blob: c7fdee347ac8aeb14582fa2885deb4fb57af5e1d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Renesas RZ/G2L MIPI CSI-2 Receiver
*
* Copyright (C) 2022 Renesas Electronics Corp.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/sys_soc.h>
#include <linux/units.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-mc.h>
#include <media/v4l2-subdev.h>
/* LINK registers */
/* Module Configuration Register */
#define CSI2nMCG 0x0
#define CSI2nMCG_SDLN GENMASK(11, 8)
/* Module Control Register 0 */
#define CSI2nMCT0 0x10
#define CSI2nMCT0_VDLN(x) ((x) << 0)
/* Module Control Register 2 */
#define CSI2nMCT2 0x18
#define CSI2nMCT2_FRRSKW(x) ((x) << 16)
#define CSI2nMCT2_FRRCLK(x) ((x) << 0)
/* Module Control Register 3 */
#define CSI2nMCT3 0x1c
#define CSI2nMCT3_RXEN BIT(0)
/* Reset Control Register */
#define CSI2nRTCT 0x28
#define CSI2nRTCT_VSRST BIT(0)
/* Reset Status Register */
#define CSI2nRTST 0x2c
#define CSI2nRTST_VSRSTS BIT(0)
/* Receive Data Type Enable Low Register */
#define CSI2nDTEL 0x60
/* Receive Data Type Enable High Register */
#define CSI2nDTEH 0x64
/* DPHY registers */
/* D-PHY Control Register 0 */
#define CSIDPHYCTRL0 0x400
#define CSIDPHYCTRL0_EN_LDO1200 BIT(1)
#define CSIDPHYCTRL0_EN_BGR BIT(0)
/* D-PHY Timing Register 0 */
#define CSIDPHYTIM0 0x404
#define CSIDPHYTIM0_TCLK_MISS(x) ((x) << 24)
#define CSIDPHYTIM0_T_INIT(x) ((x) << 0)
/* D-PHY Timing Register 1 */
#define CSIDPHYTIM1 0x408
#define CSIDPHYTIM1_THS_PREPARE(x) ((x) << 24)
#define CSIDPHYTIM1_TCLK_PREPARE(x) ((x) << 16)
#define CSIDPHYTIM1_THS_SETTLE(x) ((x) << 8)
#define CSIDPHYTIM1_TCLK_SETTLE(x) ((x) << 0)
/* D-PHY Skew Adjustment Function */
#define CSIDPHYSKW0 0x460
#define CSIDPHYSKW0_UTIL_DL0_SKW_ADJ(x) ((x) & 0x3)
#define CSIDPHYSKW0_UTIL_DL1_SKW_ADJ(x) (((x) & 0x3) << 4)
#define CSIDPHYSKW0_UTIL_DL2_SKW_ADJ(x) (((x) & 0x3) << 8)
#define CSIDPHYSKW0_UTIL_DL3_SKW_ADJ(x) (((x) & 0x3) << 12)
#define CSIDPHYSKW0_DEFAULT_SKW (CSIDPHYSKW0_UTIL_DL0_SKW_ADJ(1) | \
CSIDPHYSKW0_UTIL_DL1_SKW_ADJ(1) | \
CSIDPHYSKW0_UTIL_DL2_SKW_ADJ(1) | \
CSIDPHYSKW0_UTIL_DL3_SKW_ADJ(1))
#define VSRSTS_RETRIES 20
#define RZG2L_CSI2_MIN_WIDTH 320
#define RZG2L_CSI2_MIN_HEIGHT 240
#define RZG2L_CSI2_MAX_WIDTH 2800
#define RZG2L_CSI2_MAX_HEIGHT 4095
#define RZG2L_CSI2_DEFAULT_WIDTH RZG2L_CSI2_MIN_WIDTH
#define RZG2L_CSI2_DEFAULT_HEIGHT RZG2L_CSI2_MIN_HEIGHT
#define RZG2L_CSI2_DEFAULT_FMT MEDIA_BUS_FMT_UYVY8_1X16
enum rzg2l_csi2_pads {
RZG2L_CSI2_SINK = 0,
RZG2L_CSI2_SOURCE,
NR_OF_RZG2L_CSI2_PAD,
};
struct rzg2l_csi2 {
struct device *dev;
void __iomem *base;
struct reset_control *presetn;
struct reset_control *cmn_rstb;
struct clk *sysclk;
struct clk *vclk;
unsigned long vclk_rate;
struct v4l2_subdev subdev;
struct media_pad pads[NR_OF_RZG2L_CSI2_PAD];
struct v4l2_async_notifier notifier;
struct v4l2_subdev *remote_source;
unsigned short lanes;
unsigned long hsfreq;
bool dphy_enabled;
};
