_verity *v) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */ |
| |
| /* |
| * Expose verity target's root hash and signature data to LSMs before resume. |
| * |
| * Returns 0 on success, or -ENOMEM if the system is out of memory. |
| */ |
| static int verity_preresume(struct dm_target *ti) |
| { |
| struct block_device *bdev; |
| struct dm_verity_digest root_digest; |
| struct dm_verity *v; |
| int r; |
| |
| v = ti->private; |
| bdev = dm_disk(dm_table_get_md(ti->table))->part0; |
| root_digest.digest = v->root_digest; |
| root_digest.digest_len = v->digest_size; |
| if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) |
| root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm); |
| else |
| root_digest.alg = crypto_shash_alg_name(v->shash_tfm); |
| |
| r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest, |
| sizeof(root_digest)); |
| if (r) |
| return r; |
| |
| r = verity_security_set_signature(bdev, v); |
| if (r) |
| goto bad; |
| |
| return 0; |
| |
| bad: |
| |
| security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0); |
| |
| return r; |
| } |
| |
| #endif /* CONFIG_SECURITY */ |
| |
| static struct target_type verity_target = { |
| .name = "verity", |
| /* Note: the LSMs depend on the singleton and immutable features */ |
| .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE, |
| .version = {1, 10, 0}, |
| .module = THIS_MODULE, |
| .ctr = verity_ctr, |
| .dtr = verity_dtr, |
| .map = verity_map, |
| .status = verity_status, |
| .prepare_ioctl = verity_prepare_ioctl, |
| .iterate_devices = verity_iterate_devices, |
| .io_hints = verity_io_hints, |
| #ifdef CONFIG_SECURITY |
| .preresume = verity_preresume, |
| #endif /* CONFIG_SECURITY */ |
| }; |
| module_dm(verity); |
| |
| /* |
| * Check whether a DM target is a verity target. |
| */ |
| bool dm_is_verity_target(struct dm_target *ti) |
| { |
| return ti->type == &verity_target; |
| } |
| |
| MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>"); |
| MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>"); |
| MODULE_AUTHOR("Will Drewry <wad@chromium.org>"); |
| MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking"); |
| MODULE_LICENSE("GPL"); |