struct rzg2l_csi2_timings {
u32 t_init;
u32 tclk_miss;
u32 tclk_settle;
u32 ths_settle;
u32 tclk_prepare;
u32 ths_prepare;
u32 max_hsfreq;
};
static const struct rzg2l_csi2_timings rzg2l_csi2_global_timings[] = {
{
.max_hsfreq = 80,
.t_init = 79801,
.tclk_miss = 4,
.tclk_settle = 23,
.ths_settle = 31,
.tclk_prepare = 10,
.ths_prepare = 19,
},
{
.max_hsfreq = 125,
.t_init = 79801,
.tclk_miss = 4,
.tclk_settle = 23,
.ths_settle = 28,
.tclk_prepare = 10,
.ths_prepare = 19,
},
{
.max_hsfreq = 250,
.t_init = 79801,
.tclk_miss = 4,
.tclk_settle = 23,
.ths_settle = 22,
.tclk_prepare = 10,
.ths_prepare = 16,
},
{
.max_hsfreq = 360,
.t_init = 79801,
.tclk_miss = 4,
.tclk_settle = 18,
.ths_settle = 19,
.tclk_prepare = 10,
.ths_prepare = 10,
},
{
.max_hsfreq = 1500,
.t_init = 79801,
.tclk_miss = 4,
.tclk_settle = 18,
.ths_settle = 18,
.tclk_prepare = 10,
.ths_prepare = 10,
},
};
struct rzg2l_csi2_format {
u32 code;
unsigned int datatype;
unsigned int bpp;
};
static const struct rzg2l_csi2_format rzg2l_csi2_formats[] = {
{ .code = MEDIA_BUS_FMT_UYVY8_1X16, .datatype = 0x1e, .bpp = 16 },
};
static inline struct rzg2l_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
{
return container_of(sd, struct rzg2l_csi2, subdev);
}
static const struct rzg2l_csi2_format *rzg2l_csi2_code_to_fmt(unsigned int code)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(rzg2l_csi2_formats); i++)
if (rzg2l_csi2_formats[i].code == code)
return &rzg2l_csi2_formats[i];
return NULL;
}
static inline struct rzg2l_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
{
return container_of(n, struct rzg2l_csi2, notifier);
}
static u32 rzg2l_csi2_read(struct rzg2l_csi2 *csi2, unsigned int reg)
{
return ioread32(csi2->base + reg);
}
static void rzg2l_csi2_write(struct rzg2l_csi2 *csi2, unsigned int reg,
u32 data)
{
iowrite32(data, csi2->base + reg);
}
static void rzg2l_csi2_set(struct rzg2l_csi2 *csi2, unsigned int reg, u32 set)
{
rzg2l_csi2_write(csi2, reg, rzg2l_csi2_read(csi2, reg) | set);
}
static void rzg2l_csi2_clr(struct rzg2l_csi2 *csi2, unsigned int reg, u32 clr)
{
rzg2l_csi2_write(csi2, reg, rzg2l_csi2_read(csi2, reg) & ~clr);
}
static int rzg2l_csi2_calc_mbps(struct rzg2l_csi2 *csi2)
{
struct v4l2_subdev *source = csi2->remote_source;
const struct rzg2l_csi2_format *format;
const struct v4l2_mbus_framefmt *fmt;
struct v4l2_subdev_state *state;
struct v4l2_ctrl *ctrl;
u64 mbps;
/* Read the pixel rate control from remote. */
ctrl = v4l2_ctrl_find(source->ctrl_handler, V4L2_CID_PIXEL_RATE);
if (!ctrl) {
dev_err(csi2->dev, "no pixel rate control in subdev %s\n",
source->name);
return -EINVAL;
}
state = v4l2_subdev_lock_and_get_active_state(&csi2->subdev);
fmt = v4l2_subdev_state_get_format(state, RZG2L_CSI2_SINK);
format = rzg2l_csi2_code_to_fmt(fmt->code);
v4l2_subdev_unlock_state(state);
/*
* Calculate hsfreq in Mbps
* hsfreq = (pixel_rate * bits_per_sample) / number_of_lanes
*/
mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * format->bpp;
do_div(mbps, csi2->lanes * 1000000);
return mbps;
}
/* -----------------------------------------------------------------------------
* DPHY setting
*/
static int rzg2l_csi2_dphy_disable(struct rzg2l_csi2 *csi2)
{
int ret;
/* Reset the CRU (D-PHY) */
ret = reset_control_assert(csi2->cmn_rstb);
if (ret)
return ret;
/* Stop the D-PHY clock */
clk_disable_unprepare(csi2->sysclk);
/* Cancel the EN_LDO1200 register setting */
rzg2l_csi2_clr(csi2, CSIDPHYCTRL0, CSIDPHYCTRL0_EN_LDO1200);
/* Cancel the EN_BGR register setting */
rzg2l_csi2_clr(csi2, CSIDPHYCTRL0, CSIDPHYCTRL0_EN_BGR);
csi2->dphy_enabled = false;
return 0;
}
static int rzg2l_csi2_dphy_enable(struct rzg2l_csi2 *csi2)
{
const struct rzg2l_csi2_timings *dphy_timing;
u32 dphytim0, dphytim1;
unsigned int i;
int mbps;
int ret;
mbps = rzg2l_csi2_calc_mbps(csi2);
if (mbps < 0)
return mbps;
csi2->hsfreq = mbps;
/* Set DPHY timing parameters */
for (i = 0; i < ARRAY_SIZE(rzg2l_csi2_global_timings); ++i) {
dphy_timing = &rzg2l_csi2_global_timings[i];
if (csi2->hsfreq <= dphy_timing->max_hsfreq)
break;
}
if (i >= ARRAY_SIZE(rzg2l_csi2_global_timings))
return -EINVAL;
/* Set D-PHY timing parameters */
dphytim0 = CSIDPHYTIM0_TCLK_MISS(dphy_timing->tclk_miss) |
CSIDPHYTIM0_T_INIT(dphy_timing->t_init);
dphytim1 = CSIDPHYTIM1_THS_PREPARE(dphy_timing->ths_prepare) |
CSIDPHYTIM1_TCLK_PREPARE(dphy_timing->tclk_prepare) |
CSIDPHYTIM1_THS_SETTLE(dphy_timing->ths_settle) |
CSIDPHYTIM1_TCLK_SETTLE(dphy_timing->tclk_settle);
rzg2l_csi2_write(csi2, CSIDPHYTIM0, dphytim0);
rzg2l_csi2_write(csi2, CSIDPHYTIM1, dphytim1);
/* Enable D-PHY power control 0 */
rzg2l_csi2_write(csi2, CSIDPHYSKW0, CSIDPHYSKW0_DEFAULT_SKW);
/* Set the EN_BGR bit */
rzg2l_csi2_set(csi2, CSIDPHYCTRL0, CSIDPHYCTRL0_EN_BGR);
/* Delay 20us to be stable */
usleep_range(20, 40);
/* Enable D-PHY power control 1 */
rzg2l_csi2_set(csi2, CSIDPHYCTRL0, CSIDPHYCTRL0_EN_LDO1200);
/* Delay 10us to be stable */
usleep_range(10, 20);
/* Start supplying the internal clock for the D-PHY block */
ret = clk_prepare_enable(csi2->sysclk);
if (ret)
rzg2l_csi2_dphy_disable(csi2);
csi2->dphy_enabled = true;
return ret;
}
static int rzg2l_csi2_dphy_setting(struct v4l2_subdev *sd, bool on)
{
struct rzg2l_csi2 *csi2 = sd_to_csi2(sd);
if (on)
return rzg2l_csi2_dphy_enable(csi2);
return rzg2l_csi2_dphy_disable(csi2);
}
static int rzg2l_csi2_mipi_link_enable(struct rzg2l_csi2 *csi2)
{
unsigned long vclk_rate = csi2->vclk_rate / HZ_PER_MHZ;
u32 frrskw, frrclk, frrskw_coeff, frrclk_coeff;
/* Select data lanes */
rzg2l_csi2_write(csi2, CSI2nMCT0, CSI2nMCT0_VDLN(csi2->lanes));
frrskw_coeff = 3 * vclk_rate * 8;
frrclk_coeff = frrskw_coeff / 2;
frrskw = DIV_ROUND_UP(frrskw_coeff, csi2->hsfreq);
frrclk = DIV_ROUND_UP(frrclk_coeff, csi2->hsfreq);
rzg2l_csi2_write(csi2, CSI2nMCT2, CSI2nMCT2_FRRSKW(frrskw) |
CSI2nMCT2_FRRCLK(frrclk));
/*
* Select data type.
* FS, FE, LS, LE, Generic Short Packet Codes 1 to 8,
* Generic Long Packet Data Types 1 to 4 YUV422 8-bit,
* RGB565, RGB888, RAW8 to RAW20, User-defined 8-bit
* data types 1 to 8
*/
rzg2l_csi2_write(csi2, CSI2nDTEL, 0xf778ff0f);
rzg2l_csi2_write(csi2, CSI2nDTEH, 0x00ffff1f);
clk_disable_unprepare(csi2->vclk);
/* Enable LINK reception */
rzg2l_csi2_write(csi2, CSI2nMCT3, CSI2nMCT3_RXEN);
return clk_prepare_enable(csi2->vclk);
}
static int rzg2l_csi2_mipi_link_disable(struct rzg2l_csi2 *csi2)
{
unsigned int timeout = VSRSTS_RETRIES;
/* Stop LINK reception */
rzg2l_csi2_clr(csi2, CSI2nMCT3, CSI2nMCT3_RXEN);
/* Request a software reset of the LINK Video Pixel Interface */
rzg2l_csi2_write(csi2, CSI2nRTCT, CSI2nRTCT_VSRST);
/* Make sure CSI2nRTST.VSRSTS bit is cleared */
while (--timeout) {
if (!(rzg2l_csi2_read(csi2, CSI2nRTST) & CSI2nRTST_VSRSTS))
break;
usleep_range(100, 200);
}
if (!timeout)
dev_err(csi2->dev, "Clearing CSI2nRTST.VSRSTS timed out\n");
return 0;
}
static int rzg2l_csi2_mipi_link_setting(struct v4l2_subdev *sd, bool on)
{
struct rzg2l_csi2 *csi2 = sd_to_csi2(sd);
int ret;
if (on)
ret = rzg2l_csi2_mipi_link_enable(csi2);
else
ret = rzg2l_csi2_mipi_link_disable(csi2);
return ret;
}
static int rzg2l_csi2_s_stream(struct v4l2_subdev *sd, int enable)
{
struct rzg2l_csi2 *csi2 = sd_to_csi2(sd);
int s_stream_ret = 0;
int ret;
if (enable) {
ret = pm_runtime_resume_and_get(csi2->dev);
if (ret)
return ret;
ret = rzg2l_csi2_mipi_link_setting(sd, 1);
if (ret)
goto err_pm_put;
ret = reset_control_deassert(csi2->cmn_rstb);
if (ret)
goto err_mipi_link_disable;
}
ret = v4l2_subdev_call(csi2->remote_source, video, s_stream, enable);
if (ret)
s_stream_ret = ret;
if (enable && ret)
goto err_assert_rstb;
if (!enable) {
ret = rzg2l_csi2_dphy_setting(sd, 0);
if (ret && !s_stream_ret)
s_stream_ret = ret;
ret = rzg2l_csi2_mipi_link_setting(sd, 0);
if (ret && !s_stream_ret)
s_stream_ret = ret;
pm_runtime_put_sync(csi2->dev);
}
return s_stream_ret;
err_assert_rstb:
reset_control_assert(csi2->cmn_rstb);
err_mipi_link_disable:
rzg2l_csi2_mipi_link_setting(sd, 0);
err_pm_put:
pm_runtime_put_sync(csi2->dev);
return ret;
}
static int rzg2l_csi2_pre_streamon(struct v4l2_subdev *sd, u32 flags)
{
return rzg2l_csi2_dphy_setting(sd, 1);
}
static int rzg2l_csi2_post_streamoff(struct v4l2_subdev *sd)
{
struct rzg2l_csi2 *csi2 = sd_to_csi2(sd);
/*
* In ideal case D-PHY will be disabled in s_stream(0) callback
* as mentioned in the HW manual. The below will only happen when
* pre_streamon succeeds and further down the line s_stream(1)
* fails so we need to undo things in post_streamoff.
*/
if (csi2->dphy_enabled)
return rzg2l_csi2_dphy_setting(sd, 0);
return 0;
}
static int rzg2l_csi2_set_format(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *src_format;
struct v4l2_mbus_framefmt *sink_format;
src_format = v4l2_subdev_state_get_format(state, RZG2L_CSI2_SOURCE);
if (fmt->pad == RZG2L_CSI2_SOURCE) {
fmt->format = *src_format;
return 0;
}
sink_format = v4l2_subdev_state_get_format(state, RZG2L_CSI2_SINK);
if (!rzg2l_csi2_code_to_fmt(fmt->format.code))
sink_format->code = rzg2l_csi2_formats[0].code;
else
sink_format->code = fmt->format.code;
sink_format->field = V4L2_FIELD_NONE;
sink_format->colorspace = fmt->format.colorspace;
sink_format->xfer_func = fmt->format.xfer_func;
sink_format->ycbcr_enc = fmt->format.ycbcr_enc;
sink_format->quantization = fmt->format.quantization;
sink_format->width = clamp_t(u32, fmt->format.width,
RZG2L_CSI2_MIN_WIDTH, RZG2L_CSI2_MAX_WIDTH);
sink_format->height = clamp_t(u32, fmt->format.height,
RZG2L_CSI2_MIN_HEIGHT, RZG2L_CSI2_MAX_HEIGHT);
fmt->format = *sink_format;
/* propagate format to source pad */
*src_format = *sink_format;
return 0;
}
static int rzg2l_csi2_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state)
{
struct v4l2_subdev_format fmt = { .pad = RZG2L_CSI2_SINK, };
fmt.format.width = RZG2L_CSI2_DEFAULT_WIDTH;
fmt.format.height = RZG2L_CSI2_DEFAULT_HEIGHT;
fmt.format.field = V4L2_FIELD_NONE;
fmt.format.code = RZG2L_CSI2_DEFAULT_FMT;
fmt.format.colorspace = V4L2_COLORSPACE_SRGB;
fmt.format.ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
fmt.format.quantization = V4L2_QUANTIZATION_DEFAULT;
fmt.format.xfer_func = V4L2_XFER_FUNC_DEFAULT;
return rzg2l_csi2_set_format(sd, sd_state, &fmt);
}
static int rzg2l_csi2_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
{
if (code->index >= ARRAY_SIZE(rzg2l_csi2_formats))
return -EINVAL;
code->code = rzg2l_csi2_formats[code->index].code;
return 0;
}
static int rzg2l_csi2_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
{
if (fse->index != 0)
return -EINVAL;
fse->min_width = RZG2L_CSI2_MIN_WIDTH;
fse->min_height = RZG2L_CSI2_MIN_HEIGHT;
fse->max_width = RZG2L_CSI2_MAX_WIDTH;
fse->max_height = RZG2L_CSI2_MAX_HEIGHT;
return 0;
}
static const struct v4l2_subdev_video_ops rzg2l_csi2_video_ops = {
.s_stream = rzg2l_csi2_s_stream,
.pre_streamon = rzg2l_csi2_pre_streamon,
.post_streamoff = rzg2l_csi2_post_streamoff,
};
static const struct v4l2_subdev_pad_ops rzg2l_csi2_pad_ops = {
.enum_mbus_code = rzg2l_csi2_enum_mbus_code,
.enum_frame_size = rzg2l_csi2_enum_frame_size,
.set_fmt = rzg2l_csi2_set_format,
.get_fmt = v4l2_subdev_get_fmt,
};
static const struct v4l2_subdev_ops rzg2l_csi2_subdev_ops = {
.video = &rzg2l_csi2_video_ops,
.pad = &rzg2l_csi2_pad_ops,
};
static const struct v4l2_subdev_internal_ops rzg2l_csi2_internal_ops = {
.init_state = rzg2l_csi2_init_state,
};
/* -----------------------------------------------------------------------------
* Async handling and registration of subdevices and links.
*/
static int rzg2l_csi2_notify_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct rzg2l_csi2 *csi2 = notifier_to_csi2(notifier);
csi2->remote_source = subdev;
dev_dbg(csi2->dev, "Bound subdev: %s pad\n", subdev->name);
return media_create_pad_link(&subdev->entity, RZG2L_CSI2_SINK,
&csi2->subdev.entity, 0,
MEDIA_LNK_FL_ENABLED |
MEDIA_LNK_FL_IMMUTABLE);
}
static void rzg2l_csi2_notify_unbind(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct rzg2l_csi2 *csi2 = notifier_to_csi2(notifier);
csi2->remote_source = NULL;
dev_dbg(csi2->dev, "Unbind subdev %s\n", subdev->name);
}
static const struct v4l2_async_notifier_operations rzg2l_csi2_notify_ops = {
.bound = rzg2l_csi2_notify_bound,
.unbind = rzg2l_csi2_notify_unbind,
};
static int rzg2l_csi2_parse_v4l2(struct rzg2l_csi2 *csi2,
struct v4l2_fwnode_endpoint *vep)
{
/* Only port 0 endpoint 0 is valid. */
if (vep->base.port || vep->base.id)
return -ENOTCONN;
csi2->lanes = vep->bus.mipi_csi2.num_data_lanes;
return 0;
}
static int rzg2l_csi2_parse_dt(struct rzg2l_csi2 *csi2)
{
struct v4l2_fwnode_endpoint v4l2_ep = {
.bus_type = V4L2_MBUS_CSI2_DPHY
};
struct v4l2_async_connection *asd;
struct fwnode_handle *fwnode;
struct fwnode_handle *ep;
int ret;
ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(csi2->dev), 0, 0, 0);
if (!ep) {
dev_err(csi2->dev, "Not connected to subdevice\n");
return -EINVAL;
}
ret = v4l2_fwnode_endpoint_parse(ep, &v4l2_ep);
if (ret) {
dev_err(csi2->dev, "Could not parse v4l2 endpoint\n");
fwnode_handle_put(ep);
return -EINVAL;
}
ret = rzg2l_csi2_parse_v4l2(csi2, &v4l2_ep);
if (ret) {
fwnode_handle_put(ep);
return ret;
}
fwnode = fwnode_graph_get_remote_endpoint(ep);
fwnode_handle_put(ep);
v4l2_async_subdev_nf_init(&csi2->notifier, &csi2->subdev);
csi2->notifier.ops = &rzg2l_csi2_notify_ops;
asd = v4l2_async_nf_add_fwnode(&csi2->notifier, fwnode,
struct v4l2_async_connection);
fwnode_handle_put(fwnode);
if (IS_ERR(asd))
return PTR_ERR(asd);
ret = v4l2_async_nf_register(&csi2->notifier);
if (ret)
v4l2_async_nf_cleanup(&csi2->notifier);
return ret;
}
static int rzg2l_validate_csi2_lanes(struct rzg2l_csi2 *csi2)
{
int lanes;
int ret;
if (csi2->lanes != 1 && csi2->lanes != 2 && csi2->lanes != 4) {
dev_err(csi2->dev, "Unsupported number of data-lanes: %u\n",
csi2->lanes);
return -EINVAL;
}
ret = pm_runtime_resume_and_get(csi2->dev);
if (ret)
return ret;
/* Checking the maximum lanes support for CSI-2 module */
lanes = (rzg2l_csi2_read(csi2, CSI2nMCG) & CSI2nMCG_SDLN) >> 8;
if (lanes < csi2->lanes) {
dev_err(csi2->dev,
"Failed to support %d data lanes\n", csi2->lanes);
ret = -EINVAL;
}
pm_runtime_put_sync(csi2->dev);
return ret;
}
/* -----------------------------------------------------------------------------
* Platform Device Driver.
*/
static const struct media_entity_operations rzg2l_csi2_entity_ops = {
.link_validate = v4l2_subdev_link_validate,
};
static int rzg2l_csi2_probe(struct platform_device *pdev)
{
struct rzg2l_csi2 *csi2;
int ret;
csi2 = devm_kzalloc(&pdev->dev, sizeof(*csi2), GFP_KERNEL);
if (!csi2)
return -ENOMEM;
csi2->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(csi2->base))
return PTR_ERR(csi2->base);
csi2->cmn_rstb = devm_reset_control_get_exclusive(&pdev->dev, "cmn-rstb");
if (IS_ERR(csi2->cmn_rstb))
return dev_err_probe(&pdev->dev, PTR_ERR(csi2->cmn_rstb),
"Failed to get cpg cmn-rstb\n");
csi2->presetn = devm_reset_control_get_shared(&pdev->dev, "presetn");
if (IS_ERR(csi2->presetn))
return dev_err_probe(&pdev->dev, PTR_ERR(csi2->presetn),
"Failed to get cpg presetn\n");
csi2->sysclk = devm_clk_get(&pdev->dev, "system");
if (IS_ERR(csi2->sysclk))
return dev_err_probe(&pdev->dev, PTR_ERR(csi2->sysclk),
"Failed to get system clk\n");
csi2->vclk = devm_clk_get(&pdev->dev, "video");
if (IS_ERR(csi2->vclk))
return dev_err_probe(&pdev->dev, PTR_ERR(csi2->vclk),
"Failed to get video clock\n");
csi2->vclk_rate = clk_get_rate(csi2->vclk);
csi2->dev = &pdev->dev;
platform_set_drvdata(pdev, csi2);
ret = rzg2l_csi2_parse_dt(csi2);
if (ret)
return ret;
pm_runtime_enable(&pdev->dev);
ret = rzg2l_validate_csi2_lanes(csi2);
if (ret)
goto error_pm;
csi2->subdev.dev = &pdev->dev;
v4l2_subdev_init(&csi2->subdev, &rzg2l_csi2_subdev_ops);
csi2->subdev.internal_ops = &rzg2l_csi2_internal_ops;
v4l2_set_subdevdata(&csi2->subdev, &pdev->dev);
snprintf(csi2->subdev.name, sizeof(csi2->subdev.name),
"csi-%s", dev_name(&pdev->dev));
csi2->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
csi2->subdev.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
csi2->subdev.entity.ops = &rzg2l_csi2_entity_ops;
csi2->pads[RZG2L_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
/*
* TODO: RZ/G2L CSI2 supports 4 virtual channels, as virtual
* channels should be implemented by streams API which is under
* development lets hardcode to VC0 for now.
*/
csi2->pads[RZG2L_CSI2_SOURCE].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&csi2->subdev.entity, 2, csi2->pads);
if (ret)
goto error_pm;
ret = v4l2_subdev_init_finalize(&csi2->subdev);
if (ret < 0)
goto error_async;
ret = v4l2_async_register_subdev(&csi2->subdev);
if (ret < 0)
goto error_subdev;
return 0;
error_subdev:
v4l2_subdev_cleanup(&csi2->subdev);
error_async:
v4l2_async_nf_unregister(&csi2->notifier);
v4l2_async_nf_cleanup(&csi2->notifier);
media_entity_cleanup(&csi2->subdev.entity);
error_pm:
pm_runtime_disable(&pdev->dev);
return ret;
}
static void rzg2l_csi2_remove(struct platform_device *pdev)
{
struct rzg2l_csi2 *csi2 = platform_get_drvdata(pdev);
v4l2_async_nf_unregister(&csi2->notifier);
v4l2_async_nf_cleanup(&csi2->notifier);
v4l2_async_unregister_subdev(&csi2->subdev);
v4l2_subdev_cleanup(&csi2->subdev);
media_entity_cleanup(&csi2->subdev.entity);
pm_runtime_disable(&pdev->dev);
}
static int rzg2l_csi2_pm_runtime_suspend(struct device *dev)
{
struct rzg2l_csi2 *csi2 = dev_get_drvdata(dev);
reset_control_assert(csi2->presetn);
return 0;
}
static int rzg2l_csi2_pm_runtime_resume(struct device *dev)
{
struct rzg2l_csi2 *csi2 = dev_get_drvdata(dev);
return reset_control_deassert(csi2->presetn);
}
static const struct dev_pm_ops rzg2l_csi2_pm_ops = {
RUNTIME_PM_OPS(rzg2l_csi2_pm_runtime_suspend,
rzg2l_csi2_pm_runtime_resume, NULL)
};
static const struct of_device_id rzg2l_csi2_of_table[] = {
{ .compatible = "renesas,rzg2l-csi2", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, rzg2l_csi2_of_table);
static struct platform_driver rzg2l_csi2_pdrv = {
.remove_new = rzg2l_csi2_remove,
.probe = rzg2l_csi2_probe,
.driver = {
.name = "rzg2l-csi2",
.of_match_table = rzg2l_csi2_of_table,
.pm = pm_ptr(&rzg2l_csi2_pm_ops),
},
};
module_platform_driver(rzg2l_csi2_pdrv);
MODULE_AUTHOR("Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com>");
MODULE_DESCRIPTION("Renesas RZ/G2L MIPI CSI2 receiver driver");
MODULE_LICENSE("GPL");